Successfully reported this slideshow.

Ecuaciones

5,960 views

Published on

Published in: Technology, Education
  • Be the first to comment

Ecuaciones

  1. 1. 1º ESO ECUACIONES DE PRIMER GRADO
  2. 2. El largo de un campo de fútbol es el doble del ancho más 10 metros Esta información podría expresarse de otra forma: Llamamos x al ancho del campo. El doble será 2 · x Y el doble más 10 m: 2 · x + 10 Por tanto, 2 · x + 10 expresa el largo del campo de fútbol. Las dimensiones de nuestro campo, expresadas en forma algebraica, son: El lenguaje algebraico utiliza letras, números y signos de operaciones para expresar información. Del lenguaje ordinario al lenguaje algebraico Largo Ancho 2x + 10 x
  3. 3. El lenguaje algebraico: algunos ejemplos Lenguaje ordinario Un número aumentado en 2 a + 2 Un número disminuido en 5 El número natural siguiente al número n El cuadrado de un número menos el mismo número Lenguaje algebraico c – 5 (Llamamos c al número) El cuadrado de un número x 2 Perímetro del cuadrado de lado x 4x x 2 – x n + 1 Hoy Antonio tiene 12 años; cuando pasen x años tendrá x + 12 Hoy Laura tiene 13 años; hace x años tenía: 13 – x (Llamamos a al número) x x x x
  4. 4. Expresiones algebraicas Las fórmulas que se utilizan en geometría, en ciencias y en otras materia son expresiones que contienen letras, o números y letras: Una expresión algebraica es una combinación de números y letras unidos por los signos de las operaciones aritméticas de suma, resta, multiplicación, división y potenciación. Observaciones: 1. El factor 1 no se escribe. a b b 1 · x 2 · y 1 2. El exponente 1 tampoco se escribe. 3. El signo de multiplicación no suele ponerse. x 2 · y 1 x 2 · y x 2 y 5abc 3 5 · a · b · c 3 (t = tiempo en horas) Área del triángulo: h Área de un rectángulo: a · b La distancia recorrida por un coche que circula a 100 km/h: 100 · t
  5. 5. Valor numérico de una expresión algebraica Observa el cuadrado de lado x . Su área es x 2 . Valor numérico de una expresión algebraica es el número que se obtiene al sustituir las letras de la misma por números determinados y hacer las operaciones indicadas en la expresión. Ejemplos: 1. El valor numérico de la expresión algebraica 5x – 6 Si queremos hallar el área de un cuadrado concreto, por ejemplo de uno que tenga 4 cm de lado, se sustituye x por 4: 16 es el valor numérico de la expresión x 2 cuando se sustituye x por 4. para x = 2 , es: 5 · 2 – 6 = 10 – 6 = 4 2 . El valor numérico de la expresión algebraica 5a 2 + b 2 para a = 4 y b = 10 es: x 2 A = x 2 = 4 2 = 16 para x = 10 , es: 5 · 10 – 6 = 50 – 6 = 4 4 5 · 4 2 + 10 2 = 5 · 16 + 100 = 180 x x
  6. 6. Suma y resta de expresiones algebraicas Dos segmentos miden 5x y 3x , respectivamente. Para que las expresiones algebraicas unidas por las operaciones suma y resta se puedan reducir a una expresión más sencilla, sus partes literales deben ser iguales. Se dice entonces, que son expresiones semejantes. ¿Cómo podríamos expresar su longitud total? x x x x x 5x 3x Si ponemos un segmento a continuación del otro, se tiene: 5x + 3x = 8x Suma: ¿Cómo podríamos expresar la diferencias de sus longitudes? 2x 5x – 3x = 2x Resta: Observación: Para que dos expresiones puedan sumarse o restarse es necesario que sean semejantes. No se pueden sumar 2x + x 2 Se deja indicado x x x 5x x x x x x x x x 3x x x x x x 5x 3x
  7. 7. Ecuaciones de primer grado La balanza está equilibrada. Una ecuación es una igualdad en cuyos miembros hay letras y números relacionados por operaciones aritméticas. 10 + 2 = 4 + 8 Tenemos una igualdad numérica Toda igualdad tiene dos miembros . El primero a la izquierda del signo igual, y el segundo a la derecha. Una igualdad numérica se compone de dos expresiones numéricas iguales unidas por el signo igual (=). 10 + 2 = 4 + 8 Se tendrá la igualdad: x + 4 = 8 + 4 Esta segunda balanza también está en equilibrio; aunque un peso es desconocido: le llamamos x Esta igualdad se llama ecuación . La letra x es la incógnita. La incógnita es la letra cuyo valor se desconoce. La ecuación es de primer grado si la incógnita lleva de exponente 1. 1 er miembro 2º miembro
  8. 8. Igualdades y ecuaciones La balanza está equilibrada. Una ecuación es una igualdad en cuyos miembros hay letras y números relacionados por operaciones aritméticas. 10 + 2 = 4 + 8 Tenemos una igualdad numérica Toda igualdad tiene dos miembros . El primero a la izquierda del signo igual, y el segundo a la derecha. Una igualdad numérica se compone de dos expresiones numéricas iguales unidas por el signo igual (=). 10 + 2 = 4 + 8 Se tendrá la igualdad: x + 4 = 8 + 4 Esta segunda balanza también está en equilibrio; aunque un peso es desconocido: le llamamos x Esta igualdad se llama ecuación . La letra x es la incógnita. La incógnita es la letra cuyo valor se desconoce. La ecuación es de primer grado si la incógnita lleva de exponente 1. 1 er miembro 2º miembro
  9. 9. La solución de las dos ecuaciones siguientes es x = 3 : Dos o más ecuaciones son equivalentes si tienen la misma solución. Observa cómo pueden hacerse ecuaciones equivalentes a otra dada: a) 4 + 4x = 25 – 3x Sustituyendo: b) 7x + 4 = 25 4 + 4 · 3 = 16 y 25 – 3 · 3 = 16 7 · 3 + 4 = 25, que es el 2º miembro Ecuación dada: 8x = 16 Su solución es x = 2 . (¿Es cierto?) 2ª ecuación: 2 + 8x = 2 + 16 2 + 8x = 18 Le sumamos 2 a cada miembro 3ª ecuación: 2 + 8x – 6x = 2 + 16 – 6x 2 + 2x = 18 – 6x Restamos 6x a cada miembro Comprueba que x = 2 es la solución de las tres ecuaciones . Ecuaciones equivalentes
  10. 10. Resolución de ecuaciones. Regla de la suma Si a los dos miembros de una ecuación se suma o resta un número o una expresión semejante a las utilizadas en la ecuación, se obtiene otra ecuación equivalente a la dada. x = 10 Luego: Para resolver ecuaciones es útil buscar otra semejante a la dada pero que sea más fácil. Para ello es necesario conocer algunas reglas. Observa : si de la balanza de la izquierda se quita de los dos platillos la pesa 5, el equilibrio se mantiene. x + 5 = 10 + 5 Ejemplo: Para resolver la ecuación 2x + 8 = x + 25 + 8 Regla de la suma Primero. Restamos 8: 2x = x + 25 Segundo. Restamos x: x = 25 La solución es x = 25
  11. 11. Resolución de ecuaciones. Regla del producto x = 5 Si a los dos miembros de una ecuación se los multiplica o divide por un número distinto de cero, se obtiene otra ecuación equivalente a la dada. Luego: Observa las dos balanzas y las ecuaciones que representan: Ejemplo: Para resolver la ecuación 4 x + 3 = 2x + 9 Regla del producto Primero. Restamos 3: 4x = 2x + 6 Segundo. Restamos 2x: 2x = 6 La solución es x = 3 4x = 20 Hemos dividido por 4 Tercero. Dividimos por 2 x = 3 – 3 – 2x :2
  12. 12. Resolución de ecuaciones. Ejercicios Ejercicio 1 Ecuación con paréntesis: 3(x – 7) = 5(x – 1) – 4x 1º. Quitar paréntesis: 2º. Operar 5x – 4x: 3º. Restar x 3x – 21 = 5x – 5 – 4x 3x – 21 = x – 5 2x – 21 = – 5 5º. Dividir por 2 4º. Sumar 21 2x = 16 x = 8 Ejercicio 2 Ecuación con denominadores: 1º. Quitar denominadores. Para ello se multiplica por 12, que es m.c.m.(4, 2, 6): 2º. Restar 30: 3º. Operar 3x – 2x 3x + 30 – 2x = 60 3x – 2x = 30 x = 30

×