Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Ejercicios resueltos de cálculo de probabilidades

224,804 views

Published on

Ejercicios resueltos de cálculo de probabilidades

  1. 1. Ejercicio 1:Describe el espacio muestral asociado a cada uno de los siguientes experimentos aleatorios: 1. Lanzar tres monedas. 2. Lanzar tres dados y anotar la suma de los puntos obtenidos. 3. Extracción de dos bolas de una urna que contiene cuatro bolas blancas y tres negras. 4. El tiempo, con relación a la lluvia, que hará durante tres días consecutivos.Solución: 1. Llamando C a obtener cara y X a la obtención de cruz, obtenemos el siguiente espacio muestral: E={(CCC),(CCX),(CXC),(XCC),(CXX),(XCX),(XXC),(XXX)} 2. E={3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18} 3. Llamando B a sacar bola blanca y N a sacar bola negra, tenemos: E={BB,BN,NN} 4. Si llamamos L al día lluvioso y N al día sin lluvia, para tres días consecutivos se obtiene el siguiente espacio muestral: E={(LLL),(LLN),(LNL),(NLL),(LNN),(NLN),(NNL),(NNN)}Ejercicio 2:Tenemos una urna con nueve bolas numeradas del 1 al 9. Realizamos el experimento, queconsiste en sacar una bola de la urna, anotar el número y devolverla a la urna. Consideramoslos siguientes sucesos: A="salir un número primo" y B="salir un número cuadrado". Respondea las cuestiones siguientes: 1. Calcula los sucesos y . 2. Los sucesos A y B, ¿son compatibles o incompatibles?. 3. Encuentra los sucesos contrarios de A y B.Solución:Los sucesos A y B están formados por los sucesos elementales que pueden verse acontinuación: A = {2,3,5,7} B = {1,4,9}A partir de estos conjuntos, tenemos:La unión e intersección de A y B son: = {1,2,3,4,5,7,9} =Ø Al ser = Ø, los sucesos A y B son incompatibles.El suceso contrario de A es = {1,4,6,8,9}El suceso contrario de B es = {2,3,5,6,7,8}Ejercicio 3:En una baraja de 40 cartas, ¿cuál es la probabilidad de sacar AS?, ¿Y de sacar OROS ?
  2. 2. Solución:Ejercicio 4:Se lanzan dos dados equilibrados con seis caras marcadas con los números del 1 al 6. Sepide: 1. Halla la probabilidad de que la suma de los valores que aparecen en la cara superior sea múltiplo de tres. 2. ¿Cuál es la probabilidad de que los valores obtenidos difieran en una cantidad mayor de dos?Solución:El espacio muestral del experimento es:E = {(1,1); (1,2); (1,3); (1,4); (1,5); (1,6); (2,1); ...; (6,6)} y está formado por 36 sucesoselementales equiprobables. Constituyen el número de casos posibles del experimento.Utilizando la regla de Laplace, calculamos las probabilidades de los sucesos que nos piden:Si llamamos A al suceso "obtener una suma múltiplo de 3", los casos favorables al suceso Ason: A = {(1,2); (2,1); (1,5); (2,4); (3,3); (4,2); (5,1); (3,6); (4,5); (5,4); (6,3); (6,6)}.Por tanto, P( A ) = 12/36 = ⅓.Si llamamos B al suceso "obtener unos valores que se diferencian en una cantidadmayor que dos", los casos favorables al suceso B son:B = {(1,4); (4,1); (1,5); (5,1); (1,6); (6,1); (2,5); (5,2); (2,6); (6,2); (3,6); (6,3)}.Por tanto, P( B ) = 12/36 = ⅓.Ejercicio 5:En una caja tenemos 15 bolas blancas, 30 bolas negras y 45 bolas verdes. Si extraemos tresbolas simultáneamente, ¿cuál es la probabilidad de que salga una bola de cada color?Solución:Calcularemos los casos posibles del experimento y los casos favorables al suceso delenunciado para aplicar la regla de Laplace.Los casos posibles son las distintas formas de extraer 3 bolas entre 90. Como el orden no debe
  3. 3. tenerse en cuenta, estos casos son:Los casos favorables son 15 · 30 · 45 = 20 250. Éstas son las formas de agrupar tres bolas dedistinto color. La probabilidad pedida es:Ejercicio 6:Si escogemos al azar dos números de teléfono y observamos la última cifra de cada uno,determina las probabilidades siguientes: 1. Que las dos cifras sean iguales. 2. Que su suma sea 11. 3. Que su suma sea mayor que 7 y menor que 13.Solución:El espacio muestral de este experimento está formado por los cien sucesos elementales:00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, ..., 98, 99. Para cada sucesos del enunciadocalculamos sus casos favorables, aplicamos la regla de Laplace y obtenemos:Los casos favorables son: 00, 11, 22, ..., 99. La probabilidad de que las últimas cifrassean iguales es: P(últimas cifras iguales) = 10/100 = 1/10 = 0.1.Los casos favorables a que la suma de las últimas cifras sea 11 son: 29, 38, 47, 56, 65, 74, 83y 92. Por tanto, P(últimas cifras suman once) = 8/100 = 0.08.Deben contarse los números de dos cifras cuya suma sea 8, 9, 10, 11 y 12. Haciendo unrecuento ordenado, se obtienen 43 casos favorables. La probabilidad buscada es:P(últimas cifras suman un valor mayor que 7 y menor que 13) = 43/100 = 0.43.Ejercicio 7:Se tiran tres dados al mismo tiempo. Encuentra la probabilidad de que: 1. La suma de los números aparecidos sea menor que 8. 2. La suma de los números sea mayor que 4 y menor que 8.Solución:Los casos posibles de este experimento son las 216 ternas siguientes: 111, 112, 121, 211, ...,665, 666.Realizando un recuento ordenado de los casos favorables a los sucesos del enunciado,obtenemos las siguientes probabilidades:

×