XXII CONGRESO NACIONAL DE HIDRÁULICA

AMH

ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012

AMH

ESTUDIO EN MODELO FÍSICO DEL F...
XXII CONGRESO NACIONAL DE HIDRÁULICA

AMH

ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012

Que presentándolo enla forma clásic...
XXII CONGRESO NACIONAL DE HIDRÁULICA

AMH

AMH

ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012

1+

(5)

Analizando esta expre...
XXII CONGRESO NACIONAL DE HIDRÁULICA

AMH

(2ª parte)

valores mayores de M. Es también claro que la ecuación (5)
represen...
XXII CONGRESO NACIONAL DE HIDRÁULICA

AMH

AMH

ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012

(b) configuración 4
Figura 6. ...
XXII CONGRESO NACIONAL DE HIDRÁULICA

AMH

AMH

ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012

asicomo grandes tiempos de exi...
AMH

XXII CONGRESO NACIONAL DE HIDRÁULICA
ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012

Referencias
1.-Allievi, L. (1921) Th...
Upcoming SlideShare
Loading in …5
×

234art arr[1]

273 views

Published on

mecánica de fluidos

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
273
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

234art arr[1]

  1. 1. XXII CONGRESO NACIONAL DE HIDRÁULICA AMH ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012 AMH ESTUDIO EN MODELO FÍSICO DEL FENÓMENO DE SEPARACIÓN DE COLUMNA *René Autrique Ruiz **Eduardo Rodal Canales, Alejandro Sánchez Huerta y Libia Carmona *Policonductos, Cracovia No. 54, San Ángel, 01000 México, D.F. (0052) (444)8241498; rautrique@prodigy.net.mx **Instituto de Ingeniería, UNAM, Ciudad Universitaria, México D.F. (0052) (55)56233500 ext 1100; erc@pumas.ii.unam.mx Introducción por el cierre de la válvula, es positiva y viaja hacia aguas arriba. El fenómeno conocido como separación de columna ocurre en aquellos sistemas de conducción de agua a presión, cuando transitoriamenteen algúnpunto, esta desciende a la presión de vapor. Como consecuencia inicia la formación de una cavidad de vapor cuya presencia separa el comportamiento dinámico entre las columnas que están antes y después de la cavidad por lo que debido a esto recibe su nombre. La separación de columna ocurre en la válvula, cuando retorna la onda, al reflejarse en el tanque de presión constante, como onda de presión negativa. La separación de columna es un fenómeno transitorio y se produce como resultado de cambios en las condiciones de frontera de un sistema. Los cambios del sistema que pueden provocarla son: cierre brusco de una válvula al inicio o al final de una conducción, cambios repentinos de la demanda de agua, paros programados o accidentales de equipos de bombeo y en casos extremos como consecuencia de la ruptura de tuberías. Nosotros pensamos que esta condición representa, de manera más genuina, al comportamiento del fenómeno en un sistema de conducción. Una condición necesaria para que ocurra la separación de columna,es que exista una onda de presión transitoria negativaque viaje a través de la línea de conducción que reduzca la presión en algún punto a la presión de vaporización. Bajo esta presión, aparecen una gran cantidad de pequeñas burbujas que tienden a aglutinarse hasta formar una sola cavidad de vapor de agua. Esta cavidad crece en volumen absorbiendo la energía cinética del flujo, alcanza su máximo tamaño y posteriormente inicia su reducción hasta colapsar. A este último proceso se le conoce como reunión de columna y esta asociado a una sobrepresióntransitoria. Dos problemas principales interesan al estudiar este fenómeno: el tamaño y duración de la cavidad de vapor de agua y el cálculo de las presiones máximas y mínimas que ocurrirán por este efecto. En nuestros experimentos, la válvula de cierre brusco se ubica al inicio de la conducción, generando directa e inmediatamente la onda de presión negativa y por tanto la vaporización con su correspondiente cavidad. Desarrollo teórico Para el primer problema consideremos el esquema mostrado en la figura 1, donde la cavidad de vapor inició su crecimiento como consecuencia del cierre brusco de la válvula en t=0. Una vez que la cavidad existe, la presión en la misma permanece constante e igual a la presión de vapor del agua. En el tratado clásico de golpe de ariete, donde no se alcance en ningún sitio la presión de vapor, la presión de Joukowsky, , es considerada la sobrepresión máxima posible. Sin embargo, en el caso de la separación de columna, han sido medidas sobrepresiones transitorias mayores a la deJoukowsky, como lo indican diversas publicaciones. Particularmente este casoocurre por reflexiones y superposiciones de ondas, que bajo ciertas condiciones,se traslapan sobre las presiones transitorias tradicionales, dando origen a picos de presión mayores a los esperados. La separación de columna ha sido tradicionalmente estudiada y reportada en la literatura técnica, para experimentos que corresponden al cierre brusco de unaválvula al final de una conducción que es alimentada desde un tanque de carga constante. En esos casos, la primera onda de presión provocada Figura 1.Esquema de la instalación utilizada. Por lo que aplicandoel balance de cantidad de movimiento para la columna aguas abajo de la cavidad (incluyendo a la fricción),se puede escribir que:
  2. 2. XXII CONGRESO NACIONAL DE HIDRÁULICA AMH ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012 Que presentándolo enla forma clásica de laecuación dinámica para oscilación de masa, se obtiene la siguiente ecuación diferencial: AMH original de Anderson fue preparada para el registro en la válvula para un cierre aguas abajo. Si consideramos un cierre aguas arriba, refiriéndonos aun experimento real (Sánchez H., 1987), la figura 2 es obtenida. dondeH representa a . Despreciando el valor de la , entonces Hrepresenta la presión absoluta del agua al inicio de la conducción. Jaeger (1977), planteó una primera aproximación a la solución de esta ecuación diferencial,integrándolapara obtener el tiempo para que la cavidad alcance su máximo tamaño, . El resultado conduce a las siguientes fórmulasmatemáticas, considerando, el caso en que la fricción en la conducción es despreciable y cuando no lo es, por lo que tenemos: F=0 (1) y para F≠0 (2) El segundo problema, y el más importante desde el punto de vista del diseño, es el cálculo de las máximas y mínimas presiones en la conducción. Para el análisis clásico del golpe de ariete, la presión mínima será: (3) donde es la sobrepresión de Joukowsky. La máxima presión, correspondiente al retorno de la onda positiva, asumiendo que no hay pérdida de energía, es: Figura 2.Registro de presión para el cierre aguas arriba. En este ejemplo, la cavidad de vapor existe un tiempo mayor al periodo .La onda de presiónes reflejada en el tanque de presión constante al final de la tubería como onda positivay encuentra a la cavidad de vapor como una nueva frontera de presión constante y es reflejada como una nueva onda con signo negativo. Esta onda es nuevamente reflejada por el tanque como onda de presión positiva yarribará a un tiempo de más tarde. Al tiempo ,la cavidad colapsa y genera una sobrepresión y al arribar la onda que regresa por segunda vez, se superpone provocando el pico mostrado en la figura 2. La explicación anterior asume que solo se forma una cavidad y que esta se comporta como una frontera de presión constante capaz de reflejar a la onda incidente con signo contrario. (4) Parámetros adimensionados De la ecuación (3), es claro que si la presión absoluta es menor que la de Joukowsky, la vaporización ocurrirá y una cavidad de vapor será formada. La presión mínima no podrá alcanzar valores menores a la de vaporización, inclusive para transitorios de gran magnitud, donde puede ser mucho mayor a . Por tanto, la mínima presión de diseño queda determinada. Siguiendo a teoría clásica del golpe de ariete, nosotros podríamos esperar que la ecuación (4) defina el valor máximo de sobrepresión. Sin embargo, experimentos de laboratorio, han mostrado que la presión puede alcanzar valores mayores. Esta situación fue exhaustivamente reportada por Martin (1983) y Carmona et al (1987, 1988). Una clara explicación gráfica de este fenómeno puede ser consultada en el trabajo hecho por Anderson et al (1991)[figura 1, pag 42]. La figura Los siguientes parámetros adimensionados son utilizados en el análisis e interpretación del fenómeno de separación de columna: a.La magnitud del transitorio, M, la cual es el cociente entre la presión de Joukowsky y la presión absoluta inicial, Ho, aguas arriba de la válvula. Este parámetro es de Allievi (1921) y el parámetro de Martin (1983) y Carmona et al (1987, 1988). b. La máxima sobrepresión relativa , o el cociente entre y la presión de Joukowsky. Para este efecto,Wylie y Streeter (1993)[pag 194], citado por Bergant et al (2006), establece que la sobrepresión máxima posible es la cual puede escribirse en forma adimensional como:
  3. 3. XXII CONGRESO NACIONAL DE HIDRÁULICA AMH AMH ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012 1+ (5) Analizando esta expresión, se puede concluir que la máxima sobrepresión relativa corresponde al valor mínimo de M, o bien al transitorio menos severo. De (5), en un caso ideal sin pérdidas de energía ni atenuación de las ondas, puede alcanzar un valor , solo si , y si el mínimo transitorio (en el que se tenga separación de columna) corresponde a y . c. La duración de la cavidad relativa al periodo de la conducción . Si aceptamos que el tiempo teórico de desarrollo de la cavidad hasta su máximo tamaño mas el de su colapso es de , obtenemos que que es igual al parámetro adimensional M. Esto implica, que para condiciones de experimentos reales, calculado con el tiempo total de la cavidad medida y el valor de M, deben tener valores cercanos. Wylie and Streeter (1993) [p 192-196],citado nuevamente por Bergant et al (2006), mostrando que la duración de la primera cavidad de vapor es: dedonde Modelo Físico El modelo físico esta formado por tubos de 102 mm de diámetro, en acero o 114 mmde diámetro, en PEAD, con 86 o 110 m de longitud, con tubos colocados horizontalmente con una curva intermedia. La tubería esta instalada entre dos tanques hidroneumáticos, al inicio y final de la conducción, que simulan condiciones de carga constante. En cada extremo de la conducción existe una válvula de mariposa con actuador automático con tiempos de cierre controlables. PC. El caudal es determinado mediante placa orificio y manómetro diferencial de mercurio. Se dispone de dos bombas de 11 Kw (15 hp), para operarlas en serie o paralelo con lo que se puede alcanzar caudales máximos de 20 l/s con una presión de 40m o 10 l/s con 80m. La instalación permitió ensayar velocidades desde 0.56 a 3.6 m/s. Las tuberías ensayadas corresponden a diferentes configuraciones formadas con tubería de acero de D/e=64, PEAD de D/e= 7, 21, 32.5 y 41, permitiendo obtener combinaciones de las mismas que varían su celeridad (desde c = 185 a 1180 m/s) con lo que los periodos 2L/c van de 0.15 a 1.25 s. Las sobrepresiones de Joukowsky alcanzadas van de 25 a 245m y la severidad de los transitorios fue de M = 1 a 10. El modelo esta localizado en la ciudad de San Luis Potosí, México a 1900 metros sobre el nivel del mar por lo que la presión atmosférica es de 8 m. Experimentos La Tabla1 resume las configuraciones de los arreglos ensayados y los rangos de los valores de las variables y parámetros calculados a partir de las medicionescorrespondientes a cada arreglo.Las presiones señaladas son absolutas y se presentan en mca. Se probaron inicialmente las configuraciones del modelo: solo tubería de acero, acero + PVC transparente, acero + PVC + PEAD. Posteriormente se probó PEAD, con D/e = 7, 32.5 y 41 + PVC transparente, colocado en los extremos para visualización. Para todas las configuraciones el gasto se varió de 6 a 20 l/s y por tanto, la velocidad de 0.65 a 3.6 m/s. La presión media a la descarga se mantuvo en un orden de 23 mca (absoluta), variándola para obtener diferentes valores de M. Cada experimento contó con su registro de presión en la válvula y video de la cavidad respectivos. Tabla1. Configuraciones del modelo, materiales, yrango de las principales variables y parámetros (1ª parte) No Materiales de configuración la [m] [m/s] [s] [m/s] 1 Acero 86 1181 0.15 1.022.55 2 Acero 92 1041 0.18 0.662.55 110 704 0.31 0.642.55 110 488 0.45 1.143.41 0.892.22 3 Acero + PE Figura 3. Esquema isométrico del modelo físico 4 El tiempo mínimo de cierre es de 0.2 s. Se colocaron, en ambos extremos justo al lado de las válvulas, tuberías de PVC transparente de 3m, con el fin de poder observar la formación de la cavidad. La presión transitoria se registró mediante transductores de presión y se almacenó e forma digital en una PEAD 5 PEAD 110 219 1.00 6 PEAD 110 186 1.18 1.50
  4. 4. XXII CONGRESO NACIONAL DE HIDRÁULICA AMH (2ª parte) valores mayores de M. Es también claro que la ecuación (5) representa el límite teórico máximo de No [m] 123 1 -307 70 2 -270 46 3 -183 57 4 -170 20 5 -50 28 6 AMH ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012 M [m] 24-31 5.1-10.1 5.9-13.8 0.99-0.78 23-35 3.3-7.8 3.1-12.4 1.02-0.79 23-34 1.7-5.5 2.1-7.8 1.14-0.72 23-42 2.5-4.1 2.0-5.8 1.03-0.51 15-30 1.3-1.7 1.4-2.1 1.16-0.53 24-29 1.0-1.2 1.2-1.5 0.87-0.83 NOTA: Todas las configuraciones, con excepción de la configuración 1, tienen un tramo al inicio de 3 m de longitud de PVC transparente para visualizar el fenómeno. Adicional se agregaron 12 experimentos desarrollados en 1987 en el laboratorio de Hidromecánica del Instituto de Ingeniería de la UNAM (Sánchez H, 1987), la tabla 2 resume los experimentos. Los experimentos corresponden a cierres de válvula aguas arriba, en una línea de fierro galvanizado de 114 mm de diámetro extendida horizontalmente y con una longitud L = 1470 m de longitud. En este modelo c = 1280 m/s y por tanto T = 2.30s. Los experimentos se agruparon de acuerdo al rango de velocidades. La figura 5 muestra la correspondencia entre el parámetro adimensional y , con ligeramente mayor a .Transitorios severos implican longitudes de cavidades mayores y por tanto también de mayor duración. Existiendo una gran cantidad de recorridos entre la cavidad y el tanquela onda que finalmente se superpone al colapso se debilita por lo que no aporta una sobrepresión importante. La figura 6 muestra una tendencia similar a la 4. Esto demuestra que hay una relación inversamente proporcional de con v0 por lo que puede aproximarse como , donde . En la figura 6 se observa que los valores mas altos de corresponden a valores bajos o muy bajos de velocidad del agua, particularmente a valores menores a 1 m/s. Para velocidades iniciales del agua mayores a 1.5 m/s, los valores de son inferiores a 1, lo que significa que no alcanzaron la sobrepresión de Joukowsky. Esta es una importante observación ya que el diámetro económico de la mayoría de los sistemas de conducciónde agua a presión resulta mayor a 1.5 m/s. La figura 7 muestra la relación directa entre y de manera congruente a lo descrito con la ecuación (1). Para diferentes configuraciones y por tanto, diferentes celeridades, se observa una relación casi lineal. Grandes velocidades implican longitudes largas de la cavidad de vapor. En las figuras 4 a 7 se agregaron 4 experimentos reportados por Martin (1983) y 4 más por Bergant y Simpson (1999). Tabla 2. IIUNAM rango de experimentos y de las variables importantes. No [m/s] [m] [m] 1 0.3 a 0.4 42 a 51 20 a 45 1.1 a 2.1 0.9 a 1.9 1.0 a 1.7 2 0.5 a 0.6 64 a 76 36 a 66 1.1a 2.0 1.0 a 2.0 1.1 a 1.9 3 0.7 a 0.8 91 a 104 52 a 80 1.1a 2.0 0.9 a 2.1 1.0 a 1.3 Figura 4. Máximo relativo de sobrepresión contra Análisis de resultados Los resultados de los experimentos indicados en las tablas 1, 2 y 3 son mostrados en las figuras 4 a 7. La figura 4 muestra el máximo relativo de sobrepresión, contra , la magnitud del transitorio. Es claro que el valor mas alto de corresponde al menor valor de , particularmente para valores menores a 2. cae por debajo de 1 para valores de M > 4, y continua decreciendo para Figura 5. Tiempo de cavidad relativo contra
  5. 5. XXII CONGRESO NACIONAL DE HIDRÁULICA AMH AMH ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012 (b) configuración 4 Figura 6. Máximo relativo de sobrepresión contra (c) configuración 3 Figura 7. Tiempo de cavidad relativo contra Las figuras 8 a, b, c y d, muestran diferentes formas de registro para diferentes configuraciones y magnitudes del transitorio en los experimentos de San Luis Potosí. El orden en que se presentan esta en valores de Mdecrecientes.La tabla 3 muestra las principales variables y los parámetros para cada caso. Tabla 3. Principales variables y parámetros adimensionales para diferentes configuraciones de la figura 8 ∆hJ c T [m/s] [s] [m/s] [m] a 1041 0.18 2.29 243.0 7.4 0.79 b 488 0.45 3.41 169.6 4.05 0.54 c 704 0.31 0.64 45.9 1.65 1.11 d 219 1.00 1.56 34.8 1.32 (d) configuración 5 Figura 8. Registros de presión (tabla 3) Las figuras 9 a, b y c, muestran diferentes formas de registro correspondientes a parejas de valores y en los experimentos del IIUNAM. En las tres figuras se observan claramente los efectos de superposición de ondas positivas resultando en valores altos de . El orden en que se presentan esta en valores de M crecientes. 0.90 Fig8 M La tabla 4 muestra las principales variables y los parámetros para cada caso. La tabla y las figuras confirman el hecho de que altos se obtienen para valores de M bajos y por tanto velocidades del agua bajas. Tabla 4. Principales variables y parámetros adimensionales para los experimentos del IIUNAM Fig 9 ∆hJ M [m] [m] a 0.55 67 71.8 1.07 1.82 b 0.38 38 49.6 1.31 1.62 c (a) configuración 2 [m/s] 0.32 22 41.8 1.90 0.96
  6. 6. XXII CONGRESO NACIONAL DE HIDRÁULICA AMH AMH ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012 asicomo grandes tiempos de existencia de la cavidad, no causan sobrepresiones mayores a las de Joukowsky debido a la atenuación significativa de las ondas antes de que se superpongan. En particular > 1 es poco probable para M > 4 y > 1.5 m/s. La figura 6 muestra la relación inversa y . d) Para una primera aproximación al análisis del transitorio para el diseño de un sistema de conducción las figuras 4 y 6 pueden ser usadas como referencia. (a) f ) El diseño final, por supuesto debe ser analizado por medio de el calculo numérico de algún paquete específico y verificado con pruebas específicas. Notación Presión en el tanque, N/m2 Presión atmosférica local, N/m2 Presión de vaporización del agua, N/m2 (b) Pérdida por fricción, N/m2 Presión absoluta en la válvula, m Presión inicial absoluta en la válvula, m Densidad del agua, kg/m3 Aceleración de la gravedad, m/s2 Peso específico del agua, N/m3 Presión absoluta transitoria máxima, m Sobrepresión máxima transitoria, ( Sobrepresión deJoukowsky, m (c) Figura 9. Registros de presión (tabla 4) Sobrepresión máxima relativa, ( Magnitud del transitorio, ( Velocidad del agua en la columna, m/s Conclusiones y recomendaciones de diseño para un análisis preliminar Velocidadinicial, m/s a)La separación de columna es un fenómeno transitorio que puede explicarse y clasificarse usando tres parámetros adimensionales: , la magnitud del transitorio, igual a ; Tiempo de crecimiento de la cavidad, s , la máxima sobrepresión relativa, , y , la duración relativa de la cavidad de vapor formada por la válvula de aguas arriba. b) Para bajas magnitudes del transitorioM, en la separación de columna pueden ocurrir superposiciones de ondas de presión positivas capaces de causar sobrepresiones cercanas a dos veces la de Joukowsky. En cambio, para altas magnitudes del transitorio, considerando la pérdida de energía, la sobrepresión de Joukowsky nunca será alcanzada. La figura 3 muestra la clara relación inversa entre y M. La ecuación (5), graficada en la figura, muestra el valor teórico límite para . c) El valor más alto de fue obtenido para bajas magnitudes del transitorio M y para valores bajos de velocidad del agua. Medianos y altos valores de M, asociados con velocidades del agua grandes y por tanto con cavidades de vapor grandes Tiempo de duración de la cavidad,s Tiempo relativo de la cavidad, ( Periodo de la línea, ( , s Longitud de la tubería en el modelo físico, m Celeridad de las ondas de presión, m/s Diámetro exterior de la tubería, m Cociente entre el diámetro exterior y el espesor Área de sección de la tubería, m2 Factor de fricción, s2/m Coeficiente de fricción de Darcy-Weisbach Factor de proporcionalidad inversa ,m
  7. 7. AMH XXII CONGRESO NACIONAL DE HIDRÁULICA ACAPULCO, GUERRERO, MÉXICO, NOVIEMBRE 2012 Referencias 1.-Allievi, L. (1921) Théorie du Coup de Bélier. Tr. Daniel Gaden.Dunod, Paris (in French). 2.- Anderson, A., Sandoval, R., and Arfaie, M. (1991) “Column separation behavior modes in a simple test rig”, Paper A1, IAHR Work Group on Hydraulic Transients with Water Column Separation, 9th and last Round Table, Valencia, Spain. 3.-Bergant, A., and Simpson, A. R. (1999) “Pipeline Column Separation Flow Regimes”. Journal ofHydraulic Engineering, ASCE, Aug. 1999, pp 835-848. 4.-Bergant. A., Simpson, A. R., and Tijselling, A. S. (2006) “Water hammer with column separation: A historical review”. Journal of Fluids and Structures, 22, pp 135-171. 5.- Carmona, R., Sánchez H., A., and Sánchez B., J. L. (1987) “Experimental relation between the highest transient pressure and the severity of the water column separation”, Paper D2, 8th International Round Table on Hydraulic Transients with Water Column Separation, IAHR, Madeira, Portugal. 6.-Carmona, R., Sánchez B., J. L., and Carmona, L. (1988) “A simplified procedure to evaluate liquid column separation phenomena”. Water Power and Dam Construction, Dec. 1988, pp 42-46 7.-IAHR (2000) Hydraulic transients with water column separation, IAHR Working Group 1971-1991. Synthesis Report.ENEL-CRIS, Milan. 8.-Jaeger, Ch. (1977) Fluid Transients in Hydroelectric Engineering Practice. Blackie, London. 9.-Martin, C.S. (1983) “Experimental investigation of column separation with rapid closure of downstream valve”. 4th International Conference on Pressure Surges, BHRA Fluid Engineering. 10.-Sánchez H., A. (1987) “Estudio experimental del fenómeno de separación de columna”, M. Eng. Thesis, UNAM, Mexico (in Spanish). 11.-Wylie , E. B., and Streeter, V. L. (1993) Fluid Transients in Systems. Prentice Hall, New Jersey. AMH

×