SlideShare a Scribd company logo

Contoh Analisis Data Statistika Menggunakan SPSS 16.0 (Mulai Entri Data sampai Analisis Covariance)

Dataset ini merupakan jabaran atau contoh analisis data menggunakan program SPSS 16.0 pada Buku SPSS 16.0 Analisis Data Statistika dan Penelitian. Penulis Buku: Hartono. Tahun Terbit: 2014. Yogyakarta: Zanafa & Pustaka Pelajar

1 of 39
Download to read offline
1
SPSS 16.0
1 ENTRI DATA
a OUTPUT SPSS
NAMA PRESTASI KERAJINAN PEKERJAAN JENIS KELAMIN USIA
Ahmad 75.5 Malas Pegawai Negeri Laki-Laki 14
Beni 70 Malas Pegawai Negeri Laki-Laki 13
Coni 79.77 Sedang ABRI Perempuan 15
Dodi 78.5 Rajin ABRI Laki-Laki 17
Eva 76 Sedang ABRI Perempuan 15
Fitrian
i
85.85 Sedang Pegawai Negeri Perempuan 12
Gogon 87 Malas Pedagang Laki-Laki 17
Hani 86.86 Rajin Pedagang Laki-Laki 13
Ita 89 Rajin Petani Perempuan 13
Joni 66 Rajin Nelayan Laki-Laki 16
b PEMBAHASAN
Entri dilakukan dengan:
a Memasukkan data ke dalam masing-masing kolom variable
b Memberikan identitas masing-masing variable yang terdiri dari name, type,
width, decimals, label, values, missing, columns, align, dan measure
c Mengisi identitas variable
2 ANALISIS DESKRIPTIF
a OUTPUT SPSS
Frequencies
Statistics
HASIL_BELAJAR
N Valid 50
Missing 0
Mean 75.20
Std. Error of Mean 1.807
Median 75.00
Mode 70a
Std. Deviation 12.776
Variance 163.224
Skewness -.176
Std. Error of Skewness .337
Kurtosis -.899
Std. Error of Kurtosis .662
Range 45
Minimum 50
Maximum 95
Sum 3760
Percentiles 10 55.50
25 65.00
50 75.00
75 86.25
90 90.00
a. Multiple modes exist. The smallest value is shown
HASIL_BELAJAR
Frequency Percent Valid Percent Cumulative Percent
2
Valid 50 2 4.0 4.0 4.0
55 3 6.0 6.0 10.0
60 5 10.0 10.0 20.0
65 3 6.0 6.0 26.0
70 8 16.0 16.0 42.0
75 8 16.0 16.0 58.0
80 5 10.0 10.0 68.0
85 4 8.0 8.0 76.0
90 8 16.0 16.0 92.0
95 4 8.0 8.0 100.0
Total 50 100.0 100.0
Frequencies
Statistics
KEMAMPUAN
AWAL
LAMA BELAJAR
MOTIVASI
BELAJAR
KETERSEDIAAN
SUMBER BELAJAR
N
Valid 50 50 50 50
Missing 0 0 0 0
Mode 1 1 1 1
Range 2 2 2 1
Frequency Table
KEMAMPUAN_AWAL
3
Frequency Percent Valid Percent
Cumulative
Percent
Valid TINGGI 21 42.0 42.0 42.0
SEDANG 17 34.0 34.0 76.0
RENDAH 12 24.0 24.0 100.0
Total 50 100.0 100.0
LAMA_BELAJAR
Frequency Percent Valid Percent Cumulative Percent
Valid 2 JAM 19 38.0 38.0 38.0
3 JAM 15 30.0 30.0 68.0
4 JAM 16 32.0 32.0 100.0
Total 50 100.0 100.0
MOTIVASI_BELAJAR
Frequency Percent Valid Percent
Cumulative
Percent
Valid TINGGI 20 40.0 40.0 40.0
SEDANG 14 28.0 28.0 68.0
RENDAH 16 32.0 32.0 100.0
Total 50 100.0 100.0
KETERSEDIAAN_SUMBER_BELAJAR
Frequency Percent Valid Percent
Cumulative
Percent
Valid LENGKAP 28 56.0 56.0 56.0
TIDAK LENGKAP 22 44.0 44.0 100.0
Total 50 100.0 100.0
Pie Chart
4
5
6
b INTERPRETASI
Frequencies Statistics
Valid : menunjukkan angka 50, berarti data seluruh siswa telah dianalisis
Missing : menunjukkan angka 0, berarti tidak ada data belum terinput
Mean : besarnya mean pada variable hasil belajar adalah 75,20.
Median : besar median pada variable adalah 75.00
Modus : nilai yang mempunyai frekuensi paling banyak pada variable hasil
belajar adalah 70.00
Standar deviasi : besar selisih masing-masing skor dengan nilai rata-rata hitung
adalah 12,776
Variance : tingkat homogenitas data didapat dari hasil kuadrat standar
deviasi
Skewness : tingkat kemiringan kurva variable hasil belajar adalah -0,176.
Ratio skewness :
:
: -0,522
Kurtosis : keruncingan/ketumpulan kurva variable hasil belajar adalah
-0,889
Ratio kurtosis :
:
: -1,343
Karena ratio skewness dan ratio kurtosis lebih kecil dari 2 maka distribusi data normal.
Minimum : skor terendah pada variable hasil belajar adalah 50
Maximum : skor tertinggi pada variable hasil belajar adalah 95
Frequency table menggambarkan variable secara kuantitatif, sedangkan histogram dan
pie chart mendeskripsikan masing-masing variable secara visual
3 ANALISIS KORELASI DUA VARIABEL (BIVARIAT)
a OUTPUT SPSS
Descriptive Statistics
Mean Std. Deviation N
Nilai Rata-Rata Siswa 79.4480 7.76594 10
Usia Siswa 14.50 1.780 10
Correlations
Nilai Rata-Rata
Siswa Usia Siswa
Nilai Rata-Rata Siswa Pearson Correlation 1 -.245
Sig. (2-tailed) .494
N 10 10
Usia Siswa Pearson Correlation -.245 1
Sig. (2-tailed) .494
N 10 10

More Related Content

What's hot

lembar pengesahan, kata pengantar, daftar isi, daftar gambar, daftar tabel la...
lembar pengesahan, kata pengantar, daftar isi, daftar gambar, daftar tabel la...lembar pengesahan, kata pengantar, daftar isi, daftar gambar, daftar tabel la...
lembar pengesahan, kata pengantar, daftar isi, daftar gambar, daftar tabel la...Google+
 
Perbedaan penelitian kualitatif dan kuantitatif
Perbedaan penelitian kualitatif dan kuantitatifPerbedaan penelitian kualitatif dan kuantitatif
Perbedaan penelitian kualitatif dan kuantitatifAnNa Luph Black
 
13.analisa korelasi
13.analisa korelasi13.analisa korelasi
13.analisa korelasiHafiza .h
 
Contoh Slide Presentasi Proposal Penelitian yang Bagus
Contoh Slide Presentasi Proposal Penelitian yang BagusContoh Slide Presentasi Proposal Penelitian yang Bagus
Contoh Slide Presentasi Proposal Penelitian yang BagusTrisnadi Wijaya
 
Format penulisan laporan
Format penulisan laporanFormat penulisan laporan
Format penulisan laporanYuliana
 
Power point seminar proposal yunita rahmah
Power point seminar proposal yunita rahmahPower point seminar proposal yunita rahmah
Power point seminar proposal yunita rahmahYunitha Rahmah
 
Template Presentasi Powerpoint - Seminar Proposal Skripsi Alvian
Template Presentasi Powerpoint - Seminar Proposal Skripsi AlvianTemplate Presentasi Powerpoint - Seminar Proposal Skripsi Alvian
Template Presentasi Powerpoint - Seminar Proposal Skripsi AlvianAlvian Alvian
 
Contoh Review Jurnal Ilmiah (PENGARUH KEPEMIMPINAN, BUDAYA ORGANISASI DAN LIN...
Contoh Review Jurnal Ilmiah (PENGARUH KEPEMIMPINAN, BUDAYA ORGANISASI DAN LIN...Contoh Review Jurnal Ilmiah (PENGARUH KEPEMIMPINAN, BUDAYA ORGANISASI DAN LIN...
Contoh Review Jurnal Ilmiah (PENGARUH KEPEMIMPINAN, BUDAYA ORGANISASI DAN LIN...Wulandari Rima Kumari
 
Proposal Business Plan - business
Proposal Business Plan - businessProposal Business Plan - business
Proposal Business Plan - businessCyberSpace
 
Metodologi Penelitian - Cara Membuat Kuisioner
Metodologi Penelitian - Cara Membuat KuisionerMetodologi Penelitian - Cara Membuat Kuisioner
Metodologi Penelitian - Cara Membuat KuisionerDeady Rizky Yunanto
 
Contoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSS
Contoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSSContoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSS
Contoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSSPropaningtyas Windardini
 
MAKALAH Tugas kelompok 1 PASCASARJANA SABURAI ANGKATAN 15-ED
MAKALAH Tugas kelompok 1 PASCASARJANA SABURAI ANGKATAN 15-EDMAKALAH Tugas kelompok 1 PASCASARJANA SABURAI ANGKATAN 15-ED
MAKALAH Tugas kelompok 1 PASCASARJANA SABURAI ANGKATAN 15-EDACHMAD AVANDI,SE,MM Alfaqzamta
 
Contoh nominal,ordinal,interval,dan rasio
Contoh nominal,ordinal,interval,dan rasioContoh nominal,ordinal,interval,dan rasio
Contoh nominal,ordinal,interval,dan rasiofirman afriansyah
 

What's hot (20)

Pertanyaan presentasi
Pertanyaan presentasiPertanyaan presentasi
Pertanyaan presentasi
 
lembar pengesahan, kata pengantar, daftar isi, daftar gambar, daftar tabel la...
lembar pengesahan, kata pengantar, daftar isi, daftar gambar, daftar tabel la...lembar pengesahan, kata pengantar, daftar isi, daftar gambar, daftar tabel la...
lembar pengesahan, kata pengantar, daftar isi, daftar gambar, daftar tabel la...
 
Perbedaan penelitian kualitatif dan kuantitatif
Perbedaan penelitian kualitatif dan kuantitatifPerbedaan penelitian kualitatif dan kuantitatif
Perbedaan penelitian kualitatif dan kuantitatif
 
13.analisa korelasi
13.analisa korelasi13.analisa korelasi
13.analisa korelasi
 
Contoh Slide Presentasi Proposal Penelitian yang Bagus
Contoh Slide Presentasi Proposal Penelitian yang BagusContoh Slide Presentasi Proposal Penelitian yang Bagus
Contoh Slide Presentasi Proposal Penelitian yang Bagus
 
Skala pengukuran dalam penelitian
Skala pengukuran dalam penelitianSkala pengukuran dalam penelitian
Skala pengukuran dalam penelitian
 
Format penulisan laporan
Format penulisan laporanFormat penulisan laporan
Format penulisan laporan
 
Power point seminar proposal yunita rahmah
Power point seminar proposal yunita rahmahPower point seminar proposal yunita rahmah
Power point seminar proposal yunita rahmah
 
Template Presentasi Powerpoint - Seminar Proposal Skripsi Alvian
Template Presentasi Powerpoint - Seminar Proposal Skripsi AlvianTemplate Presentasi Powerpoint - Seminar Proposal Skripsi Alvian
Template Presentasi Powerpoint - Seminar Proposal Skripsi Alvian
 
Laporan hasil analisis
Laporan hasil analisisLaporan hasil analisis
Laporan hasil analisis
 
Ppt sidang skripsi
Ppt sidang skripsiPpt sidang skripsi
Ppt sidang skripsi
 
Ppt proposal
Ppt proposalPpt proposal
Ppt proposal
 
Contoh Review Jurnal Ilmiah (PENGARUH KEPEMIMPINAN, BUDAYA ORGANISASI DAN LIN...
Contoh Review Jurnal Ilmiah (PENGARUH KEPEMIMPINAN, BUDAYA ORGANISASI DAN LIN...Contoh Review Jurnal Ilmiah (PENGARUH KEPEMIMPINAN, BUDAYA ORGANISASI DAN LIN...
Contoh Review Jurnal Ilmiah (PENGARUH KEPEMIMPINAN, BUDAYA ORGANISASI DAN LIN...
 
Proposal Business Plan - business
Proposal Business Plan - businessProposal Business Plan - business
Proposal Business Plan - business
 
Analisis jalur (path analysis)
Analisis jalur (path analysis)Analisis jalur (path analysis)
Analisis jalur (path analysis)
 
Metodologi Penelitian - Cara Membuat Kuisioner
Metodologi Penelitian - Cara Membuat KuisionerMetodologi Penelitian - Cara Membuat Kuisioner
Metodologi Penelitian - Cara Membuat Kuisioner
 
Contoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSS
Contoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSSContoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSS
Contoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSS
 
MAKALAH Tugas kelompok 1 PASCASARJANA SABURAI ANGKATAN 15-ED
MAKALAH Tugas kelompok 1 PASCASARJANA SABURAI ANGKATAN 15-EDMAKALAH Tugas kelompok 1 PASCASARJANA SABURAI ANGKATAN 15-ED
MAKALAH Tugas kelompok 1 PASCASARJANA SABURAI ANGKATAN 15-ED
 
Hipotesis nol
Hipotesis nolHipotesis nol
Hipotesis nol
 
Contoh nominal,ordinal,interval,dan rasio
Contoh nominal,ordinal,interval,dan rasioContoh nominal,ordinal,interval,dan rasio
Contoh nominal,ordinal,interval,dan rasio
 

Similar to Contoh Analisis Data Statistika Menggunakan SPSS 16.0 (Mulai Entri Data sampai Analisis Covariance)

Tugas statistik bisnis 3
Tugas statistik bisnis 3Tugas statistik bisnis 3
Tugas statistik bisnis 3Wahono Syahida
 
Power Point Korelasi
Power Point KorelasiPower Point Korelasi
Power Point Korelasiguest027789
 
Power Point Korelasi
Power Point KorelasiPower Point Korelasi
Power Point Korelasiguest027789
 
Power Point Korelasi
Power Point KorelasiPower Point Korelasi
Power Point Korelasiguest580ebd
 
Power Point Korelasi
Power Point KorelasiPower Point Korelasi
Power Point Korelasiguest027789
 
Analisis data menggunakan spss
Analisis data menggunakan spssAnalisis data menggunakan spss
Analisis data menggunakan spssizardiismail
 
Evaluasi kelompok 7 penilaian hasil belajar
Evaluasi kelompok 7 penilaian hasil belajarEvaluasi kelompok 7 penilaian hasil belajar
Evaluasi kelompok 7 penilaian hasil belajarifa lutfita
 
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf
 
Aminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pptx
Aminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pptxAminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pptx
Aminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pptxAminullah Assagaf
 
Aminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pdf
Aminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pdfAminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pdf
Aminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pdfAminullah Assagaf
 
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf
 
8. korelasi, regresi linier sederhana dan berganda
8. korelasi, regresi linier sederhana dan berganda8. korelasi, regresi linier sederhana dan berganda
8. korelasi, regresi linier sederhana dan bergandaEko Siswanto
 

Similar to Contoh Analisis Data Statistika Menggunakan SPSS 16.0 (Mulai Entri Data sampai Analisis Covariance) (20)

Tugas statistik bisnis 3
Tugas statistik bisnis 3Tugas statistik bisnis 3
Tugas statistik bisnis 3
 
Kelompok Ganjil.pptx
Kelompok Ganjil.pptxKelompok Ganjil.pptx
Kelompok Ganjil.pptx
 
Power Point Korelasi
Power Point KorelasiPower Point Korelasi
Power Point Korelasi
 
Power Point Korelasi
Power Point KorelasiPower Point Korelasi
Power Point Korelasi
 
Power Point Korelasi
Power Point KorelasiPower Point Korelasi
Power Point Korelasi
 
Power Point Korelasi
Power Point KorelasiPower Point Korelasi
Power Point Korelasi
 
Analisis data menggunakan spss
Analisis data menggunakan spssAnalisis data menggunakan spss
Analisis data menggunakan spss
 
Evaluasi kelompok 7 penilaian hasil belajar
Evaluasi kelompok 7 penilaian hasil belajarEvaluasi kelompok 7 penilaian hasil belajar
Evaluasi kelompok 7 penilaian hasil belajar
 
Analisis korelasi
Analisis korelasiAnalisis korelasi
Analisis korelasi
 
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
 
Aminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pptx
Aminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pptxAminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pptx
Aminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pptx
 
Aminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pdf
Aminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pdfAminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pdf
Aminullah Assagaf_MODEL REGRESI LENGKAP_ 17 Okt 2021_(Sobel, Path, outlier).pdf
 
PPT SIDANGACU.pptx
PPT SIDANGACU.pptxPPT SIDANGACU.pptx
PPT SIDANGACU.pptx
 
Korelasi
KorelasiKorelasi
Korelasi
 
Korelasi
KorelasiKorelasi
Korelasi
 
Korelasi
KorelasiKorelasi
Korelasi
 
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
 
ANALISIS Data.ppt
ANALISIS Data.pptANALISIS Data.ppt
ANALISIS Data.ppt
 
Analisis Korelasi.pdf
Analisis Korelasi.pdfAnalisis Korelasi.pdf
Analisis Korelasi.pdf
 
8. korelasi, regresi linier sederhana dan berganda
8. korelasi, regresi linier sederhana dan berganda8. korelasi, regresi linier sederhana dan berganda
8. korelasi, regresi linier sederhana dan berganda
 

More from Yogyakarta State University

The Perception of Junior High School Civics Education Teacher in Implementing...
The Perception of Junior High School Civics Education Teacher in Implementing...The Perception of Junior High School Civics Education Teacher in Implementing...
The Perception of Junior High School Civics Education Teacher in Implementing...Yogyakarta State University
 
Penerapan Konstitusi Hijau, Penegakan Hukum Lingkungan, dan Pembentukan Masya...
Penerapan Konstitusi Hijau, Penegakan Hukum Lingkungan, dan Pembentukan Masya...Penerapan Konstitusi Hijau, Penegakan Hukum Lingkungan, dan Pembentukan Masya...
Penerapan Konstitusi Hijau, Penegakan Hukum Lingkungan, dan Pembentukan Masya...Yogyakarta State University
 
Perkembangan Konsep Demokrasi dan Hak Asasi Manusia di Indonesia
Perkembangan Konsep Demokrasi dan Hak Asasi Manusia di IndonesiaPerkembangan Konsep Demokrasi dan Hak Asasi Manusia di Indonesia
Perkembangan Konsep Demokrasi dan Hak Asasi Manusia di IndonesiaYogyakarta State University
 
Tren Kekerasan Baru di Indonesia serta Implikasi Kebijakannya
Tren Kekerasan Baru di Indonesia serta Implikasi KebijakannyaTren Kekerasan Baru di Indonesia serta Implikasi Kebijakannya
Tren Kekerasan Baru di Indonesia serta Implikasi KebijakannyaYogyakarta State University
 
Sebuah Kajian Mengenai Pendidikan Kewarganegaraan di Australia
Sebuah Kajian Mengenai Pendidikan Kewarganegaraan di AustraliaSebuah Kajian Mengenai Pendidikan Kewarganegaraan di Australia
Sebuah Kajian Mengenai Pendidikan Kewarganegaraan di AustraliaYogyakarta State University
 
Jalan Panjang Pendidikan Politik Indonesia (Sebuah Kajian Teoritis dan Prakti...
Jalan Panjang Pendidikan Politik Indonesia (Sebuah Kajian Teoritis dan Prakti...Jalan Panjang Pendidikan Politik Indonesia (Sebuah Kajian Teoritis dan Prakti...
Jalan Panjang Pendidikan Politik Indonesia (Sebuah Kajian Teoritis dan Prakti...Yogyakarta State University
 
Judirical Aspect on the Islamic Banking Dispute Resolution
Judirical Aspect on the Islamic Banking Dispute ResolutionJudirical Aspect on the Islamic Banking Dispute Resolution
Judirical Aspect on the Islamic Banking Dispute ResolutionYogyakarta State University
 
Kajian Sistem Politik dan Pemerintahan di Indonesia
Kajian Sistem Politik dan Pemerintahan di IndonesiaKajian Sistem Politik dan Pemerintahan di Indonesia
Kajian Sistem Politik dan Pemerintahan di IndonesiaYogyakarta State University
 
Pengaruh Akuntabilitas Publik, Partisipasi Masyarakat, dan Transparansi Kebij...
Pengaruh Akuntabilitas Publik, Partisipasi Masyarakat, dan Transparansi Kebij...Pengaruh Akuntabilitas Publik, Partisipasi Masyarakat, dan Transparansi Kebij...
Pengaruh Akuntabilitas Publik, Partisipasi Masyarakat, dan Transparansi Kebij...Yogyakarta State University
 
Pengaruh Lingkungan Eksternal dan Internal terhadap Motivasi dan Hasil Belaja...
Pengaruh Lingkungan Eksternal dan Internal terhadap Motivasi dan Hasil Belaja...Pengaruh Lingkungan Eksternal dan Internal terhadap Motivasi dan Hasil Belaja...
Pengaruh Lingkungan Eksternal dan Internal terhadap Motivasi dan Hasil Belaja...Yogyakarta State University
 
Globalisasi Ekonomi dan Pengaturan Standar Akuntansi Pajak
Globalisasi Ekonomi dan Pengaturan Standar Akuntansi PajakGlobalisasi Ekonomi dan Pengaturan Standar Akuntansi Pajak
Globalisasi Ekonomi dan Pengaturan Standar Akuntansi PajakYogyakarta State University
 
Pemilihan Model Organisasi dalam Mewujudkan Prinsip-prinsip Good Corporate Go...
Pemilihan Model Organisasi dalam Mewujudkan Prinsip-prinsip Good Corporate Go...Pemilihan Model Organisasi dalam Mewujudkan Prinsip-prinsip Good Corporate Go...
Pemilihan Model Organisasi dalam Mewujudkan Prinsip-prinsip Good Corporate Go...Yogyakarta State University
 
Beberapa Pendapat Mahfud MD tentang Konstitusi dan Hukum
Beberapa Pendapat Mahfud MD tentang Konstitusi dan HukumBeberapa Pendapat Mahfud MD tentang Konstitusi dan Hukum
Beberapa Pendapat Mahfud MD tentang Konstitusi dan HukumYogyakarta State University
 
Pro dan Kontra Sebutan Pancasila sebagai Salah Satu Pilar Kehidupan Berbangsa...
Pro dan Kontra Sebutan Pancasila sebagai Salah Satu Pilar Kehidupan Berbangsa...Pro dan Kontra Sebutan Pancasila sebagai Salah Satu Pilar Kehidupan Berbangsa...
Pro dan Kontra Sebutan Pancasila sebagai Salah Satu Pilar Kehidupan Berbangsa...Yogyakarta State University
 
Bertanya Sebagai Salah Satu Kunci Berpikir Kreatif
Bertanya Sebagai Salah Satu Kunci Berpikir KreatifBertanya Sebagai Salah Satu Kunci Berpikir Kreatif
Bertanya Sebagai Salah Satu Kunci Berpikir KreatifYogyakarta State University
 

More from Yogyakarta State University (20)

The Perception of Junior High School Civics Education Teacher in Implementing...
The Perception of Junior High School Civics Education Teacher in Implementing...The Perception of Junior High School Civics Education Teacher in Implementing...
The Perception of Junior High School Civics Education Teacher in Implementing...
 
Isu-Isu Hukum dan Konstitusi Kontemporer
Isu-Isu Hukum dan Konstitusi KontemporerIsu-Isu Hukum dan Konstitusi Kontemporer
Isu-Isu Hukum dan Konstitusi Kontemporer
 
Literasi Politik (Political Literacy)
Literasi Politik (Political Literacy)Literasi Politik (Political Literacy)
Literasi Politik (Political Literacy)
 
Penerapan Konstitusi Hijau, Penegakan Hukum Lingkungan, dan Pembentukan Masya...
Penerapan Konstitusi Hijau, Penegakan Hukum Lingkungan, dan Pembentukan Masya...Penerapan Konstitusi Hijau, Penegakan Hukum Lingkungan, dan Pembentukan Masya...
Penerapan Konstitusi Hijau, Penegakan Hukum Lingkungan, dan Pembentukan Masya...
 
Perkembangan Konsep Demokrasi dan Hak Asasi Manusia di Indonesia
Perkembangan Konsep Demokrasi dan Hak Asasi Manusia di IndonesiaPerkembangan Konsep Demokrasi dan Hak Asasi Manusia di Indonesia
Perkembangan Konsep Demokrasi dan Hak Asasi Manusia di Indonesia
 
Tren Kekerasan Baru di Indonesia serta Implikasi Kebijakannya
Tren Kekerasan Baru di Indonesia serta Implikasi KebijakannyaTren Kekerasan Baru di Indonesia serta Implikasi Kebijakannya
Tren Kekerasan Baru di Indonesia serta Implikasi Kebijakannya
 
Sebuah Kajian Mengenai Pendidikan Kewarganegaraan di Australia
Sebuah Kajian Mengenai Pendidikan Kewarganegaraan di AustraliaSebuah Kajian Mengenai Pendidikan Kewarganegaraan di Australia
Sebuah Kajian Mengenai Pendidikan Kewarganegaraan di Australia
 
Jalan Panjang Pendidikan Politik Indonesia (Sebuah Kajian Teoritis dan Prakti...
Jalan Panjang Pendidikan Politik Indonesia (Sebuah Kajian Teoritis dan Prakti...Jalan Panjang Pendidikan Politik Indonesia (Sebuah Kajian Teoritis dan Prakti...
Jalan Panjang Pendidikan Politik Indonesia (Sebuah Kajian Teoritis dan Prakti...
 
Judirical Aspect on the Islamic Banking Dispute Resolution
Judirical Aspect on the Islamic Banking Dispute ResolutionJudirical Aspect on the Islamic Banking Dispute Resolution
Judirical Aspect on the Islamic Banking Dispute Resolution
 
Kajian Sistem Politik dan Pemerintahan di Indonesia
Kajian Sistem Politik dan Pemerintahan di IndonesiaKajian Sistem Politik dan Pemerintahan di Indonesia
Kajian Sistem Politik dan Pemerintahan di Indonesia
 
Pengaruh Akuntabilitas Publik, Partisipasi Masyarakat, dan Transparansi Kebij...
Pengaruh Akuntabilitas Publik, Partisipasi Masyarakat, dan Transparansi Kebij...Pengaruh Akuntabilitas Publik, Partisipasi Masyarakat, dan Transparansi Kebij...
Pengaruh Akuntabilitas Publik, Partisipasi Masyarakat, dan Transparansi Kebij...
 
Pengaruh Lingkungan Eksternal dan Internal terhadap Motivasi dan Hasil Belaja...
Pengaruh Lingkungan Eksternal dan Internal terhadap Motivasi dan Hasil Belaja...Pengaruh Lingkungan Eksternal dan Internal terhadap Motivasi dan Hasil Belaja...
Pengaruh Lingkungan Eksternal dan Internal terhadap Motivasi dan Hasil Belaja...
 
Globalisasi Ekonomi dan Pengaturan Standar Akuntansi Pajak
Globalisasi Ekonomi dan Pengaturan Standar Akuntansi PajakGlobalisasi Ekonomi dan Pengaturan Standar Akuntansi Pajak
Globalisasi Ekonomi dan Pengaturan Standar Akuntansi Pajak
 
Pemilihan Model Organisasi dalam Mewujudkan Prinsip-prinsip Good Corporate Go...
Pemilihan Model Organisasi dalam Mewujudkan Prinsip-prinsip Good Corporate Go...Pemilihan Model Organisasi dalam Mewujudkan Prinsip-prinsip Good Corporate Go...
Pemilihan Model Organisasi dalam Mewujudkan Prinsip-prinsip Good Corporate Go...
 
Beberapa Pendapat Mahfud MD tentang Konstitusi dan Hukum
Beberapa Pendapat Mahfud MD tentang Konstitusi dan HukumBeberapa Pendapat Mahfud MD tentang Konstitusi dan Hukum
Beberapa Pendapat Mahfud MD tentang Konstitusi dan Hukum
 
Pro dan Kontra Sebutan Pancasila sebagai Salah Satu Pilar Kehidupan Berbangsa...
Pro dan Kontra Sebutan Pancasila sebagai Salah Satu Pilar Kehidupan Berbangsa...Pro dan Kontra Sebutan Pancasila sebagai Salah Satu Pilar Kehidupan Berbangsa...
Pro dan Kontra Sebutan Pancasila sebagai Salah Satu Pilar Kehidupan Berbangsa...
 
Menumbuhkan Budaya Entrepreneurship di Kampus
Menumbuhkan Budaya Entrepreneurship di KampusMenumbuhkan Budaya Entrepreneurship di Kampus
Menumbuhkan Budaya Entrepreneurship di Kampus
 
Benang Kusut Persoalan Buta Aksara di Indonesia
Benang Kusut Persoalan Buta Aksara di IndonesiaBenang Kusut Persoalan Buta Aksara di Indonesia
Benang Kusut Persoalan Buta Aksara di Indonesia
 
Bertanya Sebagai Salah Satu Kunci Berpikir Kreatif
Bertanya Sebagai Salah Satu Kunci Berpikir KreatifBertanya Sebagai Salah Satu Kunci Berpikir Kreatif
Bertanya Sebagai Salah Satu Kunci Berpikir Kreatif
 
Diskriminasi Pendidikan di Sekolah
Diskriminasi Pendidikan di SekolahDiskriminasi Pendidikan di Sekolah
Diskriminasi Pendidikan di Sekolah
 

Contoh Analisis Data Statistika Menggunakan SPSS 16.0 (Mulai Entri Data sampai Analisis Covariance)

  • 1. 1 SPSS 16.0 1 ENTRI DATA a OUTPUT SPSS NAMA PRESTASI KERAJINAN PEKERJAAN JENIS KELAMIN USIA Ahmad 75.5 Malas Pegawai Negeri Laki-Laki 14 Beni 70 Malas Pegawai Negeri Laki-Laki 13 Coni 79.77 Sedang ABRI Perempuan 15 Dodi 78.5 Rajin ABRI Laki-Laki 17 Eva 76 Sedang ABRI Perempuan 15 Fitrian i 85.85 Sedang Pegawai Negeri Perempuan 12 Gogon 87 Malas Pedagang Laki-Laki 17 Hani 86.86 Rajin Pedagang Laki-Laki 13 Ita 89 Rajin Petani Perempuan 13 Joni 66 Rajin Nelayan Laki-Laki 16 b PEMBAHASAN Entri dilakukan dengan: a Memasukkan data ke dalam masing-masing kolom variable b Memberikan identitas masing-masing variable yang terdiri dari name, type, width, decimals, label, values, missing, columns, align, dan measure c Mengisi identitas variable 2 ANALISIS DESKRIPTIF a OUTPUT SPSS Frequencies Statistics HASIL_BELAJAR N Valid 50 Missing 0 Mean 75.20 Std. Error of Mean 1.807 Median 75.00 Mode 70a Std. Deviation 12.776 Variance 163.224 Skewness -.176 Std. Error of Skewness .337 Kurtosis -.899 Std. Error of Kurtosis .662 Range 45 Minimum 50 Maximum 95 Sum 3760 Percentiles 10 55.50 25 65.00 50 75.00 75 86.25 90 90.00 a. Multiple modes exist. The smallest value is shown HASIL_BELAJAR Frequency Percent Valid Percent Cumulative Percent
  • 2. 2 Valid 50 2 4.0 4.0 4.0 55 3 6.0 6.0 10.0 60 5 10.0 10.0 20.0 65 3 6.0 6.0 26.0 70 8 16.0 16.0 42.0 75 8 16.0 16.0 58.0 80 5 10.0 10.0 68.0 85 4 8.0 8.0 76.0 90 8 16.0 16.0 92.0 95 4 8.0 8.0 100.0 Total 50 100.0 100.0 Frequencies Statistics KEMAMPUAN AWAL LAMA BELAJAR MOTIVASI BELAJAR KETERSEDIAAN SUMBER BELAJAR N Valid 50 50 50 50 Missing 0 0 0 0 Mode 1 1 1 1 Range 2 2 2 1 Frequency Table KEMAMPUAN_AWAL
  • 3. 3 Frequency Percent Valid Percent Cumulative Percent Valid TINGGI 21 42.0 42.0 42.0 SEDANG 17 34.0 34.0 76.0 RENDAH 12 24.0 24.0 100.0 Total 50 100.0 100.0 LAMA_BELAJAR Frequency Percent Valid Percent Cumulative Percent Valid 2 JAM 19 38.0 38.0 38.0 3 JAM 15 30.0 30.0 68.0 4 JAM 16 32.0 32.0 100.0 Total 50 100.0 100.0 MOTIVASI_BELAJAR Frequency Percent Valid Percent Cumulative Percent Valid TINGGI 20 40.0 40.0 40.0 SEDANG 14 28.0 28.0 68.0 RENDAH 16 32.0 32.0 100.0 Total 50 100.0 100.0 KETERSEDIAAN_SUMBER_BELAJAR Frequency Percent Valid Percent Cumulative Percent Valid LENGKAP 28 56.0 56.0 56.0 TIDAK LENGKAP 22 44.0 44.0 100.0 Total 50 100.0 100.0 Pie Chart
  • 4. 4
  • 5. 5
  • 6. 6 b INTERPRETASI Frequencies Statistics Valid : menunjukkan angka 50, berarti data seluruh siswa telah dianalisis Missing : menunjukkan angka 0, berarti tidak ada data belum terinput Mean : besarnya mean pada variable hasil belajar adalah 75,20. Median : besar median pada variable adalah 75.00 Modus : nilai yang mempunyai frekuensi paling banyak pada variable hasil belajar adalah 70.00 Standar deviasi : besar selisih masing-masing skor dengan nilai rata-rata hitung adalah 12,776 Variance : tingkat homogenitas data didapat dari hasil kuadrat standar deviasi Skewness : tingkat kemiringan kurva variable hasil belajar adalah -0,176. Ratio skewness : : : -0,522 Kurtosis : keruncingan/ketumpulan kurva variable hasil belajar adalah -0,889 Ratio kurtosis : : : -1,343 Karena ratio skewness dan ratio kurtosis lebih kecil dari 2 maka distribusi data normal. Minimum : skor terendah pada variable hasil belajar adalah 50 Maximum : skor tertinggi pada variable hasil belajar adalah 95 Frequency table menggambarkan variable secara kuantitatif, sedangkan histogram dan pie chart mendeskripsikan masing-masing variable secara visual 3 ANALISIS KORELASI DUA VARIABEL (BIVARIAT) a OUTPUT SPSS Descriptive Statistics Mean Std. Deviation N Nilai Rata-Rata Siswa 79.4480 7.76594 10 Usia Siswa 14.50 1.780 10 Correlations Nilai Rata-Rata Siswa Usia Siswa Nilai Rata-Rata Siswa Pearson Correlation 1 -.245 Sig. (2-tailed) .494 N 10 10 Usia Siswa Pearson Correlation -.245 1 Sig. (2-tailed) .494 N 10 10
  • 7. 7 b INTERPRETASI OUTPUT Tabel deskriptif statistic menjelaskan tentang besarnya mean, standar deviasi, dan N pada masing-masing variable. Variabel nilai rata-rata siswa besar mean = 79.448, standar deviasi= 7.76, dan N = 10. Variabel usia besarnya mean= 14.50, standar deviasi= 1.78, dan N= 10. Tabel correlations menggambarkan besarnya koefisien korelasi nilai rata-rata siswa dengan usia siswa, signifikansi, N, dan teknik analisis. Besarnya koefisien korelasi nilai rata-rata siswa dengan usia siswa adalah -0.245 Besar koefisien korelasi variable nilai rata-rata siswa dengan usia siswa= -0.245, sig. (2 tailed)= 0.494. TABEL NILAI KOEFISIEN KORELASI“R” PRODUCT MOMENT TARAF SIGNIFIKAN 5% DAN 1% df Taraf Signifikansi df Taraf Signifikansi 5% 1% 5% 1% 1 0,997 1,000 24 0,388 0,496 2 0,950 0,990 25 0,381 0,487 3 0,878 0,959 26 0,374 0,478 4 0,811 0,917 27 0,367 0,470 5 0,754 0,874 28 0,361 0,463 6 0,707 0,834 29 0,355 0,456 7 0,666 0,798 30 0,349 0,449 8 0,632 0,765 35 0,325 0,418 9 0,602 0,735 40 0,304 0,393 10 0,576 0,708 45 0,288 0,372 11 0,553 0,684 50 0,273 0,354 12 0,532 0,66 60 0,250 0,325 13 0,514 0,641 70 0,232 0,302 14 0,497 0,623 80 0,217 0,283 15 0,482 0,606 90 0,205 0,267 16 0,468 0,590 100 0,195 0,254 17 0,456 0,575 125 0,174 0,228 18 0,444 0,561 150 0,159 0,208 19 0,433 0,549 200 0,138 0,181 20 0,423 0,537 300 0,113 0,148 21 0,413 0,526 400 0,098 0,128
  • 8. 8 22 0,404 0,515 500 0,088 0,115 23 0,369 0,505 1000 0,062 0,081 Besar koefisien korelasi -0,245 < 0.632. Taraf signifikansi 5% dan 0.765 taraf signifikansi 1%. Sehingga , yang berarti tidak ada korelasi yang signifikan. Besar nilai probabilitas atau sig. (2 tailed) adalah 0.495 > 0.5. Sehingga tidak ada korelasi yang signifikan antara nilai rata-rata siswa dengan usia siswa. Output diatas tidak ada tanda bintang, ini berarti tidak ada korelasi signifikan antara nilai rata-rata siswa dengan usia siswa. Hasil uji hipotesis mengatakan tidak ada korelasi positif yang signifikan antara nilai rata-rata siswa dengan usia siswa. 4 ANALISIS KORELASI MULTIVARIAT a OUTPUT SPSS Descriptive Statistics Mean Std. Deviation N Kemampuan_Bahasa_Arab 68.00 10.488 15 Nilai_Tafsir 69.00 9.297 15 Usul_Fikih 67.00 9.599 15 Nilai_Fikih 77.00 5.278 15 Correlations Kemampuan Bahasa Arab Nilai Tafsir Usul Fikih Nilai Fikih Kemampuan Bahasa Arab Pearson Correlation 1 .875** .717** -.019 Sig. (2-tailed) .000 .003 .945 N 15 15 15 15 Nilai_Tafsir Pearson Correlation .875** 1 .644** .116 Sig. (2-tailed) .000 .010 .679 N 15 15 15 15 Usul_Fikih Pearson Correlation .717** .644** 1 .303 Sig. (2-tailed) .003 .010 .272 N 15 15 15 15 Nilai_Fikih Pearson Correlation -.019 .116 .303 1 Sig. (2-tailed) .945 .679 .272 N 15 15 15 15 **. Correlation is significant at the 0.01 level (2-tailed). b INTERPRETASI OUTPUT Tabel descriptive statistics menjelaskan tentang besarnya mean, standar deviasi, dan N pada variable nilai bahasa arab, nilai tafsir, nilai ushul fiqih, dan nilai fikih. Tabel correlations menggambarkan besarnya koefisien korelasi nilai bahasa arab, nilai tafsir, nilai ushul fiqih, dan nilai fikih, signifikansi, N, dan teknik analisis yang digunakan adalah Pearson Correlation. Korelasi Koefisien Probabiliti Tanda Bintang Arah Korelasi Kesimpulan
  • 9. 9 Korelasi Arab-tafsir 0.875 0.000<0.05 Ada Searah Ada korelasi Arab-ushul fiqih 0.717 0.003<0.05 Ada Searah Ada korelasi Arab-fiqih -0.019 0.945>0.05 Tidak Ada - Tidak ada korelasi Tafsir-ushul fiqih 0.644 0.010<0.05 Ada Searah Ada korelasi Tafsir-fiqih 0.116 0.679>0.05 Tidak Ada - Tidak ada korelasi Ushul fiqih-fiqih 0.303 0.272>0.05 Tidak Ada - Tidak ada korelasi 1 Ada korelasi positif yang signifikan antara nilai bahasa arab dengan nilai tafsir ( 2 Ada korelasi positif yang signifikan antara nilai bahasa arab dengan nilai ushul fiqih 3 Tidak ada korelasi positif yang signifikan antara nilai bahasa arab dengan nilai fiqih ( 4 Ada korelasi positif yang signifikan antara nilai tafsir dengan ushul fiqih ( 5 Tidak ada korelasi positif yang signifikan antara nilai tafsir dengan nilai fiqih ( 6 Tidak ada korelasi positif yang signifikan antara nilai ushul fiqih dengan nilai fiqih ( 5 ANALISIS KORELASI NON PARAMETRIK a OUTPUT SPSS Correlations RANGKING_KELAS _1 RANGKING_KELAS _2 RANGKING_KELAS_1 Pearson Correlation 1 .842** Sig. (2-tailed) .002 N 10 10 RANGKING_KELAS_2 Pearson Correlation .842** 1 Sig. (2-tailed) .002 N 10 10 **. Correlation is significant at the 0.01 level (2-tailed). Nonparametric Correlations Correlations RANGKING_KELAS _1 RANGKING_KELAS _2 Spearman's rho RANGKING_KELAS _1 Correlation Coefficient 1.000 .842** Sig. (2-tailed) . .002 N 10 10 RANGKING_KELAS _2 Correlation Coefficient .842** 1.000
  • 10. 10 Sig. (2-tailed) .002 . N 10 10 **. Correlation is significant at the 0.01 level (2-tailed). b INTERPRETASI OUTPUT Besarnya koefisien korelasi tata jenjang adalah 0.842. Dari output diatas juga dapat diketahui bahwa besarnya probabilitas 0.002 < 0.05 . Dua tanda bintang menunjukkan ada korelasi yang signifikan pada alfa 0.01 6 KORELASI KOEFISIEN KONTINGENSI a OUTPUT SPSS Case Processing Summary Cases Valid Missing Total N Percent N Percent N Percent PEMAHAMAN AJARAN AGAMA ISLAM * PELAKSANAAN SHOLAT 250 100.0% 0 .0% 250 100.0% PEMAHAMAN_AJARAN_AGAMA_ISLAM * PELAKSANAAN_SHOLAT Crosstabulation PELAKSANAAN_SHOLAT Total KURANG BAIK SEDANG BAIK PEMAHAMAN AJARAN AGAMA ISLAM KURANG BAIK Count 27 11 2 40 Expected Count 6.4 6.4 27.2 40.0 CUKUP Count 6 17 17 40 Expected Count 6.4 6.4 27.2 40.0 BAIK Count 7 12 151 170 Expected Count 27.2 27.2 115.6 170.0 Total Count 40 40 170 250 Expected Count 40.0 40.0 170.0 250.0 Chi-Square Tests Value df Asymp. Sig. (2-sided) Pearson Chi-Square 1.487E2a 4 .000 Likelihood Ratio 137.706 4 .000 Linear-by-Linear Association 126.257 1 .000 N of Valid Cases 250 a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 6.40.
  • 11. 11 Symmetric Measures Value Approx. Sig. Nominal by Nominal Contingency Coefficient .611 .000 N of Valid Cases 250 b INTERPRETASI OUTPUT Besarnya koefisien korelasi contingensi dapat dilihat pada tabel Symmetric Measures yaitu 0.447. Besarnya probabilitas 0.000 < 0.05 ditolak dan diterima. Dengan demikian dapat disimpulkan bahwa ada korelasi positif yang signifikan antara pemahaman ajaran agama Islam dengan pelaksanaan sholat siswa SMU. Semakin baik pemahaman ajaran agama Islam, maka semakin baik sholatnya. 7 KORELASI PARSIAL a OUTPUT SPSS Correlations A TINGKAT PENJUALAN JENIS IKLAN Spearman's rho TINGKAT_PENJUALAN Correlation Coefficient 1.000 .734** Sig. (2-tailed) . .000 N 40 40 JENIS_IKLAN Correlation Coefficient .734** 1.000 Sig. (2-tailed) .000 . N 40 40 **. Correlation is significant at the 0.01 level (2-tailed). Partial Corr A Control Variables TINGKAT PENJUALAN JENIS IKLAN BENTUK KEMASAN TINGKAT PENJUALAN Correlation 1.000 .529 Significance (2- tailed) . .001 df 0 37 JENIS IKLAN Correlation .529 1.000 Significance (2- tailed) .001 . df 37 0 Correlations B TINGKAT PENJUALAN BENTUK KEMASAN Spearman's rho TINGKAT PENJUALAN Correlation Coefficient 1.000 .595** Sig. (2-tailed) . .000 N 40 40 BENTUK KEMASAN Correlation Coefficient .595** 1.000 Sig. (2-tailed) .000 . N 40 40
  • 12. 12 **. Correlation is significant at the 0.01 level (2-tailed). Partial Corr B Control Variables TINGKAT PENJUALAN BENTUK KEMASAN JENIS IKLAN TINGKAT PENJUALAN Correlation 1.000 .154 Significance (2-tailed) . .348 df 0 37 BENTUK KEMASAN Correlation .154 1.000 Significance (2-tailed) .348 . df 37 0 b INTERPRETASI OUTPUT Tabel Correlations A menunjukkan bahwa koefisiensi korelasi tingkat penjualan dengan jenis iklan sebesar 0.734 Tabel Partial Corr A menunjukkan ada penurunan koefisien korelasi setelah dikontrol dengan bentuk kemasan. Besarnya koefisien korelasi tingkat penjualan dengan iklan sebelum dikontrol sebesar 0.734. Setelah dikontrol bentuk kemasan, koefisien korelasinya hanya 0.529. Sedangkan probabilitinya adalah 0.001 jauh lebih kecil dari 0.05. Dengan demikian hipotesis nol ( dan hipotesis alternative ( Tabel Correlations B menunjukkan bahwa koefisiensi korelasi tingkat penjualan dengan jenis iklan sebesar 0.595 Tabel Partial Corr A menunjukkan ada penurunan koefisien korelasi setelah dikontrol dengan jenis iklan. Besarnya koefisien korelasi tingkat penjualan dengan kemasan sebelum dikontrol sebesar 0.595. Setelah dikontrol bentuk iklan, koefisien korelasinya adalah 0.154. Sedangkan probabilitinya adalah 0.348 jauh lebih besar dari 0.05. Dengan demikian hipotesis nol ( dan hipotesis alternative (. 8 REGRESI LINEAR SEDERHANA a OUTPUT SPSS Descriptive Statistics Mean Std. Deviation N NILAI_TAFSIR_AL-QURAN 69.00 9.297 15 NILAI_BAHASA_ARAB 68.00 10.488 15 Correlations NILAI TAFSIR ALQURAN NILAI BAHASA ARAB
  • 13. 13 Pearson Correlation NILAI_TAFSIR_AL-QURAN 1.000 .875 NILAI_BAHASA_ARAB .875 1.000 Sig. (1-tailed) NILAI_TAFSIR_AL-QURAN . .000 NILAI_BAHASA_ARAB .000 . N NILAI_TAFSIR_AL-QURAN 15 15 NILAI_BAHASA_ARAB 15 15 Variables Entered/Removedb Model Variables Entered Variables Removed Method 1 NILAI_BAHASA_ARABa . Enter a. All requested variables entered. b. Dependent Variable: NILAI_TAFSIR_AL-QURAN Model Summaryb Model R R Square Adjusted R Square Std. Error of the Estimate 1 .875a .766 .748 4.663 a. Predictors: (Constant), NILAI_BAHASA_ARAB b. Dependent Variable: NILAI_TAFSIR_AL-QURAN ANOVAb Model Sum of Squares df Mean Square F Sig. 1 Regression 927.289 1 927.289 42.640 .000a Residual 282.711 13 21.747 Total 1210.000 14 a. Predictors: (Constant), NILAI_BAHASA_ARAB b. Dependent Variable: NILAI_TAFSIR_AL-QURAN Coefficientsa Model Unstandardized Coefficients Standardiz ed Coefficient s t Sig. 95% Confidence Interval for B B Std. Error Beta Lower Bound Upper Bound 1 (Constant) 16.234 8.170 1.987 .068 -1.416 33.884 NILAI_BAHASA_AR AB .776 .119 .875 6.530 .000 .519 1.033 a. Dependent Variable: NILAI_TAFSIR_AL-QURAN Residuals Statisticsa Minimum Maximum Mean Std. Deviation N Predicted Value 55.03 82.19 69.00 8.138 15 Residual -6.672 9.448 .000 4.494 15 Std. Predicted Value -1.716 1.621 .000 1.000 15 Std. Residual -1.431 2.026 .000 .964 15 a. Dependent Variable: NILAI_TAFSIR_AL-QURAN
  • 15. 15
  • 16. 16 b INTERPRETASI OUTPUT Tabel descriptive statistics menyajikan besarnya nilai rata-rata (mean), standar deviasi, dan N masing-masing variable. Nilai rata-rata tafsir sebesar 69 > nilai bahasa Arab 68. Standar deviasi nilai tafsir 9.297 < nilai bahasa Arab 10.488. Artinya, penyebaran datanya lebih luas dibandingkan dengan nilai tafsir. Dengan kata lain, tingkat variance data nilai tafsir < nilai bahasa Arab. Sedangkan besar N= 15 menunjukkan banyaknya jumlah orang atau responden yang dianalisis. Tabel correlations merupakan matrik korelasi variable nilai tafsir dengan variable nilai bahasa Arab. Tabel correlations tersebut menggambarkan besarnya koefisien korelasi nilai tafsir dengan nilai bahasa Arab, signifikansi, N, dan teknik analisis yang digunakan yaitu Pearson Correlation. Dari output diatas dapat diketahui bahwa Koefisien Korelasi variable nilai tafsir alquran dan nilai bahasa Arab = 0.875, sig. (1 tailed) = 0.000 sehingga dapat diinterpretasikan bahwa besarnya nilai probabilitas atau sig. (2 tailed) adalah 0.000 < 0.05, , dan ada korelasi yang signifikan antara nilai bahasa Arab dengan nilai tafsir mahasiswa. Korelasi nilai bahasa Arab dengan nilai tafsir sebesar 0.875 bertanda positif. Dengan kata lain, semakin tinggi nilai bahasa Arabnya maka semakin tinggi pula nilai tafsirnya. Tabel variables entered/ menjelaskan metode regresi yang digunakan untuk menganalisis data dengan program SPSS 16.0. Metode yang digunakan adalah metode enter. Tabel menjelaskan besarnya persentase pengaruh variable bebas atau variable predictor terhadap variable terikatnya. Besar koefisien determinasi adalah 0.766 mengandung pengertian bahwa pengaruh variable bebas (independent) terhadap perubahan variable dependent adalah 76.6%. Sedangkan 23.4% (100-76.6%) dipengaruhi oleh variable lain selain variable bahasa Arab. Tabel menjelaskan apakah variasi nilai variable bebas dapat menjelaskan variasi nilai variable terikat dengan menggunakan besarnya nilai F. Besarnya F hitung adalah 42.640 sedangkan besar signifikansinya 0.000 < 0.05. Dengan demikian dan . Dengan demikian, variasi nilai variable bebas dapat menjelaskan variasi nilai variable terikat. Dari tabel Coefficientsa dapat ditulis persamaan regresinya Y = a + bX `= 16.234 + 0.766(X) Besar nilai t dapat dijadikan petunjuk untuk mengetahui apakah variable bebasnya berpengaruh terhadap variable terikatnya. Bila (sig. < 0.05) berarti berpengaruh dan jika (sig. > 0.05) berarti tidak ada pengaruh. Dari tabel Coefficientsa dapat diketahui bahwa besar nilai tesnya 6.530 sedangkan besar signifikansinya 0.000 < 0.05. Dengan demikian dan ada pengaruh variable bahasa Arab terhadap nilai tafsir. Tabel selanjutnya adalah informasi tentang residuals statistic untuk analisis regresi yang terdiri dari nilai minimum, maximum, mean, standar deviasi, dan N (jumlah responden). Bagian akhir output dilengkapi dengan gambar histogram dan kurva normal.
  • 17. 17 9 REGRESI GANDA a OUTPUT SPSS Descriptive Statistics Mean Std. Deviation N KEMAMPUAN_METODOLOGI_PENELITIAN 68.00 10.488 15 NILAI_STATISTIK 67.33 10.834 15 NILAI_BAHASA 69.67 9.904 15 Correlations KEMAMPUAN METODOLOGI PENELITIAN NILAI STATISTIK NILAI BAHASA Pearson Correlatio n KEMAMPUAN METODOLOGI PENELITIAN 1.000 -.113 .406 NILAI STATISTIK -.113 1.000 -.142 NILAI BAHASA .406 -.142 1.000 Sig. (1- tailed) KEMAMPUAN METODOLOGI PENELITIAN . .344 .067 NILAI_STATISTIK .344 . .307 NILAI_BAHASA .067 .307 . N KEMAMPUAN METODOLOGI PENELITIAN 15 15 15 NILAI_STATISTIK 15 15 15 NILAI_BAHASA 15 15 15 Variables Entered/Removedb Model Variables Entered Variables Removed Method 1 NILAI_BAHASA, NILAI_STATISTIKa . Enter a. All requested variables entered. b. Dependent Variable: KEMAMPUAN_METODOLOGI_PENELITIAN Model Summaryb Model R R Square Adjusted R Square Std. Error of the Estimate 1 .410a .168 .029 10.335 a. Predictors: (Constant), NILAI_BAHASA, NILAI_STATISTIK b. Dependent Variable: KEMAMPUAN_METODOLOGI_PENELITIAN ANOVAb Model Sum of Squares df Mean Square F Sig. 1 Regression 258.319 2 129.159 1.209 .332a Residual 1281.681 12 106.807 Total 1540.000 14 a. Predictors: (Constant), NILAI_BAHASA, NILAI_STATISTIK b. Dependent Variable: KEMAMPUAN_METODOLOGI_PENELITIAN Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig. 95% Confidence Interval for B B Std. Error Beta Lower Bound Upper Bound 1 (Constant) 42.359 28.103 1.507 .158 -18.871 103.589 NILAI_STATIST IK -.055 .258 -.057 -.213 .835 -.616 .506 NILAI_BAHASA .421 .282 .398 1.495 .161 -.193 1.035 a. Dependent Variable: KEMAMPUAN_METODOLOGI_PENELITIAN Residuals Statisticsa Minimum Maximum Mean Std. Deviation N
  • 18. 18 Predicted Value 60.12 74.58 68.00 4.296 15 Residual -18.028 14.077 .000 9.568 15 Std. Predicted Value -1.834 1.533 .000 1.000 15 Std. Residual -1.744 1.362 .000 .926 15 a. Dependent Variable: KEMAMPUAN_METODOLOGI_PENELITIAN Charts
  • 19. 19 b INTERPRETASI OUTPUT Tabel descriptive statistics menyajikan besarnya nilai rata-rata (mean), standar deviasi, dan N masing-masing variable. Nilai rata-rata kemampuan penelitian sebesar 68, nilai statistic 67.33, dan nilai bahasa 69.67. Standar deviasi kemampuan penelitian 10.488, nilai statistic 10.834, dan nilai bahasa 9.904. Artinya, nilai statistic penyebaran datanya lebih luas dibandingkan kemampuan penelitian dan nilai bahasa. Dengan kata lain,
  • 20. 20 tingkat variansi data nilai bahasa < nilai kemampuan penelitian. Sedangkan besar N= 15 menunjukkan banyaknya jumlah orang atau responden yang dianalisis pada setiap variabelnya. Tabel corelations merupakan matrik korelasi variable kemampuan penelitian, nilai statistic, dan nilai bahasa. Besar N masing-masing variable adalah 15 dan teknik analisis yang digunakan yaitu Pearson Correlation. Dari output diatas dapat diketahui bahwa: 1 hubungan antara kemampuan penelitian dan nilai statistic koefisien korelasinya adalah = -0.113 dan signifikansinya 0.344 > 0.05 yang berarti TIDAK ADA KORELASI. 2 hubungan antara kemampuan penelitian dan nilai bahasa koefisien korelasinya adalah = 0.406 dan signifikansinya 0.067 > 0.05 yang berarti TIDAK ADA KORELASI. 3 hubungan antara nilai statistic dan nilai bahasa koefisien korelasinya adalah = -0.142 dan signifikansinya 0.306 > 0.05 yang berarti TIDAK ADA KORELASI. Tabel variables entered/ menjelaskan metode regresi yang digunakan untuk menganalisis data dengan program SPSS 16.0. Metode yang digunakan adalah metode enter. Variabel nilai statistic dan nilai bahasa tidak ada yang dikeluarkan. Tabel menjelaskan besarnya persentase pengaruh variable bebas atau variable predictor terhadap variable terikatnya. Besar koefisien determinasi adalah 0.168 mengandung pengertian bahwa pengaruh variable bebas (independent) terhadap perubahan variable dependent adalah 16.8%. Sedangkan 83.2% (100-16.8%) dipengaruhi oleh variable lain. Jadi pengaruh nilai statistic dan nilai bahasa terhadap kemampuan penelitian hanya 16.8% sedangkan pengaruh variabel lain 83.2%. Tabel menjelaskan apakah variasi nilai variable bebas dapat menjelaskan variasi nilai variable terikat dengan menggunakan besarnya nilai F. Besarnya F hitung adalah 1.209 sedangkan besar signifikansinya 0.332 > 0.05. Dengan demikian dan . Dengan demikian, variasi nilai variable bebas tidak dapat menjelaskan variasi nilai variable terikat. Dari tabel Coefficientsa dapat ditulis persamaan regresinya Y = 42.359 – 0.055() + 0.421() Dimana Y= kemampuan penelitian, = nilai statistic, = nilai bahasa Tabel Coefficientsa menunjukkan bahwa variabel nilai statistic koefisien uji t = -0,213 sedangkan besarnya signifikansi 0.835 jauh lebih besar dari 0.05. Ini berarti pengaruh nilai statistic terhadap kemampuan penelitian tidak signifikan atau tidak ada pengaruh. Koefisien uji t nilai bahasa = 1.495 sedangkan besarnya signifikansi 0.161 > 0.05. Ini berarti pengaruh nilai bahasa terhadap kemampuan penelitian tidak signifikan atau tidak ada pengaruh. Walau secara teori, kemampuan bahasa dan kemampuan statistic mempengaruhi kemampuan penelitian namun setelah dilakukan penelitian ternyata kemampuan bahasa dan kemampuan statistic tidak mempengaruhi kemampuan penelitian. Oleh karena itu, proses pemberian nilai pada mata kuliah statistic dan
  • 21. 21 bahasa perlu ditinjau ulang. Bisa saja alat evaluasi yang digunakan dalam menentukan nilai bahasa dan statistic tidak memenuhi persyaratan validitas dan reliabilitas. Tabel selanjutnya adalah informasi tentang residuals statistic untuk analisis regresi yang terdiri dari nilai minimum, maximum, mean, standar deviasi, dan N (jumlah responden). Bagian akhir output dilengkapi dengan gambar histogram dan kurva normal. 10 CHI KUADRAT a OUTPUT SPSS Chi-Square Test Frequencies JAWABAN_GURU_SMU Observed N Expected N Residual Kurikulum baru lebih efektif dari kurikulum sebelumnya 60 35.0 25.0 Kurikulum baru tidak efektif dibandingkan dengan kurikulum sebelumnya 34 35.0 -1.0 Kurikulum baru dan kurikulum lama sama- sama efektif 42 35.0 7.0 Tidak memberikan jawaban 4 35.0 -31.0 Total 140 FREKUENSI_JAWABAN Observed N Expected N Residual 4 4 35.0 -31.0 34 34 35.0 -1.0 42 42 35.0 7.0 60 60 35.0 25.0 Total 140 Test Statistics JAWABAN_GURU_SMU FREKUENSI_JAWABAN Chi-Square 46.743a 46.743a df 3 3 Asymp. Sig. .000 .000 a. 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 35.0. b INTERPRETASI OUTPUT Tabel Jawaban Guru menunjukkan bahwa jumlah sampel yang diobservasi adalah 140, sementara yang memberi jawaban bahwa kurikulum baru lebih efektif dari kurikulum sebelumnya sebanyak 60 dari jumlah harapan 35. yang memberi jawaban bahwa kurikulum baru tidak efektif dibandingkan dengan kurikulum sebelumnya sebanyak 34 dari jumlah harapan 35. Sedangkan yang memberi jawaban bahwa kurikulum baru sama efektifnya dengan kurikulum sebelumnya sebanyak 42 dari jumlah harapan 35. Ada 4 orang yang tidak memberikan jawaban dari jumlah harapan 35. Adapun selisih dari yang menjawab bahwa kurikulum baru lebih efektif dibandingkan dengan
  • 22. 22 kurikulum sebelumnya dibandingkan dengan jumlah harapan adalah 25. Selisih yang menjawab bahwa kurikulum baru tidak efektif dibandingkan dengan kurikulum sebelumnya dibandingkan dengan jumlah harapan adalah -1. Sementara selisih dari yang menjawab bahwa kurikulum baru dan kurikulum sebelumnya sama-sama efektif dibandingkan dengan jumlah harapan adalah 7. Selisih antara yang tidak menjawab dan jumlah harapan adalah -31. Tabel Frekuensi menunjukkan bahwa frekuensi jawaban terendah adalah 4 dan frekuensi jawaban tertinggi adalah 60. Selisih terendah adalah 31 dan tertinggi 25. Output tes statistic menampilkan hasil analisis Chi-Square yang telah dlakukan bahwa = 46.743 dan dk= 3. Dengan df= 3 diperoleh harga chi kuadrat tabel pada taraf signifikansi 5%= 7.82 dan pada taraf signifikansi 1%= 11.34. Dengan = 46.743 dapat disimpulkan bahwa nilai > harga chi kuadrat baik pada taraf signifikansi 5% maupun 1%. Berdasarkan paparan tersebut, yang menyatakan tidak terdapat perbedaan antara frekuensi observasi dan frekuensi harapan ditolak, sedangkan diterima yang berarti ada perbedaan yang meyakinkan antara frekuensi observasi ( dan frekuensi harapan (. Dengan demikian dapat disimpulkan bahwa terdapat perbedaan frekuensi observasi dengan frekuensi harapan terhadap efektifitas penggunaan kurikulum baru pada guru- guru SMU. 11 CHI KUADRAT UNTUK TABEL 2X2 a OUTPUT SPSS Case Processing Summary Cases Valid Missing Total N Percent N Percent N Percent HASIL_EVALUASI * EFEKTIFITAS_METODE_MEMBACA_ALQUR AN 200 100.0% 0 .0% 200 100.0% HASIL_EVALUASI * EFEKTIFITAS_METODE_MEMBACA_ALQURAN Crosstabulation Count EFEKTIFITAS METODE MEMBACA ALQURAN Total METODE HATTAIYAH METODE IQRA' HASIL_EVALUASI CEPAT 75 63 138 LAMBAT 25 37 62 Total 100 100 200 Chi-Square Tests Value df Asymp. Sig. (2- sided) Exact Sig. (2- sided) Exact Sig. (1- sided) Pearson Chi-Square 3.366a 1 .067 Continuity Correctionb 2.828 1 .093
  • 23. 23 Likelihood Ratio 3.382 1 .066 Fisher's Exact Test .092 .046 Linear-by-Linear Association 3.349 1 .067 N of Valid Casesb 200 a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 31.00. b. Computed only for a 2x2 table b INTERPRETASI OUTPUT 1 Output Tabel Case Processing Summary Menampilkan hasil ringkasan kasus-kasus yang diteliti, dimana terlihat jumlah subjek yang dianalisis untuk variabel evaluasi dan metode adalah 200 orang. 2 Output Hasil Evaluasi * Metode Crosstabulation Menampilkan jumlah masing-masing kelompok yang dianalisis, dimana subjek yang diajar dengan metode hattaiyah ada 100 orang dan dengan metode iqra’ sebanyak 100 orang. Dari hasil analisis dapat dilihat bahwa 75 orang yang diajar dengan metode hattaiyah berhasil dengan cepat dan 25 orang lambat. Sementara yang diajar dengan metode iqra’ sebanyak 63 orang diantaranya berhasil dengan cepat sementara 37 orang lambat. Totak subjek yang berhasil dengan cepat sebanyak 138 orang dan yang lambat sebanyak 62 orang. 3 Output Chi Square Test Menunjukkan hasil analisis Chi Kuadrat yaitu 3.36 dan df 1 dengan probabilitas Asymp. Sig. (2-sided) 0.067. Adapun keputusan untuk menerima atau menolak hipotesa dapat dilakukan dengan dua cara, yaitu berdasarkan uji Chi Kuadrat dan tabel, dan dapat pula berdasarkan probabilitas. a Jika Chi Kuadrat hitung < Chi Kuadrat tabel, maka diterima b Jika Chi Kuadrat hitung > Chi Kuadrat tabel, maka ditolak Dari tabel Chi Square Test dapat dilihat bahwa angka Chi Square sebesar 3.36 dengan df = 1 sehingga diperoleh harga kritik chi kuadrat () sebagai berikut: a Pada taraf signifikan 5% = 3.84 b Pada taraf signifikan 1% = 6.64 Dengan = 3.366 < harga chi kuadrat (tabel), baik pada taraf signifikan 5% maupun 1%, maka diterima dan .
  • 24. 24 12 CHI KUADRAT DENGAN KOREKSI YATES a OUTPUT SPSS Case Processing Summary Cases Valid Missing Total N Percent N Percent N Percent JAWABAN * GURU 100 100.0% 0 .0% 100 100.0% JAWABAN * GURU Crosstabulation GURU TotalSLTP SMU JAWABAN SETUJU Count 35 42 77 Expected Count 38.5 38.5 77.0 TIDAK SETUJU Count 15 8 23 Expected Count 11.5 11.5 23.0 Total Count 50 50 100 Expected Count 50.0 50.0 100.0 Chi-Square Tests Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided) Pearson Chi-Square 2.767a 1 .096 Continuity Correctionb 2.033 1 .154 Likelihood Ratio 2.802 1 .094 Fisher's Exact Test .153 .077 Linear-by-Linear Association 2.739 1 .098 N of Valid Casesb 100 a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 11.50. b. Computed only for a 2x2 table Case Processing Summary Cases Valid Missing Total N Percent N Percent N Percent JAWABAN * GURU 100 100.0% 0 .0% 100 100.0% JAWABAN * GURU Crosstabulation
  • 25. 25 GURU TotalSLTP SMU JAWABAN SETUJU Count 35 42 77 Expected Count 38.5 38.5 77.0 TIDAK SETUJU Count 15 8 23 Expected Count 11.5 11.5 23.0 Total Count 50 50 100 Expected Count 50.0 50.0 100.0 Chi-Square Tests Value df Asymp. Sig. (2- sided) Exact Sig. (2- sided) Exact Sig. (1- sided) Pearson Chi-Square 2.767a 1 .096 Continuity Correctionb 2.033 1 .154 Likelihood Ratio 2.802 1 .094 Fisher's Exact Test .153 .077 Linear-by-Linear Association 2.739 1 .098 N of Valid Casesb 100 a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 11.50. b. Computed only for a 2x2 table b INTERPRETASI OUTPUT Dari tabel diatas dapat kita lihat bahwa hasil analisis Chi Kuadrat Yates untuk data diatas adalah 2.033. Pengambilan keputusan untuk Chi Kuadrat Yates ini juga sama dengan Chi Kuadrat 2X2. Dari hasil analisis data yang ada, dengan df 1 diperoleh Chi Kuadrat tabel sebesar 3.84 untuk taraf signifikansi 5% dan 6.64 untuk taraf signifikansi 1%. Bila nilai Chi Kuadrat tabel ini dibandingkan dengan hasil Chi Kuadrat hitung maka terlihat bahwa Chi Kuadrat hitung < nilai Chi Kuadrat tabel sehingga yang diterima adalah yang menyatakan tidak terdapat perbedaan. Dengan demikian dapat disimpulkan bahwa tidak terdapat perbedaan pendapat yang meyakinkan antara guru SLTP dan guru SMU terhadap perubahan hari belajar dari 6 hari menjadi 5 hari. Sebagian besar guru setuju dengan perubahan hari belajar tersebut. 13 CHI KUADRAT UNTUK KATEGORI LEBIH DARI DUA a OUTPUT SPSS Case Processing Summary Cases Valid Missing Total N Percent N Percent N Percent PEKERJAAN * PENDAPAT MASYARAKAT TENTANG PELAKSANAAN PENDIDIKAN 500 100.0% 0 .0% 500 100.0% PEKERJAAN * PENDAPAT_MASYARAKAT_TENTANG_PELAKSANAAN_PENDIDIKAN Crosstabulation Count PENDAPAT MASYARAKAT TENTANG PELAKSANAAN PENDIDIKAN Total
  • 26. 26 SANGAT BAIK BAIK CUKUP KURANG PEKERJAA N PEGAWAI NEGERI 40 45 27 13 125 PEDAGANG 50 60 23 17 150 PETANI 45 72 31 12 160 KELOMPOK LAIN 10 30 20 5 65 Total 145 207 101 47 500 Chi-Square Tests Value df Asymp. Sig. (2-sided) Pearson Chi-Square 14.438a 9 .108 Likelihood Ratio 14.938 9 .093 Linear-by-Linear Association .996 1 .318 N of Valid Cases 500 a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 6.11. b INTERPRETASI OUTPUT Dari tabel diatas dapat kita lihat bahwa nilai Chi Kuadrat 14.438 dengan df 9 sehingga diperoleh harga kritik Chi Kuadrat sebesar 16.92 untuk taraf signifikansi 5% dan 21.67 untuk taraf signifikansi 1%. Dengan = 14.438 berarti < harga kritik Chi Kuadrat baik pada taraf signifikansi 5% atau 1%. Dengan demikian, hipotesa yang diterima adalah yang berarti tidak ada perbedaan sehingga dapat disimpulkan bahwa tidak ada perbedaan frekuensi jawaban keempat kelompok masyarakat terhadap pelaksanaan pendidikan di daerahnya. Secara umum, masyarakat berpendapat bahwa pelaksanaan pendidikan politik di daerahnya baik. 14 UJI T a OUTPUT SPSS Paired Samples Statistics Mean N Std. Deviation Std. Error Mean Pair 1 METODE_BAGHDADIYAH 65.20 10 8.039 2.542 METODE_IQRO 70.50 10 9.629 3.045 Paired Samples Correlations N Correlation Sig. Pair 1 METODE_BAGHDADIYAH & METODE_IQRO 10 .956 .000 Paired Samples Test Paired Differences t df Sig. (2- tailed) Mea n Std. Deviatio n Std. Error Mean 95% Confidence Interval of the Difference Lower Upper
  • 27. 27 P air 1 METODE_BAGHDADIY AH - METODE_IQRO - 5.30 0 3.057 .967 -7.487 -3.113 - 5.48 3 9 .000 b INTERPRETASI OUTPUT TABEL NILAI T UNTUK TARAF SIGNIFIKAN 5% DAN 1% df/db 5% 1% df/db 5% 1% 1 12.71 63.66 24 2.06 2.80 2 4.30 9.92 25 2.06 2.79 3 3.18 5.84 26 2.06 2.78 4 2.78 4.60 27 2.05 2.77 5 2.75 4.03 28 2.05 2.76 6 2.45 3.71 29 2.04 2.76 7 2.36 3.50 30 2.04 2.75 8 2.31 3.36 35 2.03 2.72 9 2.26 3.25 40 2.02 2.72 10 2.23 3.17 45 2.02 2.69 11 2.20 3.11 50 2.01 2.68 12 2.18 3.06 60 2.00 2.65 13 2.16 3.01 70 2.00 2.65 14 2.14 2.98 80 1.99 2.64 15 2.13 2.95 90 1.99 2.63 16 2.12 2.92 100 1.98 2.63 17 2.11 2.90 125 1.98 2.62 18 2.10 2.88 150 1.98 2.61 19 2.09 2.86 200 1.97 2.60 20 2.09 2.84 300 1.97 2.59 21 2.08 2.83 400 1.97 2.59 22 2.07 2.82 500 1.96 2.59 23 2.07 2.81 1000 1.96 2.58 Dengan berpedoman pada nilai tes t dengan membandingkan dengan dengan nilai df = 9 diperoleh angka 2.26 untuk taraf signifikan 5% dan 3.25 untuk taraf signifikan 1%. Dengan nilai = -5,483 berarti nilai > nilai baik pada taraf signifikan 5% atau 1% (2.26 < 5.483 > 3.25) yang berarti ditolak, yang berarti ada perbedaan signifikan. Dengan angka signifikansi 0.00 < 0.05 maka yang menyatakan bahwa kemampuan membaca Alquran antara metode Iqra’ dan metode Baghdadiyah ditolak. Terdapat perbedaan yang signifikan antara kemampuan membaca Alquran anak TPA dengan menggunakan metode Bagdadiyah dan metode Iqra’. Perbedaan mean menunjukkan bahwa penggunaan metode Iqra’ lebih baik dari metode Baghdadiyah.
  • 28. 28 15 UJI T UNTUK SAMPEL-SAMPEL YANG TIDAK BERKORELASI a OUTPUT SPSS Group Statistics ASAL SEKOL AH N Mean Std. Deviation Std. Error Mean PRESTASI BELAJAR MAHASISWA MAN 10 7.000 .8819 .2789 SMU 10 6.600 .9661 .3055 Independent Samples Test Levene's Test for Equality of Variances t-test for Equality of Means F Sig. t df Sig. (2- tailed) Mean Differen ce Std. Error Differen ce 95% Confidence Interval of the Difference Lower Upper PRESTASI BELAJAR MAHASISW A Equal variances assumed .667 .425 . 96 7 18 .346 .4000 .4137 -.4691 1.269 1 Equal variances not assumed . 96 7 17.8 52 .346 .4000 .4137 -.4696 1.269 6 b INTERPRETASI OUTPUT Output group statistics menampilkan jumlah subjek pada masing-masing kelompok sebesar 10, mean untuk siswa yang berasal dari MAN = 7, mean untuk siswa yang berasal dari SMU = 6.5. Standar deviasi untuk siswa yang berasal dari MAN = 0.8819 dan untuk siswa yang berasal dari SMU= 0.9718. Sedangkan standar error untuk mean mahasiswa yang berasal dari MAN= 0.2789 dan untuk yang berasal dari SMU= 0.3073 Output independent samples test menampilkan Levene’s Test untuk kesamaan varian. Dalam hal ini yang diuji adalah (varian populasi identic) dan (varian populasi tidak identic). Dari hasil perhitungan Levene’s Test dapat dilihat bahwa angka signifikansi sebesar 0.429 > 0.05 maka diterima dan dapat dinyatakan bahwa varian populasi identic. Oleh karena hipotesis yang dipakai bahwa kedua varian sama (identic) maka yang dijadikan pedoman untuk analisis lebih lanjut adalah angka-angka yang terdapat pada baris equal variance assumed. Dari tabel terlihat bahwa hasil test t sebesar 1.205 dengan df 18, perbedaan mean = 0.5, perbedaan standar error = 0.415, perbedaan prestasi terendah 0.3719, dan perbedaan prestasi tertinggi sebesar 1,3719. Jika harga = 1.205 dibandingkan dengan dengan df 18 maka diperoleh harga kritik “t” pada tarif signifikan 5% sebesar 2.10 dan pada tarif signifikan 1% sebesar 2.88. Karena harga < baik pada taraf signifikansi 5% atau 1% (2.10>1.205<2.88) maka ditolak dan diterima, yang berarti tidak ada perbedaan yang signifikan antara variabel X dengan variabel Y atau tidak terdapat perbedaan yang
  • 29. 29 berarti antara prestasi belajar siswa yang berasal dari MAN dengan yang berasal dari SMU pada fakultas tarbiyah di UIN. 16 ANOVA SATU ARAH a OUTPUT SPSS Descriptives TINGKAT_PENJUAL AN N Mean Std. Deviation Std. Error 95% Confidence Interval for Mean Minimu m Maximu m Lower Bound Upper Bound KEMASAN A 10 51.00 5.164 1.633 47.31 54.69 45 55 KEMASAN B 10 66.00 5.676 1.795 61.94 70.06 55 75 KEMASAN C 10 37.00 7.528 2.380 31.61 42.39 20 45 Total 30 51.33 13.451 2.456 46.31 56.36 20 75 Test of Homogeneity of Variances TINGKAT_PENJUALAN Levene Statistic df1 df2 Sig. .584 2 27 .565 ANOVA TINGKAT_PENJUALAN Sum of Squares df Mean Square F Sig. Between Groups 4206.667 2 2103.333 54.606 .000 Within Groups 1040.000 27 38.519 Total 5246.667 29 Post Hoc Tests Multiple Comparisons TINGKAT_PENJUALAN Tukey HSD (I) BENTUK KEMASAN (J) BENTUK KEMASAN Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval Lower Bound Upper Bound KEMASAN A KEMASAN B -15.000* 2.776 .000 -21.88 -8.12 KEMASAN C 14.000* 2.776 .000 7.12 20.88
  • 30. 30 KEMASAN B KEMASAN A 15.000* 2.776 .000 8.12 21.88 KEMASAN C 29.000* 2.776 .000 22.12 35.88 KEMASAN C KEMASAN A -14.000* 2.776 .000 -20.88 -7.12 KEMASAN B -29.000* 2.776 .000 -35.88 -22.12 *. The mean difference is significant at the 0.05 level. Homogeneous Subsets TINGKAT_PENJUALAN Tukey HSD BENTUK_KEMASAN N Subset for alpha = 0.05 1 2 3 KEMASAN C 10 37.00 KEMASAN A 10 51.00 KEMASAN B 10 66.00 Sig. 1.000 1.000 1.000 Means for groups in homogeneous subsets are displayed. b INTERPRETASI OUTPUT Dari data descriptives terlihat bahwa mean kemasan A = 51, mean kemasan B = 66, dan mean kemasan C = 37. Standar deviasi untuk kemasan A = 5.164, kemasan B = 5.676, dan kemasan C = 7.528. Angka minimum untuk kemasan A = 45, kemasan B = 55, dan kemasan C = 20. Sementara angka maximum untuk kemasan A = 55, kemasan B = 75, dan kemasan C = 45. Dengan taraf signifikansi 5% atau tingkat konfidensi 95% diperoleh rata-rata tingkat penjualan kemasan A = 47.31-59.69, kemasan B= 62.94- 70.06, dan kemasan C = 31.61-42.39 Dari tabel homogeneity of variances dapat diketahui bahwa besarnya angka Levene Statistic = 0.584 sedangkan probabilitas/signifikansinya = 0.584 > 0.05 maka dapat disimpulkan bahwa hipotesis nihil (diterima yang berarti asumsi bahwa ketiga varian populasi adalah identic, dapat diterima. Dari tabel ANOVA dapat diketahui bahwa besarnya nilai probabilitas/signifikansinya adalah 0.00 < 0.05 maka hipotesis nihil ditolak. Hal ini menunjukkan bahwa ada perbedaan rata-rata hasil penjualan dengan menggunakan jenis kemasan yang berbeda. Bentuk kemasan A, B, atau C mempunyai pengaruh terhadap hasil penjualan. Dari tabel Post Hoc Tests (Multiple Comparisons), dapat dilihat bahwa perbedaan mean kemasan A dengan kemasan B = -15 (kemasan A lebih kecil 15 poin dibandingkan dengan kemasan B), kemasan A dengan kemasan C = 14 (kemasan A lebih besar 14 poin dari kemasan C), kemasan B dengan kemasan A = 15 (kemasan B lebih besar 15 poin dari kemasan A), kemasan B dan kemasan C = 29 (kemasan B lebih besar 29 poin dibandingkan dengan kemasan C), kemasan C dengan kemasan A = -14 (kemasan C lebih kecil 14 poin dibandingkan dengan kemasan A), sedangkan perbedaan mean kemasan C dan kemasan B = -29 (kemasan C lebih kecil 29 poin dibandingkan dengan kemasan B). Dari tabel diatas dapat disimpulkan bahwa:
  • 31. 31 1 2 3 Dengan kata lain, 1) bentuk kemasan yang paling baik untuk meningkatkan penjualan adalah kemasan B. Hal ini bisa dilihat dari jumlah rata-rata tertinggi pada kelompok , sedangkan bentuk kemasan yang kurang baik dalam meningkatkan penjualan adalah kemasan C; 2) ada perbedaan tingkat penjualan pada masing-masing bentuk kemasan, baik pada kemasan A, B, maupun C; 3) ada pengaruh yang signifikan antara bentuk kemasan A, B, dan C terhadap tingkat penjualan. Dari tabel Homogeneus Subsets terlihat bahwa pada subset 1 hanya terdapat kemasan C dengan angka 37 sebagai mean terendah, yang berarti kemasan ini berbeda dengan 2 kemasan lainnya. Pada subset 2 hanya terlihat kemasan A dengan mean 51, yang berarti kelompok ini berbeda dengan kelompok-kelompok yang lain. Dan pada subset 3 ditemukan kemasan B dengan mean 66 sebagai mean tertinggi yang berarti kemasan B juga berbeda dengan 2 kemasan yang lain. Dari paparan ini dapat disimpulkan bahwa ketiga kelompok memiliki perbedaan yang signifikan dibandingkan dengan kelompok- kelompok yang lain. 17 ANOVA DUA ARAH a OUTPUT SPSS Between-Subjects Factors Value Label N BENTUK_KEMASAN 1 KEMASAN A 10 2 KEMASAN B 10 3 KEMASAN C 10 IKLAN 1 ELEKTRONIK 15 2 CETAK 15 Descriptive Statistics Dependent Variable:TINGKAT_PENJUALAN BENTUK_KEMASA N IKLAN Mean Std. Deviation N KEMASAN A ELEKTRONIK 184.00 50.299 5 CETAK 237.00 23.345 5 Total 210.50 46.335 10 KEMASAN B ELEKTRONIK 232.80 46.062 5 CETAK 274.00 58.245 5 Total 253.40 54.058 10 KEMASAN C ELEKTRONIK 286.60 37.018 5 CETAK 304.00 52.249 5 Total 295.30 43.663 10 Total ELEKTRONIK 234.47 60.015 15 CETAK 271.67 52.053 15 Total 253.07 58.350 30
  • 32. 32 Levene's Test of Equality of Error Variancesa Dependent Variable:TINGKAT_PENJUALAN F df1 df2 Sig. .505 5 24 .769 Tests the null hypothesis that the error variance of the dependent variable is equal across groups. a. Design: Intercept + KEMASAN + IKLAN + KEMASAN * IKLAN Tests of Between-Subjects Effects Dependent Variable:TINGKAT_PENJUALAN Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 47979.867a 5 9595.973 4.537 .005 Intercept 1921282.133 1 1921282.133 908.443 .000 KEMASAN 35956.867 2 17978.433 8.501 .002 IKLAN 10378.800 1 10378.800 4.907 .036 KEMASAN * IKLAN 1644.200 2 822.100 .389 .682 Error 50758.000 24 2114.917 Total 2020020.000 30 Corrected Total 98737.867 29 a. R Squared = .486 (Adjusted R Squared = .379) Estimated Marginal Means BENTUK_KEMASAN * IKLAN Dependent Variable:TINGKAT_PENJUALAN BENTUK_KEMAS AN IKLAN Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound KEMASAN A ELEKTRONIK 184.000 20.567 141.553 226.447 CETAK 237.000 20.567 194.553 279.447 KEMASAN B ELEKTRONIK 232.800 20.567 190.353 275.247 CETAK 274.000 20.567 231.553 316.447 KEMASAN C ELEKTRONIK 286.600 20.567 244.153 329.047 CETAK 304.000 20.567 261.553 346.447 Post Hoc Tests BENTUK_KEMASAN Multiple Comparisons Dependent Variable:TINGKAT_PENJUALAN (I) BENTUK KEMASAN (J) BENTUK KEMASAN Mean Difference (I- J) Std. Error Sig. 95% Confidence Interval Lower Bound Upper Bound Tukey HSD KEMASAN A KEMASAN B -42.90 20.567 .114 -94.26 8.46
  • 33. 33 KEMASAN C -84.80* 20.567 .001 -136.16 -33.44 KEMASAN B KEMASAN A 42.90 20.567 .114 -8.46 94.26 KEMASAN C -41.90 20.567 .125 -93.26 9.46 KEMASAN C KEMASAN A 84.80* 20.567 .001 33.44 136.16 KEMASAN B 41.90 20.567 .125 -9.46 93.26 Bonferroni KEMASAN A KEMASAN B -42.90 20.567 .143 -95.83 10.03 KEMASAN C -84.80* 20.567 .001 -137.73 -31.87 KEMASAN B KEMASAN A 42.90 20.567 .143 -10.03 95.83 KEMASAN C -41.90 20.567 .158 -94.83 11.03 KEMASAN C KEMASAN A 84.80* 20.567 .001 31.87 137.73 KEMASAN B 41.90 20.567 .158 -11.03 94.83 Based on observed means. The error term is Mean Square(Error) = 2114.917. *. The mean difference is significant at the .05 level. Homogeneous Subsets TINGKAT_PENJUALAN BENTUK_KEMASAN N Subset 1 2 Tukey HSDa KEMASAN A 10 210.50 KEMASAN B 10 253.40 253.40 KEMASAN C 10 295.30 Sig. .114 .125 Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = 2114.917. a. Uses Harmonic Mean Sample Size = 10.000. b INTERPRETASI OUTPUT Dari tabel Between-Subjects Factors ditampilkan hasil dari subjek-subjek yang diteliti dan dimasukkan dalam analisis data sesuai dengan factor yang berbeda antar masing- masing subjek. Dari hasil output terlihat bahwa subjek untuk kemasan A = 10 subjek, kemasan B = 10 subjek, dan kemasan C = 10 subjek. Sehingga jumlah keseluruhan
  • 34. 34 subjek sebanyak 30 subjek. Dari 30 subjek tersebut, 15 diantaranya masuk pada kelompok iklan media elektronik dan 15 lainnya masuk pada kelompok iklan media cetak. Dari data descriptives terlihat bahwa mean kemasan A dengan menggunakan media elektronik = 184, standar deviasinya = 50.299, jumlah subjek yang termasuk dalam kelompok ini = 5. Mean kemasan B dengan menggunakan media elektronik = 232.80, standar deviasinya =46.062, dan jumlah subjek yang termasuk dalam kelompok ini = 5. Mean kemasan C dengan menggunakan media elektronik = 286.60, standar deviasinya = 37.018, dan jumlah subjeknya = 5. Mean kemasan A yang menggunakan media cetak = 237.00, standar deviasinya = 23.345, dan jumlah subjeknya = 5. Mean kemasan B yang menggunakan media cetak = 274.00, standar deviasinya = 58.245, dan jumlah subjeknya = 5. Mean kemasan C yang menggunakan media cetak = 304.00, standar deviasinya = 52.249, dan jumlah subjeknya = 5. Adapun mean keseluruhan untuk kemasan A = 210.50, standar deviasinya = 46.335, dengan jumlah subjeknya = 10. Mean keseluruhan untuk kemasan B = 253.40, standar deviasinya = 54.058, dengan jumlah subjeknya = 10. Sementara mean keseluruhan untuk kemasan C = 295.30, standar deviasinya = 43.663, dengan jumlah subjeknya = 10. Mean keseluruhan untuk media elektronik = 234.47 dengan standar deviasinya = 60.015, dan jumlah subjeknya = 15. Mean keseluruhan untuk media cetak = 271.67 dengan standar deviasinya = 52.053, dan jumlah subjeknya = 15. Dari keseluruhan subjek yang ada (30 subjek), diperoleh mean sebesar 253.07 dan standar deviasi 58.350. Dari tabel output Levene’s Test of Equality of Error Variances diperoleh tes hitung sebesar 0.505 dengan nilai probabilitas = 0.769. Karena 0.769 > 0.05, maka hipotesis nihil (diterima dan hipotesis alternative (ditolak, yang berarti varian variabel terikat adalah sama (homogen) sehingga memenuhi persyaratan analisis varian. Dengan demikian proses analisis varian dapat dilanjutkan. Dari tabel Tests of between Subjects Effects diperoleh jumlah kuadrat variabel kemasan ( 35956.867, jumlah kuadrat variabel iklan ( = 10378, dan jumlah kuadrat factor kemasan dan iklan ( = 1644.2 Dari tabel diperoleh untuk factor kemasan sebesar 8.501. Jika angka ini dikonfirmasikan dengan pada taraf signifikansi 5% dengan dk=2 untuk pembilang dan 24 untuk penyebut, maka diperoleh angka 3.40. Pada taraf signifikansi 1% didapat angka 5.61 maka terlihat bahwa < sehingga diterima baik pada signifikansi 5% atau 1% dan ditolak. Dari tabel juga diperoleh angka untuk factor iklan sebesar 4.907. Bila nilai tersebut dikonfirmasikan dengan dengan alfa = 0.05, taraf signifikansi 5%, dk = 1 untuk pembilang dan 24 untuk penyebut, maka diperoleh angka 4.46 < sehingga diterima untuk taraf signifikansi 5%, sementara untuk tarat signifikansi 1%, ditolak dan diterima. Dari sini bisa disimpulkan bahwa media iklan mempengaruhi tingkat penjualan.
  • 35. 35 Pengaruh kemasan dan iklan secara bersama-sama terhadap hasil penjualan diperoleh 0.389. Bila angka ini dikonfirmasikan dengan jika diketahui nilai dk = 2 untuk pembilang dan 24 untuk penyebut, maka diperoleh angka 3.40 untuk taraf signifikansi 5% dan 5.61 untuk taraf signifikansi 1%. Jadi nilai sehingga ditolak dan diterima. Dari tabel Estimated Marginal Means dapat dilihat bahwa mean dari kemasan A = 210.5, mean kemasan B = 253.4, dan mean kemasan C = 295.3. Sedangkan standar error dari masing-masing kemasan sebesar 14.543. Penjualan kemasan A berkisar antara 180.485-240.515, kemasan B berkisar antara 223.385-283.415, dan kemasan C antara 265.285-325.315. Mean kemasan A yang diiklankan melalui media elektronik adalah 184 dan hasil penjualan berkisar antara 141.553-226.447, sedangkan yang diiklankan melalui media cetak menghasilkan mean yang lebih besar yaitu 237 dengan hasil penjualan berkisar antara 194.553 dan 279.447. Jika kedua mean dibandingkan, maka terlihat bahwa kemasan A yang diiklankan melalui media cetak memperoleh mean yang lebih besar dibandingkan dengan yang diiklankan melalui media elektronik. Secara kasar dapat disimpulkan bahwa kemasan A lebih baik diiklankan dengan menggunakan media cetak daripada melalui media elektronik. Mean kemasan B yang diiklankan melalui media elektronik adalah 232.8 dan hasil penjualan berkisar antara 190.353 sampai 275.247, sedangkan yang diiklankan melalui media cetak menghasilkan mean yang lebih besar yaitu 274 dengan hasil penjualan berkisar antara 231.553 dan 316.447. Bila kedua mean dibandingkan, maka terlihat bahwa kemasan B yang diiklankan melalui media cetak memperoleh mean yang lebih besar dibandingkan dengan yang diiklankan melalui media elektronik. Secara kasar dapat disimpulkan bahwa kemasan B lebih baik diiklankan dengan menggunakan media cetak daripada melalui media elektronik. Adapun mean kemasan C yang diiklankan melalui media elektronik adalah 286.6 dan hasil penjualan berkisar antara 244.153 sampai 329.047, sedangkan yang diiklankan melalui media cetak menghasilkan mean yang lebih besar yaitu 304 dengan hasil penjualan berkisar antara 261.553 dan 346.447. Bila kedua mean dibandingkan, maka terlihat bahwa kemasan C yang diiklankan melalui media cetak memperoleh mean yang lebih besar dibandingkan dengan yang diiklankan melalui media elektronik. Dari mean kedua kelompok ini dapat disimpulkan bahwa baik kemasan A, B, dan C lebih baik diiklankan lewat media cetak daripada media elektronik. Dari tabel Post Hoc Tests (Multiple Comparisons), dapat dilihat bahwa perbedaan mean kemasan A dengan kemasan B = -42.9 (kemasan A lebih kecil 42.9 poin dibandingkan dengan kemasan B), kemasan A dengan kemasan C = -84.8 (kemasan A lebih kecil 84.8 poin dari kemasan C), kemasan B dengan kemasan A = 42.9 (kemasan B lebih besar 42.9 poin dari kemasan A), kemasan B dan kemasan C = -41.9 (kemasan B lebih kecil 41.9 poin dibandingkan dengan kemasan C), kemasan C dengan kemasan A = 84.8 (kemasan
  • 36. 36 C lebih besar 84.8 poin dibandingkan dengan kemasan A), sedangkan perbedaan mean kemasan C dan kemasan B = 41.9 (kemasan C lebih besar 41.9 poin dibandingkan dengan kemasan B). Dari tabel Homogeneus Subsets terlihat bahwa pada subset 1 terdapat kemasan A dan B dengan angka 210.5 untuk kemasan A dan 253.4 untuk kemasan B yang berarti kemasan A tidak berbeda secara signifikan dengan kemasan B. Pada subset 2 terlihat kemasan B dan C dengan angka 253.4 untuk kemasan B dan 295.3 untuk kemasan C. Hal ini berarti bahwa pada dasarnya kemasan B tidak berbeda secara signifikan dengan kemasan C. 18 ANACOVA a OUTPUT SPSS Between-Subjects Factors Value Label N METODE_PEMBELAJARAN 1 METODE ACTIVE DEBATE 10 2 METODE JIGSAW 10 3 METODE DISKUSI 10 Descriptive Statistics Dependent Variable:PRESTASI_BELAJAR_SETELAH_PERLAKUAN METODE_PEMBELAJARAN Mean Std. Deviation N METODE ACTIVE DEBATE 84.50 5.986 10 METODE JIGSAW 81.50 5.798 10 METODE DISKUSI 88.50 4.116 10 Total 84.83 5.943 30 Levene's Test of Equality of Error Variancesa Dependent Variable:PRESTASI_BELAJAR_SETELAH_PERLAKUAN F df1 df2 Sig. .299 2 27 .744 Tests the null hypothesis that the error variance of the dependent variable is equal across groups. a. Design: Intercept + SEBELUM + METODE Tests of Between-Subjects Effects Dependent Variable:PRESTASI_BELAJAR_SETELAH_PERLAKUAN Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 349.636a 3 116.545 4.492 .011 Intercept 1656.253 1 1656.253 63.841 .000 SEBELUM 102.969 1 102.969 3.969 .057 METODE 72.471 2 36.235 1.397 .265 Error 674.531 26 25.944 Total 216925.000 30 Corrected Total 1024.167 29
  • 37. 37 a. R Squared = .341 (Adjusted R Squared = .265) Estimated Marginal Means METODE_PEMBELAJARAN Dependent Variable:PRESTASI_BELAJAR_SETELAH_PERLAKUAN METODE_PEMBELAJARAN Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound METODE ACTIVE DEBATE 84.874a 1.622 81.541 88.208 METODE JIGSAW 82.623a 1.707 79.115 86.131 METODE DISKUSI 87.002a 1.778 83.349 90.656 a. Covariates appearing in the model are evaluated at the following values: PRESTASI_BELAJAR_SEBELUM_PERLAKUAN = 67.50. b INTERPRETASI OUTPUT Dari tabel Between-Subjects Factors ditampilkan hasil dari subjek-subjek yang diteliti dan dimasukkan dalam analisis data sesuai dengan factor yang berbeda antar masing- masing subjek. Dari hasil output terlihat bahwa subjek untuk metode active debate, metode jigsaw, dan metode diskusi, masing-masing memiliki jumah responden yang sama yaitu 10 responden. Pada tabel Descriptive Statistics dapat diketahui bahwa mean kelompok yang menggunakan metode active debate = 84.50, mean kelompok yang menggunakan metode jigsaw = 81.50, mean kelompok yang menggunakan metode diskusi = 88.50, sedangkan mean seluruh siswa = 84.83. Standar deviasi kelompok yang menggunakan metode active debate = 5.986, standar deviasi kelompok yang menggunakan metode jigsaw = 5.798, standar deviasi kelompok yang menggunakan metode diskusi = 4.116, standar deviasi kseluruhan adalah 5.943. Dari tabel output Levene’s Test of Equality of Error Variances diperoleh angka F sebesar 0.299 dengan nilai probabilitas sebesar 0.744. Karena 0.744 > 0.05, maka hipotesis nihil (diterima dan hipotesis alternative (ditolak, yang berarti varian variabel terikat adalah sama (homogen) sehingga memenuhi persyaratan analisis kovarian. Dengan demikian proses analisis kovarian dapat dilanjutkan. Dari hasil analisis program SPSS 16 bisa dilihat besar untuk metode adalah 1.397 dan 0.265 untuk angka signifikansi. Karena 0.265 > 0.05 maka hipotesis nihil (diterima dan hipotesis alternative (ditolak. Hal ini menunjukkan bahwa tidak ada perbedaan prestasi belajar siswa dengan penggunaan metode belajar yang berbeda (melakukan control terhadap prestasi belajar) sebelum perlakuan diberikan. Dari tabel Estimated Marginal Means dapat dilihat bahwa nilai mean dengan mengikutsertakan variabel control = 84.50 yang berarti lebih besar 0.374 dari mean tanpa mengikutsertakan variabel control untuk kelompok yang diberi perlakuan dengan menggunakan metode active debate. Nilai mean dengan mengikutsertakan variabel control = 82.623 yang berarti lebih besar 1.123 dari mean tanpa mengikutsertakan variabel control untuk kelompok yang diberi perlakuan dengan menggunakan metode jigsaw. Sementara itu, nilai mean dengan mengikutsertakan variabel control = 87.002 yang berarti lebih kecil 1.498 dari mean tanpa
  • 38. 38 mengikutsertakan variabel control untuk kelompok yang diberi perlakuan dengan menggunakan metode diskusi. Sedangkan standar error dari masing-masing kelompok sebesar 1.622 untuk kelompok yang diberi perlakuan dengan menggunakan metode active debate, 1.707 untuk kelompok yang diberi perlakuan dengan menggunakan metode jigsaw, dan 1.778 untuk kelompok yang diberi perlakuan dengan menggunakan metode diskusi. Adapun tingkat konfidensi untuk taraf 5% berkisar antara 81.541 – 88.208 untuk kelompok yang diberi perlakuan dengan metode active debate, 79.115 – 86.131 untuk kelompok yang diberi perlakuan dengan metode jigsaw, dan 83.349 – 90.656 untuk kelompok yang diberi perlakuan dengan metode diskusi. Dengan menganalisis data menggunakan Anova Satu Arah maka dapat dilihat gambaran keadaan prestasi belajar siswa setelah dilakukan pendekatan dengan metode control atau tanpa control. Berikut output data dengan menggunakan analisis Anova Oneway: ANOVA PRESTASI_BELAJAR_SETELAH_PERLAKUAN Sum of Squares df Mean Square F Sig. Between Groups 246.667 2 123.333 4.283 .024 Within Groups 777.500 27 28.796 Total 1024.167 29 Tabel output Anova diatas menunjukkan hasil yang berbeda dengan output Anova dari kelas yang telah dikenai metode control. Perhitungan yang dilakukan tanpa control menunjukkan adanya pengaruh pemberian metode yang berbeda terhadap prestasi dimana diperoleh sebesar 4.283 dan angka signifikansi sebesar 0.024 < angka kritik 0.05. Dengan demikian dapat disimpulkan bahwa ada pengaruh perlakuan metode yang berbeda terhadap hasil belajar siswa. 19 MENENTUKAN BESAR KONTRIBUSI VARIABEL INDEPENDEN a OUTPUT SPSS ANALISIS DENGAN MENGGUNAKAN TIGA MODEL Between-Subjects Factors Value Label N METODE_PEMBELAJARAN 1 METODE ACTIVE DEBATE 10 2 METODE JIGSAW 10 3 METODE DISKUSI 10 Tests of Between-Subjects Effects Dependent Variable:PRESTASI_BELAJAR_SETELAH_PERLAKUAN Source Type III Sum of Squares df Mean Square F Sig.
  • 39. 39 Corrected Model 409.269a 5 81.854 3.195 .024 Intercept 1050.346 1 1050.346 40.996 .000 METODE 58.142 2 29.071 1.135 .338 SEBELUM 26.454 1 26.454 1.033 .320 METODE * SEBELUM 59.633 2 29.817 1.164 .329 Error 614.898 24 25.621 Total 216925.000 30 Corrected Total 1024.167 29 a R Squared = .400 (Adjusted R Squared = .275) ANALISIS DENGAN MENGGUNAKAN DUA MODEL Between-Subjects Factors Value Label N METODE_PEMBELAJARAN 1 METODE ACTIVE DEBATE 10 2 METODE JIGSAW 10 3 METODE DISKUSI 10 Tests of Between-Subjects Effects Dependent Variable:PRESTASI_BELAJAR_SETELAH_PERLAKUAN Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 349.636a 3 116.545 4.492 .011 Intercept 1656.253 1 1656.253 63.841 .000 METODE 72.471 2 36.235 1.397 .265 SEBELUM 102.969 1 102.969 3.969 .057 Error 674.531 26 25.944 Total 216925.000 30 Corrected Total 1024.167 29 a. R Squared = .341 (Adjusted R Squared = .265) b INTERPRETASI OUTPUT Perhitungan dilakukan dengan mengurangkan nilai Adjusted R Squared yang diperoleh pada perhitungan model pertama (analisis tiga model) dengan nilai Adjusted R Squared yang diperoleh pada perhitungan model kedua (analisis dua model) lalu membaginya dengan nilai Adjusted R Squared yang diperoleh pada perhitungan model kedua (analisis dua model) dan dikalikan dengan 100. Hal ini menunjukkan bahwa kontribusi variabel independen terhadap prestasi belajar siswa hanya sebesar 3.8% sementara kontribusi kovariat atau variabel control terhadap variabel dependen sebesar 96.2%.