SlideShare a Scribd company logo
1 of 153
Download to read offline
CSO-Ifes-55-2009
GERÊNCIA DE ENSINO
COORDENADORIA DE RECURSOS DIDÁTICOS
MECÂNICA APLICADA
E
RESISTÊNCIA DOS
MATERIAIS
Mecânica
CSO-Ifes-55-2009
MECÂNICA APLICADA
E
RESISTÊNCIA DOS
MATERIAIS
JOÃO PAULO BARBOSA
São Mateus, Fevereiro de 2010.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
1
Sumário
1 Sistemas de Unidades................................................................................... 3
1.1 Sistema Internacional - SI - ............................................................................6
1.2 Sistema Inglês................................................................................................6
1.3 Sistema Gravitacional Britânico......................................................................7
2 Estática de pontos materiais ...................................................................... 11
2.1 Introdução ....................................................................................................11
2.2 Força Resultante..........................................................................................11
2.3 Forças no Plano...........................................................................................11
2.4 Componentes Cartesianas de uma força.....................................................12
2.5 Equilíbrio de um ponto material....................................................................14
3 Corpos Rígidos: sistemas equivalentes de forças................................... 20
3.1 Classificação das forças atuantes em corpos rígidos...................................20
3.2 Princípio de transmissibilidade.....................................................................21
3.3 Momento de uma força em relação a um ponto...........................................22
3.4 Momento de um conjugado..........................................................................22
3.5 Conjuntos Equivalentes................................................................................23
4 Equilíbrio de corpos rígidos ....................................................................... 28
4.1 Equilíbrio de um Corpo Rígido em duas dimensões: ...................................28
4.2 Reações nos Apoios e Conexões. ...............................................................29
5 Análise das Estruturas................................................................................ 40
5.1 Análise de Treliças.......................................................................................40
5.2 Análise de uma estrutura .............................................................................44
5.3 Máquinas......................................................................................................48
6 Centróide e Baricentro ................................................................................ 66
6.1 Áreas e Linhas - Placas e Arames Compostos ............................................67
7 Movimento Circular ..................................................................................... 72
7.1 Velocidade Angular (ω) ...............................................................................72
7.2 Período (T)...................................................................................................72
7.3 Frequencia (f)...............................................................................................72
7.4 Rotação (n)...................................................................................................73
7.5 Velocidade Periférica ou Tangencial (v).......................................................73
8 Relação de Transmissão (i) ........................................................................ 75
8.1 Transmissão por Correias ............................................................................75
8.2 Transmissão por engrenagens.....................................................................76
9 Torção Simples............................................................................................ 78
9.1 Momento Torçor ou Torque (MT)..................................................................78
9.2 Torque nas Transmissões............................................................................79
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
2
10 Potência (P).................................................................................................. 81
10.1 Torque X Potência ....................................................................................82
10.2 Força Tangencial (FT) ...............................................................................83
11 Rendimento das Transmissões (ηηηη) ............................................................ 94
11.1 Rendimento das transmissões..................................................................94
11.2 Perdas nas Transmissões.........................................................................95
12 Noções de Resistência dos Materiais.......................................................103
12.1 Introdução...............................................................................................103
12.2 Esforços externos ou carregamentos......................................................104
12.3 Solicitações Simples ...............................................................................106
12.4 Solicitações Compostas..........................................................................109
12.5 Ensaio de Tração....................................................................................110
12.6 Modos de falhas trativas: ........................................................................112
12.7 Tensões ..................................................................................................112
12.8 Módulo de Elasticidade...........................................................................113
12.9 Momento de Inércia, Raio de Giração e Módulo de Resistência: ...........114
13 Tração e compressão.................................................................................116
13.1 Carregamento Axial ................................................................................116
13.2 Deformação sob Carregamento Axial .....................................................116
13.3 Tensão Normal σ ....................................................................................117
13.4 Deformação Longitudinal (ε) ...................................................................117
13.5 Deformação Transversal (εt) ...................................................................118
13.6 Estricção .................................................................................................118
13.7 Coeficiente de Segurança k....................................................................118
14 Flexão ..........................................................................................................124
14.1 Diagrama de Força Cortante e Momento Fletor......................................124
14.2 Tensão de Flexão ...................................................................................125
15 Torção..........................................................................................................130
15.1 Transmissão de Potência........................................................................130
15.2 Análise das Tensões num Eixo...............................................................131
15.3 Deformações nos Eixos de Secção Circular...........................................132
15.4 Tensão de Torque...................................................................................133
15.5 Tensões no Regime Elástico ..................................................................133
15.6 Modos de Falha Torcionais.....................................................................135
15.7 Ângulo de Torção no Regime Elástico....................................................140
15.8 Eixos Estaticamente Indeterminados......................................................140
16 Flambagem..................................................................................................143
16.1 Módulo de Young....................................................................................143
16.2 Carga Crítica de Flambagem..................................................................143
16.3 Indice de Esbeltez...................................................................................144
16.4 Flambagem de Colunas..........................................................................145
17 Referencias Bibliográficas:........................................................................146
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
3
CAPÍTULO 1
1 Sistemas de Unidades
Se o instrumento é utilizado para medir variáveis de processos, convém então
mencionar rapidamente sobre sistemas de unidades usados para medir a
magnitude de grandezas (as variáveis dos processo mecânicos) e expressá-las
como dimensões. Na medida em que ainda há diversos sistemas de unidades
utilizados pelo homem, a sua definição e estabelecimento corretos auxiliam no
processo de conversão de unidades entre os vários sistemas de unidades
disponíveis.
Há vários sistemas de unidades em uso nos ambientes industrial, comercial,
laboratorial, residencial, etc. Por convenção, há um sistema aceito
internacionalmente, estabelecido pela Conferência Geral de Pesos e Medidas
(toda a documentação das Conferências é mantida e divulgada pelo Bureau
International des Poids et Mesures – BIPM), o Sistema Internacional de
Unidades - SI. As unidades básicas do SI, como todos sabemos, são o metro [m],
a massa [kg], o segundo [s], o Kelvin [K], o Ampere [A] o mole [mol] e a candela [cd],
para as dimensões comprimento, a massa, o tempo, a temperatura, a corrente, a
quantidade de matéria e a intensidade luminosa, respectivamente. Todas as outras
unidades são chamadas de unidades derivadas (joule [J] para trabalho, watt [W]
para potência, etc), pois são definidas em termos das unidades básicas.
Atribui valores numéricos específicos para fenômenos físicos observáveis, de
maneira que estes possam ser descritos analiticamente.
DIMENSÃO quantidade física utilizada para definir qualitativamente uma
propriedade que pode ser medida ou observada.
Exemplo: Comprimento [L], Tempo [t], Massa [M], Força [F] e Temperatura [θ].
UNIDADE são nomes arbitrários atribuídos às dimensões.
Exemplo: dimensão → comprimento
unidades → centímetros, pés, polegadas,
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
4
Grandezas e unidades derivadas de SI – Sistema Internacional de Unidades
Assim, a dimensão especifica a magnitude da grandeza (variável do processo)
medida de acordo com o sistema de unidades adotado. No SI a unidade da
grandeza comprimento é o metro, em outros sistemas de unidade podem ser em a
polegada, o centímetro, o kilômetro, a milha, etc.
Em várias áreas industriais diferentes sistemas de unidades que misturam unidades
do SI, com unidades inglesas e antigas unidades de comércio têm uso corrente. São
comumente referidas como Unidades de Engenharia. É o caso, por exemplo, da
indústria hidráulica: o diâmetro de tubulações é usualmente referido em polegadas
(dimensão típica em uso nos USA e outros países de língua e industrialização de
origem inglesa e americana), e o comprimento desta mesma tubulação pode ser
referido em metros. Compra-se no comércio, mesmo no Brasil, uma tubulação de
PVC de 6 m comprimento e 2” (polegadas) de diâmetro, classe 10 - pressão de
trabalho de 10 atm (atmosferas, ou 1.01325 x 106
N/m2
). Na indústria do petróleo a
produção (a vazão de óleo, volume na unidade de tempo) é medida em barris/dia
[bbl/dia].
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
5
Grandezas e unidades derivadas de SI – Sistema Internacional de Unidades
O Sistema CGS foi corrente na área da mecânica, e se baseava em três dimensões
e suas unidades básicas: o centímetro, o grama e o segundo.
Na indústria automobilística de matriz baseada nos USA, todas as dimensões –
folgas de válvulas, bitola de parafusos e porcas, tamanho de rodas, etc, têm por
base o Sistema Inglês de Unidades. O Sistema Inglês, por sua vez, tem unidades
de uso próprio nos USA, que diferem, em valor, de unidades usadas na Inglaterra: o
pé inglês é maior que o pé americano, assim como o galão, etc.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
6
1.1 Sistema Internacional - SI -
L Comprimento metro m
M Massa quilograma kg
t Tempo segundo s
θθθθ Temperatura graus Celsius ou Kelvin °C ou K
Força: definida pela 2ª Lei de Newton
a.mF =
F - força [N]
m - massa [kg] 





== N
s
m
kgamF 2
.
a - aceleração [m/s2
]
1.2 Sistema Inglês
L Comprimento Pés ft
M Massa libra-massa lbm
F Força libra-força lbf
t Tempo Segundo s
θθθθ Temperatura graus Fahrenheit ou Rankine °F ou °R
Força: é estabelecido como uma quantidade independente definida por
procedimento experimental: a força de 1 lbf acelerará a massa de 1 lbm 32,174 pés
por segundo ao quadrado.
- Ao relacionar força e massa pela lei de Newton, surge uma constante de
proporcionalidade, gc:
lbf
g
sftlbm
g
am
F
cc
1
)/174,32.(1. 2
===
- gc terá as dimensões MLF-1
t-2
- para sistema inglês: 2
.
.174,32
slbf
ftlbm
gc =
gc tem o mesmo valor numérico que a aceleração da gravidade ao nível do mar, mas
não é aceleração da gravidade. Serve para relacionar estas quantidades.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
7
1.3 Sistema Gravitacional Britânico
L Comprimento pés ft
M Massa slug slug
F Força libra-força lbf
t Tempo segundo s
θ Temperatura graus Fahrenheit ou Rankine °F ou °R
Outros:
- Sistema Técnico de Engenharia: kg, m, s, kgf
gc= 9,80665 kg.m/(kgf.s2
)
- Sistema CGS: g, cm, s, dina
PESO ≠≠≠≠ MASSA
O Peso de um corpo é definido como a força que age no corpo resultante da
aceleração da gravidade. Varia com a altitude.
Prefixo usados no SI
Para facilitar a escrita de grandezas de magnitude muito grande ou muito pequenas,
as unidades podem ser acompanhadas de prefixos que designam seus múltiplos e
submúltiplos.
Prefixos do SI
Prefixo Símbolo Fator multiplicador
exa E 1.000.000.000.000.000.000
peta P 1.000.000.000.000.000
terá T 1.000.000.000.000
giga G 1.000.000.000
mega M 1.000.000
quilo k 1.000
hecto h 100
deca da 10
deci d 0,1
centi c 0,01
mili m 0,001
micro µ 0,000 001
nano n 0,000 000 001
pico p 0,000 000 000 001
femto f 0,000 000 000 000 001
atto a 0,000 000 000 000 000 001
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
8
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
9
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
10
1) Exercícios: Reescrever as unidades das grandezas como é indicado.
a) 20000mm: m
b) 14000000000 W: GW
c) 2,75x104
Pa: kPa
d) 0,000055kg: g
e) 0,00023cm: µm
f) 250kN: N
g) 0,0043 MPa: Pa
h) 0,000025A: mA
2) Exercícios: Reescrever as unidades das grandezas como é indicado.
a) 50000N: kN
b) 200000MPa: GPa
c) 75000N: kN
d) 0,000014kg: g
e) 0,1x10-3
mm µm
f) 500 000 000 N/m² kN/mm²
g) 150km/h: m/s
h) 20m/s km/h
i) 30m/s km/min
j) 120km/h m/min
k) 50l m³
l) 100m³ l
m) 200m² cm²
n) 10pol cm
o) 100mm pol
p) 120HP KW
q) 2000W CV
r) 50Bar Psi
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
11
CAPÍTULO 2
2 Estática de pontos materiais
2.1 Introdução
O que é Mecânica?
Pode ser definida como a ciência que descreve e prediz as condições de repouso ou
movimento de corpos sob ação de forças.
Corpos rígidos, deformáveis e fluidos.
2.2 Força Resultante
A somatória das forças que atuam em um dado ponto material é a força resultante.
(produz o mesmo efeito que as forças originais)
2.3 Forças no Plano
Uma força representa a ação de um corpo sobre o outro. Ela é caracterizada por seu
ponto de aplicação, sua intensidade, direção e sentido.
2ª Lei Newton: F=m.a e no SI (N)
Fazendo a regra do Paralelograma.
As forças não obedecem às regras de adição definidas na álgebra ou na aritmética.
Caso possua mais de um vetor
P
P + Q + S
Q + S
Q
S
P
R
Q
P
R
Q
ou
A
P P
Q Q
RR = P + Q
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
12
2.4 Componentes Cartesianas de uma força
Em muitos problemas é desejável decompor uma força em duas componentes
normais uma à outra.
Fx = F cos θ e Fy = F sen θ
F² = Fx²+ Fy²
Adição de forças pela soma das componentes segundo x e y.
Resultante da soma dos vetores P, Q e S.
Teremos as componentes:
Rx + Ry; Px + Py ; Qx + Qy ; Sx + Sy.
Sendo assim: Rx = Px + Qx + Sx e Ry = Py + Qy + Sy
Aonde: Rx = ΣFx e Ry = ΣFy
R² = Rx²+ Ry²
S
P
Q
A
S
P
Q
A
Sx
Sy
Px
Py
Qx
Qy
Ry
Rx
R
Fy
Fx
F
y
xo
θ
F
x
y
θFy
Fx
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
13
Exemplo 1: Dois cabos sujeitos a trações conhecidas estão presos ao ponto A. Um
terceiro cabo AC é usado para sustentação. Determine a tração em AC sabendo que
a resultante das três forças aplicadas em A deve ser vertical.
Calculando a distância AC = 25 m.
Como é vertical Rx = ΣFx=0
Logo a Resultante é Ry
Decompondo os vetores XY
F1 = (-30.cos 25°) em x e (-30.sen 25°) em y
F2 = (12.sen 10°) em x e (-12.cos 10°) em y
TAC = (TAC.sen θ) em x e (-TAC.cos θ) em y (adotado o sentido de TAC)
25
15
=θsen
25
20
cos =θ
010cos1225cos30 =+°+°−== ∑ θsenTFR ACxx
619,25
sen
10cos12-25cos30
=
°
=
θ
ACT
KNRy
TsensenFR ACyy
257,35
cos10122530
−=
+°+°−== ∑ θ
A
B C
10°25°
30kN=F1
12kN=F2
15
m
20
m
θ20
25
15
F1 = 30 KN
F2 = 12 KN
Tac= ?
R ↨
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
14
2.5 Equilíbrio de um ponto material
Quando a resultante de todas as forças que atuam sobre um ponto material é zero,
este ponto está em equilíbrio.
∴= 0R
∑
∑
==
==
0
0
yy
xx
FR
FR
100N 100N
Exemplo 2: Como parte do projeto de um novo veleiro deseja-se determinar a força
de arrasto a uma dada velocidade. Com esse objetivo, um modelo do casco é
colocado em um canal para testes, sendo mantido alinhado com o eixo do canal por
meio de três cabos presos a sua proa. Leituras de dinamômetro indicam que, para
uma dada velocidade da água, a tração no cabo AB é de 200N e de 300N no cabo
AE. Determine a força de arrasto no casco e a tração no cabo AC.
Decompondo os vetores XY
Encontrar α e β
75,1
2,1
1,2
==αtg e 375,0
2,1
45,0
==βtg
α = 60,26° β = 20,56°
AEACAB TTTTR +++=
Corpo em equilíbrio
NF
senTsenTF
F
ACAB
x
37,98
0
0
=
=+−
=∑
βα
NT
TTT
F
AC
ACABAE
y
5,214
0coscos
0
=
=++−
=∑
βα
TAB
TAc
F
TAE
A
α
β
A
B C
E
Fluxo
1,2m
1,2m
0,45m2,10m
α
β
AB = 200N
AE = 300N
Fmastro = ?
AC = ?
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
15
Exemplo 3: A manga A pode deslizar livremente sobre o eixo horizontal, sem atrito.
A mola presa à manga tem constante 1751 N/mm e elongação nula quando a manga
está diretamente embaixo do suporte B. Determine a intensidade da força P
necessária para manter o equilíbrio quando: (a) c= 228 mm e (b) c= 406 mm.
mmLLx
mmLCLL
8,75
8,380²²²
0
0
=−=∆
=⇒+=
NF
xKF
72,132
1088,751751 3
=
××=∆⋅= −
(F: força da mola; ∆x: deslocamento da mola)
D.C.L
F
Fat=0
Μ=0 N
ω
P
Equilíbrio
L
C
FP
FP
Fx
=
=−
=⊕→ ∑
0cos
0
θ
L
C
=θcos
L
L0
C
A
B
C
305 mm
P
k = 1751 N/m
P = ?
C = 228 mm
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
16
Exemplo 4: Caixotes de 30 kg estão suspensos por diversas combinações de corda
e roldana. Determine, em cada caso, a tração na corda. (A tração na corda é a
mesma dos dois lados da roldana, Veremos isto mais tarde).
b)
c)
A
T
T
T
T
T
P
T’
T T
T’
B
C
Roldana B
TT
T’
Roldana C
T T
T’
P
T’ = 2T
4
22
02'0
P
T
PTT
PTTFy
=
=+
=−+=∑
T
T T
T
T T T
T T
R
P
P
TR
Fy
2
0
=
=∑
2
02
0
P
T
PT
Fy
=
=−
=∑
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
17
Exercícios:
1) Determine a Força resultante das quatros forças aplicadas na figura abaixo:
a) b)
2) Determine a Força Resultante das Forças aplicada no desenho abaixo.
a) b)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
18
3) Determine o peso máximo do motor que pode ser suportado sem exceder uma
força de 450N na corrente AB e de 480N na corrente AC.
4) Uma caixa é erguida com um guincho pelas cordas AB e AC. Cada corda resiste a
uma força de tração máxima de 2500 N sem se romper. Se AB permanece sempre
horizontal e AC permanece com θ = 30°, determine o peso máximo da caixa para
que ela posa ser levantada.
3) 4)
5) João tenta alcançar Maria subindo com velocidade constante por uma corta
amarrada no ponto A. Qualquer um dos três segmentos de corda suporta uma força
máxima de 2 kN sem se romper. Determine se João, que tem massa de 65 kg, pode
subir pela corda. Em caso positivo, verifique se ele, juntamente com Maria, que tem
massa de 60 kg, pode descer pela corda com velocidade constante.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
19
6) Um bloco de 200kg pende de uma pequena polia que pode rolar sobre o cabo
ACB. A polia e sua carga são mantidas na posição mostrada abaixo por um segundo
cabo DF, paralelo ao trecho CB do cabo. Determine a tração no cabo ACB e no cabo
DF. Despreze o raio da polia e a massa dos cabos e da roldana. Adote gravidade
10m/s².
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
20
CAPÍTULO 3
3 Corpos Rígidos: sistemas equivalentes de forças
3.1 Classificação das forças atuantes em corpos rígidos
a) Forças Externas: Representam a ação de outros corpos sobre o corpo rígido
considerado.
Causarão o movimento (rotação/translação) ou assegurarão a permanência em
repouso.
b) Forças Internas: Mantém unidas as partículas que formam o corpo rígido. Se o
corpo rígido é composto de diversas partes, essa força que mantém estas partes
unidas.
(Somatório das forças internas é zero)
Guindastes:
D.C.L. Guindaste (estrutura)
D.C.L. da Barra BE D.C.L. da Barra ABC
EBBE FF −= jCiCC yx +=
PTDG
A Ay
Ax
jAiAA yx +=
0=++=∑ DGext TPAF
P
Barras:
.,, ABCDCEFBE
D C E F
G A
B
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
21
D.C.L. da Barra DCEF
3.2 Princípio de transmissibilidade
Este princípio é definido pelos pontos em que a força pode estar atuando em um
corpo, sem que altere o efeito que ela exerce sobre o corpo. Uma força pode atuar
em qualquer ponto sobre a sua linha de ação que o efeito causado no corpo será o
mesmo.
F
F’
F”
A
A’
A”
=
R1 R1R2 R2
P P
F F
Cx
Cy
FEB
P
TDE
α
E
FBE
B
FEB
FBE
Ay
Ax
Cy
Cx
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
22
3.3 Momento de uma força em relação a um ponto
Momento é a tendência de giro que uma força aplicada a um ponto tende a outro
ponto do corpo.
Força no Plano xy
α
α
FsenF
FF
FeF
Fdescomponente
y
x
yx
=
= cos
θ
θ
rsend
rd
ded
rdescomponente
y
x
yx
=
= cos
Momento de uma força em relação a um ponto é força vezes a distancia da linha de
ação da força ao ponto aonde quero calcular o momento.
yxxy dFdFM −=0
3.4 Momento de um conjugado
Duas forças F e –F que tenham o mesmo módulo, linhas de ação paralelas e
sentidos opostos formam binários
0
0
≠
=
∑
∑
M
F
Podemos calcular o momento das duas forças em relação a qualquer ponto do
corpo, que o momento sempre será o mesmo.
x
y
A
B
d
F-F
No caso de forças
binárias, o momento
é calculado pela
força e a menor
distância entre elas.
M=F.d
A
Fy
Fx
F
α
r
y
x
θ
x
y
A
B
rA
rB
F-F
=
A
F
α
r
y
x
=
θ
F
-F
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
23
3.5 Conjuntos Equivalentes
(Os três binários têm o mesmo efeito sobre a caixa)
Exemplo 1: Uma força P de 300 N é aplicada ao ponto A da figura. (a) Calcule o
momento de P em relação a O utilizando as componentes horizontal e vertical da
força.
P = 300N
a) P
OM = ? (componentes y e x)
a)
°=
°=
=
=
40200
40cos200
30cos
30
seny
x
PP
PsenP
y
x
( )mmNM
xpyPM
O
yxo
⋅=
+−=
20527
..
AB
o
30°
40°
40° 200mm
120mm
P
M M M
y
z
x
100N
100N
0,15m 150N
150N
150N
150N
0,1m
0,1m
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
24
Exemplo 2: A força P é aplicada a uma pequena roda que se desloca sobre um cabo
ACB. Sabendo que a tração nas duas partes do cabo é de 750N, determine o
módulo de P.
TABC = 750N
P = ?
NTTT ABCBCAC 750===
D.C.L Roda
α
α
cos
45
45cos
30
30cos
PPy
PsenPx
senTT
TT
senTT
TT
BCBCx
BCBCx
ACACy
ACACx
=
=
°=
°=
°=
°=
r
r
r
r
NPx
PxTT
F
BCAC
x
19,119
045cos30cos
0
=
=+°+°−
=∑
NPy
PysenTsenT
F
BCAC
y
33,905
04530
0
=
=−°+°
=∑
Sendo: 33,905;19,119 −== PyPx , teremos:
P²=Px²=Py² -> P = 913,15N
TAC
TBC
P
30° 45°
α
A B
C
α
P
30° 45°
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
25
Exercícios:
1) Determine o momento no ponto A das cargas aplicadas mostrados, que atuam
sobre o corpo.
2) Determine o Momento das três forças em relação ao ponto A.
3)Determine o momento da força F em relação ao ponto A. θ = 45°.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
26
4) Determine o momento no ponto A das cargas aplicadas mostrados, que atuam
sobre o corpo.
5) Determine a intensidade F da força aplicada no cabo da alavanca, de modo que a
resultante das três forças passe pelo ponto 0.
4) 5)
6) Determine o momento no ponto A das cargas aplicadas e do momento
(conjugado), mostrados, que atuam sobre o suporte vertical.
7) Uma força F e aplicada ao pedal de freio em A. Sabendo que F = 500N, determine
o momento de F em relação a B. ( as medidas estão em milímetros).
6) 7)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
27
8) O corpo de 330N é mantido dentro no equilíbrio pelo peso W. E o sistema das
polias excedentes B e C tem uma corda é contínua. As duas polias B e C estão
presas em A e giram como uma unidade as cordas de A para B e C é prendido às
bordas das polias em A. Determine o peso W para o equilíbrio do sistema e Todas
as tensões nas demais cordas.
9) Quatro pinos são presos a tábua. Dois barbantes, apoiados nos pinos, são
tracionadas. Determine o diâmetro dos pinos sabendo que o momento do binário
resultante aplicado à tábua é de 54,8N, anti-horário.
A B
C D
111N
111N
156N
156N
203mm
152mm
x
y
z
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
28
CAPÍTULO 4
4 Equilíbrio de corpos rígidos
4.1 Equilíbrio de um Corpo Rígido em duas dimensões:
;0=∑F
r
)2(
)1(
;0
;0
=
=
∑
∑
y
x
F
F
∑ = 0OM
r
)3( ∑ = 0zM
r
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
29
4.2 Reações nos Apoios e Conexões.
Vinculo Reação
Numero de
incógnitas
1
1
1
2
3
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
30
Exemplo 1: Um tanque cilíndrico de 250 kg tem 2 m de diâmetro e deve galgar uma
plataforma de 0,5 m de altura. Um cabo é enrolado no tanque e puxado
horizontalmente. Sabendo que o canto A da plataforma é áspero, calcule a força de
tração no cabo necessária para levantar o tanque e a reação em A.
- Massa do tanque: 250kg
- Canto A é áspero
T = ?
Reação em A = ?
TR
TR
F
AX
AX
X
=
=−
=∑
0
0
mgPR
RP
F
Ay
Ay
y
==
=+−
=∑
0
0
5,1
05,1
0
lP
T
lPT
M A
⋅
=
=⋅−⋅
=∑
r
²5,0²1 −=l
A
G
P
B
T
2m
0,5m
obs: 0=BR
r
(força T para retirar
o tanque do chão )
1
l
0,5
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
31
Exemplo 2: Determine em A e B quando: (a) α = 0, (b) α = 90 (c) α = 30 .
02,0cos2,0
0
0250
0
0cos
0
=⋅+⋅
=
=++−
=
=+
=
∑
∑
∑
αα
α
α
BB
A
BAy
y
BAx
x
RsenR
M
senRR
F
RR
F
r
A
B
0,15m0,15m
0,2m
250N
α
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
32
Exemplo 3: Sabendo que a tração em todos os pontos da correia é 300N, determine
as reações nos apoios A e B, quando: (a) α = 0 (b) α = 90 e (c) α = 30 .
T = 300N
Reações nos apoios A e B para:
a) α = 0°
b) α = 90°
c) α = 30°
D.C.L
yyyy
y
xxxx
x
BABA
F
BABA
F
−=⇒=+
=
−=⇒=++−
=
∑
∑
0
0
0300300
0
75000400250
0400250350300100300
0
=−
=⋅−⋅+⋅−⋅
=∑
xy
xy
A
BB
BB
M
Para cada α dado, encontramos os valores das reações
α
Ax
By
Bx
Ay
Ax
300N
300N
A
Ay
A
Ay
sen
A
Ax
== αα ;cos
A
B
300N
300mm
250mm 200mm
300N
50mm
α
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
33
Exemplo 4: Uma haste delgada BC de comprimento e peso P está presa a dois
cabos, como se vê. Sabendo que o cabo AB está na horizontal, determine: (a) o
ângulo θ que o cabo CD forma com a horizontal e (b) a força de tração em cada
cabo.
a) θ = ?
b) TCD = ? e TAB = ?
D.C.L.
°
⋅
°⋅
=
=°⋅+°⋅−
°
⋅−
=∑
40
1
2
40cos
040cos40
2
40cos
0
sen
P
T
lTlsenT
l
P
M
CDx
CDyCDx
B
r
TCD
TCDx
TCDy
TAB P
l
lcos40°
lsen40°40°
A B
Cl
40°
θ
PTPT
F
TT
F
CDyCDy
y
ABCDx
x
=⇒=−
=
=−
=
∑
∑
0
0
0
0
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
34
Exemplo 5: Uma barra delgada de comprimento L está apoiada em C e na parede
vertical. Ela suporta uma carga P em sua extremidade A. Desprezando o atrito e o
peso da barra, determine o ângulo θ correspondente ao equilíbrio.
D.C.L.
( )
( ) )2(00
)1(00
=⋅−
⋅
−∴=
=
⋅
−−∴=
∑
∑
aC
tg
aC
lsenPM
tg
aB
aLsenPM
y
x
B
C
θ
θ
θ
θ
r
r
( )






=⇒=
⋅=⋅
=⋅−⋅−⋅+⋅
=⋅−
⋅
+⋅
=
⋅
−−
L
a
arcsen
L
a
sen
aPLsenP
aPaPLsenPLsenP
aP
tg
aB
LsenP
tg
aB
aLsenP
θθ
θ
θθ
θ
θ
θ
θ
22
0
0
0
P
B
Cx
Cy
A
P
L
a
B
θ
00
00
=−∴=
=−∴=
∑
∑
PCF
BCF
yy
xx
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
35
Exemplo 6: Uma barra leve AD suporta uma carga vertical P e esta presa a mangas
B e C que deslizam livremente nas hastes. Sabendo que o fio preso em A forma um
ângulo α = 30 com a horizontal, determine: (a) a força de tração no fio e (b) as
reações em B e C.
)2(030cos30cos300
)1(0303030cos0
=−°+°+°−∴=
=°+°+°−∴=
∑
∑
PCBAsenF
CsenBsenAF
y
x
CBasenCasenB
M A
2023030
0
−=⇒=⋅°⋅+⋅°⋅
=∑
eq (1)
CA
CACCA
⋅−=
=⋅−⋅−⇒=⋅+−⋅−
866,0
5,0
05,0866,005,0866,0
60°
60°
30°
P
A
B
C
A
B
C
D
30°
30°
30°
a
a
a
°=
°=
°=
°=
−=
°=
°=
30cos
30
30cos
30
30
30cos
CCy
CsenCx
BBy
BsenBx
PyP
AsenAy
AAx
P
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
36
eq (2)
577,0
0577,0
0866,0866,025,0
866,0
5,0
P
CPC
PCCC
−=⇒=−−
=−⋅+⋅⋅−⋅⋅
577,0
2P
B =
577,0866,0
5,0 P
A ⋅=
Exercícios:
1) Determine as reações nos apoios em A (rolete) e B (pino) da estrutura.
2) Determine a intensidade das reações na viga em A e B. Despreze a espessura da
viga.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
37
3) Determine as componentes horizontal e vertical do pino A e a reação no rolete B,
necessárias para treliça. Considere F= 600N.
4) Determine as reações em A e B. A barra tem espessura de 0,1m.
5) A barra uniforme de 30 kg com roldanas nas extremidades está apoiada pelas
superfícies horizontal e vertical e pelo arame AC. Calcule a força no arame e as
reações contra as roldanas em A e B.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
38
6) Determine as reações em A e B.
7) Determine as reações em A (roletes) e B (pino).
8) O redutor de engrenagens, esta sujeito a dois conjugados, o seu peso de 200 N e
a uma força vertical em cada uma das bases A e B. Se a resultante deste sistema de
dois conjugados e de três forças for zero, determinar as forças em A e B.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
39
9) Determine as reações em A e B.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
40
CAPÍTULO 5
5 Análise das Estruturas
Princípio Básico:
3ª lei de Newton- Estabelece que forças de ação e reação entre corpos em contato,
possuem o mesmo módulo, mesma linha de ação e sentidos opostos.
Categoria de estruturas:
1) Treliça;
2) Estruturas;
3) Máquinas;
5.1 Análise de Treliças
Treliça: Barra comprimida ou tracionada
Método dos Nós
Eficaz quando é necessário determinar as forças em todas as barras da treliça.
Método das Seções
Eficaz quando a força em uma ou poucas barras são desejadas.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
41
5.1.1 Análise das treliças pelo método dos nós.
F = 1000N
Estrutura de 5 barras
∑ =∴= ;00 xx AF NAFBAF yyyy 50000 =⇒=−+∴=∑
∑ =⋅+⋅−∴=+ 0210 yA BFM
NBB yy 500
2
1000
=⇒=
Nó A:
∑ =⋅++∴= 0º45cos0 ACAD FFAxFx
NFAD 500= Tração
∑ =⋅+∴= 0º450 senFAF ACyy
NFAC 707−= Compressão
A B
C
D
1 1
1
Ay
Ax
By
F
ACF BCF
CBF
DBFBDFADF
DAF
CAF
CDF
A D
A
C
B
B
F
D
C
C
D
DCF
yA
xA
yB
45º
ACF
ADF
yA
xA
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
42
Nó B:
∑ =⋅+∴= 0º450 senFBF BCyy
NFBC 707−= Compressão
∑ =⋅−−∴= 0º45cos0 BCBDx FFF
NFBD 500= Tração
Nó D:
∑ = 0yF
0=− FFDC
NFDC 1000= )(T
∑ = 0xF
0=− DADB FF DADB FF =⇒
ADF
CDF
F
BDF
BCF
BCF
yB
45º
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
43
5.1.2 Análise das treliças pelo método das Seções.
D.C.L. da treliça:
∑ ∴= 0xF 0=xG
∑ ∴= 0yF 0321 =++−−− yy GEFFF NGy 3000−=⇒
0=⊕ ∑ GM
01123 321 =⋅−⋅+⋅+⋅ yEFFF
NEy 6000=
Seção 1
∑ = 0Fx
0º45 =⋅++ senFFF BEBDCE
∑ = 0yF
0º45cos21 =⋅−−− BEFFF N
FF
FBE 4,2828
º45cos
2
−=
−−
=⇒
0=⊕ ∑ BM
NFNFF
FF
BDCE
CE
30001000
011
1
1
=∴−=−=
=⋅+⋅
1 1 1
2F 3F1F
A B D
C E
G
xG
yG
yE
1
3F
1F 2F
A
B BDF
BEF
CEF E
C
º45
YG
xG
B
E
D
yE
EBF
DBF
ECF
G
+
NFFF ³10321 ===
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
44
5.2 Análise de uma estrutura
• Treliças ⇒ É uma estrutura com barras retas submetidas a apenas duas forças.
⇒ Vamos considerar agora estruturas que possuem pelo menos uma barra
submetida a três ou mais forças.
2
1
LCB
LAC
=
=
1F e 2F atuam no ponto médio de cada barra.
D.C.L. da estrutura
D.C.L. barra AC: D.C.L. barra CB
A B
C
F1
F2
βα
xA
2F1F
yA
xB
yB
xA
yA
yC
1F
xC
xB
yB
2F
yC
xC
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
45
D.C.L estrutura
00
00
21 =−−+∴=
−=⇒=+∴=∑
FFBAF
BABAF
yyy
xxxxx
( ) 0coscoscos
2
coscos
2
21
2
12
1
1 =++





+−⋅− βαβαα LLB
L
LF
L
F y
( )



+⋅
++⋅
=
βα
βαα
coscos
2coscos2cos
21
21211
LL
LLFLF
By Com isso teremos, By e Ay
D.C.L AC




=−+∴=
=+∴=
∑
∑
00
00
1FCAF
CAF
yyy
xxx
Logo teremos xC e yC também.
∑ =⊕ 0CM
0cos
2
cos 1
111 =⋅+⋅+⋅− ααα
L
FsenLALA xy



⋅
⋅⋅−⋅⋅
=
α
αα
senL
LFLA
Ax
y
1
111 2coscos
Teremos xA
∑ =⊕ 0AM
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
46
Exemplo 1: Sabendo que a polia tem um raio de 0,5m, determine a componente das
reações em A e E.
Raio da Polia é 0,5m.
Reações “A” e “B”.
D.C.L da estrutura
∑ =+∴= 00 xxx EAF
NAEAF yyyy 25007000 =⇒=−+∴=∑
∑ =⊕ 0AM
NE
E
y
y
450
05,47007
=
=⋅−⋅
A
B
C
D
E
Ax
Ay
Ex
Ey
1m
1m
2m
3m 3m
700N
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
47
D.C.L (Polia)
∑ =∴= NDF xx 7000
∑ =∴= NDF yy 7000
D.C.L (Barra ABC)
∑ =⊕ 0CM
0131700 =⋅−⋅+⋅+ yx AA
NAA xx 150
3
250700
−=⇒
+−
=
Logo:
NE
NC
x
x
150
550
=
−=
xA
yA
yC
xC
700
xD
700
700
yD
∑ =++∴= 07000 xxx CAF
NCCAF yyyy 25000 −=⇒=+∴=∑
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
48
5.3 Máquinas
• Máquinas são estruturas projetadas para transmitir e modificar forças.
Seu principal objetivo é transformar forças de entrada em forças de saída.
Exemplo 2:
Analisamos as forças e momentos nas partes separadas
ΣF=0;
ΣM=0.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
49
Exemplo 3: A tesoura de poda pode ser ajustada apoiando-se o pino A em um dos
vários dentes da lâmina ACE. Sabendo que forças verticais de 1500N são
necessárias para cortar um ramo, determine o modulo P das forças que devem ser
aplicadas nos apoios de mão quando a tesoura está ajustada como ilustrada.
D.C.L(Barra AB)
3,16
A
B
ABF
BAF
8,13
α
65,0
76,0cos
º25,40
3,16
8,13
⋅=⋅=
⋅=⋅=
==
ABABABY
ABABABX
FsenFF
FFF
arctg
α
α
α
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
50
D.C.L (ACE)
076,0
0
0150065,0
0
=⋅+
=
=++⋅−
=
∑
∑
ABx
x
yAB
y
FC
F
CF
F
∑ =⊕ 0CM
NF
FF
AB
ABAB
1740
01,3565,05,1276,05,371500
−=
=⋅⋅+⋅⋅+⋅
logo
NC
NC
y
x
2631
1323
−=
=
D.C.L (MCD)
∑ =⊕ 0DM
NPP
CP x
7,150
5,87
132355,325,371500
055,325,3715005,87
=⇒
⋅−⋅
=
=⋅+⋅−⋅
P
1500
32,55
37,587,5
Cx
Cy
Dy
Dx
FAB
FC
E
37,535,1
12,5
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
51
Exemplo 4: Uma barra uniforme de forma circular está presa por um pino em B e
apoiada em uma parede sem atrito em A. determine as reações em A e B.
∑ = 0BM
PBPBF
r
r
r
P
BBAF
rr
rPA
r
rPrA
yyy
xxxx
x
x
=⇒=−⇒=






−−=⇒=+⇒=






−=
=





−+⋅−
∑
∑
00
2
00
12
0
2
0
π
π
π
r
2r/π
By
Ax
P Bx
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
52
Exemplo 5: Determine as forças nas barras GJ, GK e IK da treliça.
KNkT
kTLF
KNjT
LjT
M
G
Gxx
G
xG
50
0cos0
30
034
01
−=
=⋅−∴=
=
=⋅+⋅−
=
∑
∑
θ
D.C.L (estrutura)
KNLL
F
KNLLA
F
KNA
A
M
yy
y
xxx
x
x
x
L
45151515
0
400
0
10
041581512159
0
=⇒−−−
=
−=⇒=+
=
=
=⋅+⋅+⋅+⋅−
=
∑
∑
∑
kNkTLkTsenkTjTF IyIGGy 4500 −=⇒=++⋅+∴=∑ θ
J
L
TGk
TIkTGj
θ
3
3
4
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
53
Exemplo 6: Usando o método dos nós, determine a força em cada barra da treliça.
Indique se cada barra esta tracionada ou comprimida.
D.C.L (Estrutura)
∑ = 0CM
∑
∑
=⇒+−∴
=⇒=+∴=
−=⇒=⋅+⋅
6,16,1
300
306,136,1
yyy
xxxx
xx
CCF
KNCFCF
KNFF
Método dos Nós
D.C.L (A)
kNT
TTF
arctg
BA
DABAx
3
0cos0
07,28
5,1
8,0
=
=⋅+∴=
=





=
∑ θ
θ
BAT
DAT
1,6
kNT
senT
F
DA
DA
y
4,3
06,1
0
−=
=⋅−−
=∑
θ
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
54
Exemplo 7: Determine a força P que deve ser aplicada ao elo articulado CDE para
manter o suporte ABC na posição.
D.C.L (toda estrutura)
60
09000
00
0150900150300150
0
−=
=−+∴=
=++∴=
=⋅+⋅+−⋅−
=
∑
∑
∑
x
yyy
xxx
yx
E
A
EAF
PEAF
PAA
M
D.C.L (ABC)
09000
00
0150900450300
0
=−+∴=
=+∴=
=⋅+⋅−⋅−
=
∑
∑
∑
yyy
xxx
xy
C
CAF
CAF
AA
M
D.C.L (ED)
00
00
025150
=+∴=
=++∴=
=⋅−⋅−∴
∑
∑
∑
yyy
xxx
yxD
DEF
PDEF
EEM
D.C.L (D.C)
00
00
025150
0
=−−∴=
=+−−∴=
=⋅−⋅
=
∑
∑
∑
yyy
xxx
yx
D
DCF
PDCF
CC
M
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
55
Exercícios:
1) Determine as forças em todas as Barras, e indique se ela esta sofrendo tração ou
compressão.
2) Determine a força em cada barra da treliça e indique se essas barras estão sob
ação de tração ou compressão. Considere que P1 = P2 = 4 kN.
3) Determine a força em cada barra da treliça e indique se essas barras estão sob
tração ou compressão. Considere que P1 = 0 eP2 = 20 kN.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
56
4) Determine as forças em todas as barras da treliça e indique se eles estão sob
tração ou compressão.
5) Determine a força em cada barra da treliça. Indique se cada barra esta tracionada
ou comprimida. As forças estão em [N].
6) Determine as forças em todas as barras da treliça e indique se eles estão sob
tração ou compressão.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
57
7) Determine as forças nas barras BC, HC e HG para a treliça da ponte e indique se
eles estão sob tração ou compressão.
8) Determine as forças nas barras GF, CF e CD para a treliça da ponte e indique se
eles estão sob tração ou compressão.
7) e 8)
9) Determine as forças nos elementos CE, CD e BD da treliça e indique se eles
estão sob tração ou compressão.
10) Determine as forças nas Barras CE, CD e BD, e indique se ela esta sofrendo
tração ou compressão.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
58
11) Determine as forças nas barras DF, EF e EG da treliça. As forças estão em [N].
12) Determine as forças nos elementos CE, CD e BD da treliça e indique se eles
estão sob tração ou compressão.
13) Calcular a força suportada pela barra BH da treliça, em balanço, carregada.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
59
14) Calcular as forças que atuam nas barras IH, BH e BC da treliça, carregada pelas
forças de 40 E 60 kN.
15) Calcular as forças que atuam nas barras CH, CB e GH da treliça em balanço.
16) No guindaste em ponte rolante mostrado, todos os elementos cruzados são
barras de amarração esbeltas incapazes de suportar compressão. Determine as
forças nos elementos DF e EF e encontre a reação horizontal na treliça em A.
(15) (16)
17) Calcule a força no elemento HN da treliça carregada.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
60
18) Determine a força no elemento DK da treliça para placas de sinalização
carregada.
19) As estruturas articuladas ACE e DFB estão interligadas pelas duas barras
articuladas, AB e CD, que se cruzam sem estarem ligadas. Calcular a força que atua
em AB.
20) A treliça é composta de triângulos retângulos isósceles. As barras cruzadas nos
dois painéis centrais são tirantes esbeltos, incapazes de suportar compressão.
Calcular as forças nas barras MN, GM e FN.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
61
21) A treliça suporta uma rampa (mostrada com uma linha tracejada) que se estende
de um nível de chegada fixo próximo ao ponto F até um nível de saída fixo perto de
J. As cargas mostradas representam o peso da rampa. Determine as forças nos
elementos BH e CD e indique se eles estão sob tração ou compressão.
22) Determine as forças nos elementos CD, CF e CG e indique se eles estão sob
tração ou compressão.
23) Determine as forças nos elementos DE, EI, FI e HI da treliça do telhado em arco
e indique se eles estão sob tração ou compressão.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
62
24) Determinar a força suportada pelo pino B da estrutura, para as cargas aplicadas.
As duas barras ABC e BD estão ligadas por este pino.
25) Determine os componentes horizontal e vertical da força em C exercida pelo
elemento ABC sobre o elemento CEF.
26) Determine a maior força P que deve ser aplicada à estrutura, sabendo-se que a
maior força resultante em A deve ter intensidade de 2 kN.
30
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
63
27) Determinar a força suportada pelo pino C da estrutura carregada.
28) Determinar a força suportada pelo pino B da estrutura, para a carga aplicada de
300 kg. As duas polias estão ligadas entre si, formando uma unidade integral.
29) O elevador para carros permite que o carro seja movido para a plataforma, após
o que as rodas traseiras são levantadas. Se o carregamento devido a ambas as
rodas traseiras vale 6 kN, determine a força no cilindro hidráulico AB. Despreze o
peso da plataforma. O elemento BCD é um suporte em ângulo reto preso por pino à
plataforma em C.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
64
30) Uma força de 75 N é aplicada ao cabo OAB do saca-rolha. Determine a força de
extração F exercida sobre a rolha.
31) Para a tesoura de poda mostrada, determine a força Q aplicada ao galho circular
de 15 mm de diâmetro para uma força de aperto P=200 N.
32) O rebitador é usado para inúmeras operações de junção. Para a posição do
cabo dada por α = 10º e um aperto no cabo P = 150 N, calcule a força de aperto C
gerada. Observe que os pinos A e D são simétricos em relação à linha de centro
horizontal da ferramenta.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
65
33) Um lingote de aço pesando 40kN é levantado pela tenaz. Determine as forças
aplicadas nos pontos C e E da peça BCE.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
66
CAPÍTULO 6
6 Centróide e Baricentro
Baricentro: Centro de Gravidade
Centróide: Centro Geométrico
gAtgVgmP ⋅⋅⋅=⋅⋅=⋅= ρρ g⋅= ρδ
específicopeso
espessurat
específicamassadadensidade
:
:
:
δ
ρ
P
G
x
y
z
x
y
∆P
x
y
z
x
y
=
AçoMadeira
Baricentro
Centróide
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
67
6.1 Áreas e Linhas - Placas e Arames Compostos
Placas Arames
∑∑
∑∑
⋅=
⋅=
AiiYAiY
AiiXAiX
∑
∑
⋅=
⋅=
LiiYLiY
LiiXLiX
Alguns centróides são tabelados devidos as suas formas comuns como veremos nas
tabelas a seguir.
∑= AiA
x
y
X
Y C
x
y
C1
C2
C3
A3
A2
A1
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
68
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
69
Exemplo 1:
i Xi Ai XiAi
1 - + -
2 + + +
3 + - -
+ _
A1 A2 A3
A1
A2
A3
Furo
x
y
0=Y , pois tem o eixo de
simetria no eixo x.
Ai
XiAi
X
∑=
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
70
Exemplo 2:
i X Y L LX LY
1
2
L
0 L
2
²L
0
2 rL +
π
r2
− r⋅π ( ) rrL ⋅⋅+ π ²2r−
( ) ( )
( )
rL
rrL
L
X
rrL
L
rLX
iLiXLiX
⋅+
⋅++
=
⋅++=⋅+
= ∑∑
π
π
ππ
2
²
2
²
rL
r
Y
⋅+
−
=
π
²20
Exercícios:
Determine o centróide da área sombreada em relação aos eixos x e y.
a) b)
1
2
y
xr
L
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
71
c) d)
e) f)
g)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
72
CAPÍTULO 7
7 Movimento Circular
7.1 Velocidade Angular (ωωωω)
Um ponto material “P”, descrevendo uma trajetória circular de raio “r”, apresenta uma
variação angular (∆ϕ) em um determinado intervalo de tempo (∆t). A relação entre a
variação angular (∆ϕ) e o intervalo de tempo (∆t) define a velocidade angular do
movimento.
t∆
∆
=
ϕ
ω
Em que:
ω = velocidade angular [rad/s]
∆ϕ = variação angular [rad]
∆t = variação de tempo [s]
7.2 Período (T)
É o tempo necessário para que um ponto material "P",movimentando-se em uma
trajetória circular de raio "r",complete um ciclo.
ω
π2
=T
Em que:
T = período [s]
ω = velocidade angular [rad/s]
π =constante trigonométrica 3,1415...
7.3 Frequencia (f)
É o número de ciclos que um ponto material "P" descreve em um segundo,
movimentando-se em trajetória circular de raio "r".
A freqüência (f) é o inverso do período (T).
π
ω
2
1
==
T
f
Em que:
f = freqüência [Hz]
T = período [s]
ω = velocidade angular [rad/s]
π = constante trigonométrica 3,1415...
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
73
Radiano
É o arco de circunferência cuja medida é o raio.
7.4 Rotação (n)
É o número de ciclos que um ponto material "P", movimentando-se em trajetória
circular de raio "r", descreve em um minuto.
Desta forma,podemos escrever que:
Logo: fn 60=
Como
π
ω
2
=f , tem-se
π
ω
2
60
=n , portanto:
π
ω30
=n
Em que:
n = rotação [rpm]
f = freqüência [Hz]
ω = velocidade angular [rad/s]
π =constante trigonométrica 3,1415...
7.5 Velocidade Periférica ou Tangencial (v)
A velocidade tangencial ou periférica tem como característica a mudança de
trajetória a cada instante, porém o seu módulo permanece constante
A relação entre a velocidade tangencial (v) e a velocidade angular (ω) é definida pelo
raio da peça.
r
v
=
ω
, portanto: rv .ω=
mas,isolando ω na expressão da rotação,obtém-se:
substituindo ω na expressão anterior,obtém-se:
Em que:
v =velocidade periférica [m/s]
π =constante trigonométrica 3,1415...
n =rotação [rpm]
r =raio [m]
ω =velocidade angular [rad/s]
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
74
Exercícios:
1) A roda da figura possui d= 300mm ,gira com velocidade angular (J) = 10π rad/s.
Determinar para o movimento da roda:
a) Período(T)
b) Freqüência (f)
c) Rotação(n)
d) Velocidade periférica (Vp)
2) O motor elétrico da figura possui como característica de desempenho a rotação
n= 1740rpm.
Determine as seguintes características de desempenho do motor:
a) Velocidade angular (ω)
b) Período (T)
c) Freqüência (f)
3) O ciclista da figura monta uma bicicleta aro 26 (d=660mm), viajando com um
movimento que faz com que as rodas girem com n= 240rpm. Qual a velocidade do
ciclista? V[km/h].
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
75
CAPÍTULO 8
8 Relação de Transmissão (i)
8.1 Transmissão por Correias
1
2
2
1
2
1
2
1
1
2
T
T
M
M
n
n
f
f
d
d
i =====
ω
ω
Em que:
i = relação de transmissão [adimensional]
d1 =diâmetro da polia (1)(menor) [m; ...]
d2 =diâmetro da polia (2) (maior) [m; ...]
ω1 =velocidade angular (1) [rad/s]
ω2 =velocidade angular (2) [rad/s]
f1 =freqüência (1) [Hz]
f2 =freqüência (2) [Hz]
n1 =rotação (1) [rpm]
n2 =rotação (2) [rpm]
MT1 =torque (1) [N.m]
MT2 =torque (2) [N.m]
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
76
Exercício:
1) A transmissão por correias, representada na figura, é composta por duas polias
com os seguintes diâmetros respectivamente:
polia (1) motora d1 =100mm
polia (2) movida d2 =180mm
A polia (1)(motora) atua com velocidade angular ω =39π rad/ s.
Determinar para transmissão:
a) Período da polia (1) (T1)
b) Freqüência da polia (1) (f1)
c) Rotação da polia (1) (n1)
d) Velocidade angular da polia (2) (ω2)
e) Freqüência da polia (2) (f2)
f) Período da polia (2) (T2)
g) Rotação da polia (2) (n2)
h) Velocidade periférica da transmissão (vp)
i) Relação de transmissão (i)
8.2 Transmissão por engrenagens
Diâmetro primitivo da engrenagem: do= m . z
Em que:
do - diâmetro primitivo
m – módulo da engrenagem
z – número de dentes
1
2
2
1
2
1
2
1
1
2
1
2
.
.
T
T
o
o
M
M
n
n
f
f
zm
zm
d
d
i ======
ω
ω
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
77
Observação
Para que haja engrenamento entre duas engrenagens, é condição indispensável que
os módulos sejam iguais. Portanto:
1
2
2
1
2
1
2
1
1
2
1
2
T
T
o
o
M
M
n
n
f
f
z
z
d
d
i ======
ω
ω
Em que:
i – relação de transmissão [adimensional]
d01 - diâmetro primitivo do pinhão (1) [m]
d02 – diâmetro primitivo da coroa (2) [m]
Z1 – número de dentes do pinhão(1) [adimensional]
Z2 – número de dentes da coroa (2) [adimensional]
ω1 – velocidade angular do pinhão(1) [rad/s]
ω2 – velocidade angular da coroa (2) [rad/s]
f1 – freqüência do pinhão (1) [Hz]
f2 – freqüência da coroa (2)[Hz]
n1 – rotação do pinhão(1) [rpm]
n2 – rotação da coroa (2) [rpm]
MT1 - torque do pinhão (1) [Nm]
MT2 – torque da coroa (2) [Nm]
REDUTOR DE VELOCIDADE
A transmissão será redutora de velocidade quando o pinhão acionara coroa.
AMPLlADOR DE VELOCIDADE
A transmissão será ampliadora de velocidade quando a coroa acionar o pinhão.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
78
CAPÍTULO 9
9 Torção Simples
Uma peça encontra-se submetida a esforço de torção,quando sofre a ação de um
torque (MT) em uma das extremidades e um contratorque (MT) na extremidades
oposta.
9.1 Momento Torçor ou Torque (MT)
É definido por meio do produto entre a carga (F) e a distância entre o ponto de
aplicação da carga e o centro da seção transversal da peça (ver figura anterior).
MT=2F.S
Em que:
MT- torque (Nm)
F – carga aplicada (N)
S – distância entre o ponto de aplicação da carga e o centro da seção transversal da
peça (m).
Exemplo1:
Determinar o torque de aperto na chave que movimenta as castanhas na placa do
torno. A carga aplicada nas extremidades da haste F=80N. O comprimento da haste
é l= 200mm.
Resolução:
MT=2Fs
MT=2.80.100
MT=16000 Nmm
MT=16 Nm
Exemplo 2:
Dada a figura, determinar o torque de aperto (MT) no parafuso da roda do
automóvel. A carga aplicada pelo operador em cada braço da chave é F = 120N,e o
comprimento dos braços é l=200mm.
Resolução:
MT=2F.l
MT=2.120.200
MT=48000 Nmm
MT=48 Nm
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
79
9.2 Torque nas Transmissões
Para as transmissões de movimento, o torque é definido por meio do produto entre a
força tangencial (FT) e o raio(r) da peça.
MT=F.r
Em que:
MT- Torque [Nm]
FT – Força tangencial [N]
r – raio da peça [m]
Exemplo 3:
A transmissão por correias, representada na figura, é composta pela polia motora (1)
que possui diâmetro d1= 100mm e a polia movida (2) que possui diâmetro
d2=240mm. A transmissão é acionada por uma força tangencial FT= 600N.
Determinar para transmissão:
a) Torque na polia (1)
b) Torque na polia (2)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
80
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
81
CAPÍTULO 10
10 Potência (P)
Define-se por meio do trabalho realizado na unidade de tempo.
Tem-se então:
W-Watt
Em que:
P – potência [W]
FT – força tangencial [N]
Vp - velocidade periférica [m/s]
No século XVIII ao inventar a máquina a vapor James Watt decidiu demonstrar ao
povo inglês quantos cavalos equivalia a sua máquina.
Para isso,efetuou a seguinte experiência:
F= Qmáx= 76 kgf
Carga máxima que o cavalo elevou com velocidade V= 1m/s.
Resultado em:
P=F.v
P=76kgf. 1m/s
P=76kgfm/s
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
82
Como:
kgf=9,80665N
P=76.9,80665N.1m/s
P=745,...Nm/s, a unidade Nm/s = 1W, homenagem a J. Watt, surgiu dessa
experiência o HP (horsepower).
hp=745,...w – cuja utilização é vedada no SI.
Após algum tempo a experiência foi repetida na França constando-se que Q=75kgf.
Resultou daí o cv (cavalo vapor)
P=F.v
P=75kgf. 1m/s
P=75kgfm/s
Como kgf=9,80665N
Conclui-se que:
P = 75 . 9,80665Nm/s
p=735,5 W temporariamente permitida a utilização no SI.
RELAÇÕES IMPORTANTES
hp = 745,...W (horse power) – vedada a utilização no SI.
cv = 735,5W (cavalo vapor) – permitida temporariamente a utilização no SI.
OBSERVAÇÕES IMPORTANTES
hp (horse power)-unidade de potência ultrapassada que não deve ser utilizada.
cv (cavalo-vapor) – unidade de potência cuja utilização é admitida temporariamente
no SI.
10.1 Torque X Potência
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
83
10.2 Força Tangencial (FT)
Exemplo 1:
O elevador da figura encontra-se projetado para transportar carga máxima
Cmáx= 7000N (10pessoas). O peso do elevador é Pe=1KN e o contra peso possui a
mesma carga Cp=1kN.
Determine a potência do motor M para que o elevador se desloque com velocidade
constante v=1m/s.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
84
Exemplo 2:
A figura dada representa um servente de pedreiro erguendo uma lata de concreto
com peso Pc=200N. A corda e a polia são ideais. A altura da laje é h=8m, o tempo
de subida é t= 20s. Determinar a potência útil do trabalho do operador.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
85
Exemplo 3:
Supondo que, no exercício anterior, o operador seja substituído por um motor
elétrico com potência P=0,25kW, determinar:
a) Velocidade de subida da lata de concreto (vs)
b) Tempo de subida da lata (ts)
Exemplo 4:
Uma pessoa empurra o carrinho de supermercado, aplicando uma carga
F=150N,deslocando-se em um percurso de 42m no tempo de 1minuto.
Determinar a potência que movimenta o veículo.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
86
Exemplo 5:
A transmissão por correias, representada na figura, é acionada por um motor elétrico
com potência P=5,5kW com rotação n=1720rpm chavetando a polia (1) do sistema.
As polias possuem respectivamente os seguintes diâmetros:
d1=120mm (diâmetro da polia 1)
d2=300mm (diâmetro da polia 2)
Desprezar as perdas.
Determinar para transmissão:
a) Velocidade angular da polia 1 (W1)
b) Freqüência da polia 1 (f1)
c) Torque da polia 1 (MT) I
d)Velocidade angular da polia 2 (W2)
e)Freqüência da polia 2 (f2)
f) Rotação da polia 2 (n2)
g)Torque da polia 2 (MT2)
h)Relação de transmissão (i)
i) Velocidade periférica da transmissão (Vp)
j) Força tangencial da transmissão (FT)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
87
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
88
Exemplo 6:
A transmissão por engrenagens, representada na figura, é acionada por intermédio
de um motor elétrico que possui potência P=0,75KW e gira com rotação n=1140rpm,
acoplado à engrenagem (1) (pinhão). As engrenagens possuem as seguintes
características:
Pinhão (1) Coroa (2)
Número de dentes Número de dentes
Z1=25 dentes Z2=47dentes
Módulo Módulo
M=2mm M=2mm
Desprezando as perdas, determinar para a transmissão:
a) Velocidade angular do pinhão 1 (ω1)
b) Freqüência do pinhão 1 (f1)
c) Torque no pinhão 1 (MT1)
d) Velocidade angular da coroa 2(ω2)
e) Freqüência da coroa 2 (f2)
f) Rotação da coroa 2 (n2)
g) Torque na coroa 2 (MT2)
h) Relação de transmissão (i)
i) Força tangencial da transmissão (FT)
j) Velocidade periférica da transmissão (v)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
89
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
90
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
91
Exercícios:
1) A transmissão por correias, representada na figura, é acionada por meio da polia
1 por um motor elétrico com potência P= 7,5kW (P = 10cv) e rotação n=1140rpm. As
polias possuem respectivamente os seguintes diâmetros:
d1 = 120mm (diâmetro da polia 1)
d2 = 220mm (diâmetro da polia 2)
Determinar para transmissão:
a) Velocidade angular da polia 1(ω1)
b) Freqüência da polia 1 (f1)
c) Torque da polia 1 (MT1)
d) Velocidade angular da polia 2 (ω2)
e) Freqüência da polia 2 (f2)
f)Rotação da polia 2 (n2)
g) Torque da polia 2(MT2)
h) Velocidade periférica da transmissão (v)
i) Força tangencial (FT)
j) Relação de transmissão (i)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
92
2) A transmissão por engrenagens, representada na figura, é acionada por meio do
pinhão 1 acoplado a um motor elétrico de IV pólos com potência P= 15kW (p=20cv)
e rotação n=1720rpm.
As características das engrenagens são:
Pinhão (engrenagem 1) Coroa (engrenagem 2)
Z1=24dentes (número de dentes) Z2=73dentes (número de dentes)
m=4mm (módulo) m=4mm (módulo)
Determinar para a transmissão:
Engrenagem 1 (pinhão) Engrenagem 2 (coroa)
a) velocidade angular (ω1) d) velocidade angular (ω2)
b) freqüência (f1) e) freqüência (f2)
c) torque (MT1) f) rotação (n2)
g) torque (MT2)
Características da transmissão:
h) velocidade periférica (v)
i) força tangencial (FT)
j) relação de transmissão (i)
3) O motor elétrico da figura possui como característica de desempenho a rotação
n= 1500rpm.
Determine as seguintes características de desempenho do motor:
a) Velocidade angular (ω)
b) Período (T)
c) Freqüência (f)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
93
4) A transmissão por correias, representada na figura, é acionada por um motor
elétrico com potência P=2,5kW com rotação n=2000rpm chavetando a polia (1) do
sistema.
As polias possuem respectivamente os seguintes diâmetros:
d1=120mm (diâmetro da polia 1)
d2=300mm (diâmetro da polia 2)
Desprezar as perdas.
Determinar para transmissão:
a)Freqüência da polia 2 (f2)
b) Rotação da polia 2 (n2)
c)Torque da polia 2 (MT2)
d)Relação de transmissão (i)
e) Velocidade tangencial da transmissão (VT)
f) Força tangencial da transmissão (FT)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
94
CAPÍTULO 11
11 Rendimento das Transmissões (ηηηη)
Em qualquer tipo de transmissão, é inevitável a perda de potência que ocorre nas
engrenagens, mancais, polias, correntes, rodas de atrito, originada pelo atrito entre
as superfícies, agitação do oléo lubrificante, escorregamento entre correia e
polia,etc.
Desta forma, constata-se que a potência de entrada da transmissão é dissipada em
parte sob a forma de energia, transformada em calor, resultando a outra parte em
potência útil geradora de trabalho.
Pe = Pu + Pd
Em que:
Pe - potência de entrada [W;kW;...]
Pu – potência útil [W;kW;...]
Pd – potência dissipada [W;kW;...]
11.1 Rendimento das transmissões
Transmissão por parafuso sem fim
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
95
11.2 Perdas nas Transmissões
A transmissão da figura é acionada por um motor elétrico com potência (P) e rotação
(n). As polias possuem os seguintes diâmetros:
d1 – diâmetro da polia 1
d2 – diâmetro da polia 2
As engrenagens possuem os seguintes números de dentes:
Z1 – número de dentes da engrenagem 1
Z2 – número de dentes da engrenagem 2
Z3 – número de dentes da engrenagem 3
Z4 – número de dentes da engrenagem 4
Os rendimentos:
ηc - rendimento da transmissão por correias
ηe - rendimento da transmissão por engrenagens
ηm - rendimento do par de mancais
Exemplo 1:
Determinar as expressões de:
a) Potência útil nas árvores (1, 2 e 3)
b) Potência dissipada/estágio
c) Rotação das árvores(1, 2 e 3)
d) Torque nas árvores(1, 2 e 3)
e) Potência útil do sistema
f) Potência dissipada do sistema
g) Rendimento da transmissão
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
96
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
97
Exemplo 2:
A transmissão da figura é acionada por um motor elétrico com potência P=5,5kW
(P=7,5CV) e rotação n=1740 rpm. As polias possuem os seguintes diâmetros:
d1=120mm
d2 = 280mm
As engrenagens possuem os seguintes números de dentes:
Z1= 23 dentes; Z2= 49 dentes;
Z3=27 dentes; Z4= 59 dentes
Os rendimentos são:
ηc = 0,97 (Transmissão por correia em V)
ηe = 0,98 (Transmissão/par de engrenagens)
ηm = 0,99 (Par de mancais (rolamentos))
Determinar na transmissão:
a) Potência últil nas árvores 1, 2 e 3.
b) Potência dissipada/estágio
c) Rotação das árvores 1, 2 e3.
d) Torque nas árvores 1, 2 e 3
e) Potência útil do sistema
f) Potência dissipada do sistema
g) Rendimento da transmissão
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
98
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
99
Exercícios:
1) A transmissão da figura é acionada por um motor elétrico compotência P=3,7kW
(p= 5cv) e rotação n=1710rpm.
Os diâmetros das polias são:
d1=100mm(polia motora)
d2= 250mm(polia movida)
O número de dentes das engrenagens:
Z1= 21dentes; Z2= 57dentes;
Z3= 29dentes e Z4= 73dentes
Rendimentos dos elementos de transmissão:
ηc= 0,97 (transmissão por correias)
ηe= 0,98 (transmissão por engrenagens)
ηm= 0,99 [par de mancais (rolamentos)]
Determinar para transmissão:
a) Potência útil nas árvores 1, 2 e 3
b) Potência dissipada/estágio
c) Rotação das árvores 1, 2 e 3
d) Torque nas árvores 1, 2 e 3
e) Potência útil do sistema
f) Potência dissipada do sistema
g) Rendimento da transmissão
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
100
2)
3) A transmissão da figura é acionada por um motor elétrico com potência P=5,0kW
e rotação n=1500 rpm. As polias possuem os seguintes diâmetros:
d1=100mm
d2 = 200mm
As engrenagens possuem os seguintes números de dentes:
Z1= 23 dentes; Z2= 59 dentes;
Z3=27 dentes; Z4= 49 dentes
Os rendimentos são:
ηc = 0,97 (Transmissão por correia em V)
ηe = 0,98 (Transmissão/par de engrenagens)
ηm = 0,99 (Par de mancais (rolamentos))
Determinar na transmissão:
a) Torque na saída do sistema.
b) Potência útil do sistema.
c) Potência dissipada do sistema.
d) Rendimento da transmissão.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
101
4) A transmissão da figura é acionada por um motor elétrico com potência P = 5,1
kW e rotação de n=1930 rpm.
Os diâmetros das polias são:
d1=225mm(polia motora)
d2= 450mm(polia movida)
O número de dentes das engrenagens
de módulo 2mm:
Z1= 23dentes, Z2= 73dentes;
Z3= 29dentes, Z4= 57dentes;
Z5= 17dentes e Z6= 43dentes
Rendimentos dos elementos de transmissão:
ηc= 0,97 (transmissão por correias)
ηe= 0,98 (transmissão por engrenagens)
ηm= 0,99 [par de mancais (rolamentos)]
Determinar para transmissão:
a) Potência útil nos eixos I, II, III e IV;
b) Rotação nos eixos I, II, III e IV;
c) Torque nos eixos I, II, III e IV;
d) Freqüência nos eixos I, II, III e IV;
e) Velocidade angular nos eixos I, II, III e IV;
f) Velocidade Tangencial de cada transmissão (da polia 1 para 2, e das
engrenagens de 1 para 2, 3 para 4 e 5 para 6);
g) Força tangencial da de cada transmissão (da polia 1 para 2, e das
engrenagens de 1 para 2, 3 para 4 e 5 para 6);
h) Potência útil do sistema;
i) Potência dissipada do sistema;
j) Rendimento da transmissão;
k) Qual a relação de transmissão do sistema (motor até a saída da transmissão)?
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
102
5) A transmissão da figura é acionada por um motor elétrico com potência P = 9,5
kW e rotação de n=2500 rpm.
Os diâmetros das polias são:
d1=125mm(polia motora)
d2= 400mm(polia movida)
O número de dentes das engrenagens
de módulo 2mm:
Z1= 17dentes, Z2= 31dentes;
Z3= 21dentes, Z4= 47dentes;
Z5= 27dentes e Z6= 53dentes
Rendimentos dos elementos de transmissão:
ηc= 0,97 (transmissão por correias)
ηe= 0,98 (transmissão por engrenagens)
ηm= 0,99 [par de mancais (rolamentos)]
Determinar para transmissão:
a) Potência útil nos eixos I, II, III e IV;
b) Rotação nos eixos I, II, III e IV;
c) Torque nos eixos I, II, III e IV;
d) Freqüência nos eixos I, II, III e IV;
e) Velocidade angular nos eixos I, II, III e IV;
f) Velocidade Tangencial de cada transmissão (da polia 1 para 2, e das
engrenagens de 1 para 2, 3 para 4 e 5 para 6);
g) Força tangencial da de cada transmissão (da polia 1 para 2, e das
engrenagens de 1 para 2, 3 para 4 e 5 para 6);
h) Potência útil do sistema;
i) Potência dissipada do sistema;
j) Rendimento da transmissão;
k) Qual a relação de transmissão do sistema (motor até a saída da transmissão)?
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
103
CAPÍTULO 12
12 Noções de Resistência dos Materiais
12.1 Introdução
A Resistência dos materiais é um ramo da mecânica que estuda as relações entre
cargas externas aplicadas a um corpo deformável e a intensidade das forças
internas que atuam dentro do corpo.
Abrangência
Cálculo da deformação do corpo
Estudo da estabilidade do corpo quando ele está submetido a forças externas.
Nomes
Mecânica dos materiais e Mecânica dos corpos deformáveis
Corpos sólidos considerados: Barras com carregamentos axiais, eixos em torção,
vigas em flexão e colunas em compressão.
Por que o entendimento do comportamento
mecânico é essencial?
Pense nos parafusos que são usados no
acoplamento da estrutura apresentada na
figura ao lado.
Forças Externas: Força de superfície ou força de corpo.
Forças de superfície: Causadas pelo contato direto de um corpo com a superfície
de outro ⇒ Força distribuída na área de contato entre os corpos.
Caso particular: Carga concentrada Por que?
Forças de Corpo: Um corpo
exerce uma força sobre outro,
sem contato físico direto entre
eles. Ex: Efeitos causados pela
gravidade da terra…etc
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
104
Os objetivos do estudo da resistência dos materiais são:
Analisar o comportamento dos elementos ou estruturas quando estes estão sendo
solicitados;
Determinar as propriedades dos elementos (dimensões, forma, material) que o
fazem ser capaz de resistir à ação destas solicitações;
Descobrir as possíveis causas das falhas dos elementos.
12.2 Esforços externos ou carregamentos
Os esforços externos que estão interagindo com o elemento a ser estudado, devem
ser determinados com certa exatidão, para que o projeto seja valido.
Os esforços externos podem ser divididos em:
Forças externas;
Momentos externos.
Forças externas
Quanto ao ponto de aplicação
Quanto ao fato de serem ação ou reação
Quanto em relação ao eixo
Quanto à direção relativa a uma seção
Quanto ao tipo de carregamento
Força Normal N e Força Cortante Q
A força normal N é perpendicular a superfície ou seção, enquanto que a força
cortante Q é tangencial a esta superfície ou seção.
Momentos externos
Momentos de torção
Momentos de flexão
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
105
Momento de Flexão
O momento fletor tende a encurvar as barras ou eixos
MOMENTO DE TORÇÃO
O momento torçor ou torque tende a produzir giro ou deslizamento entre as seções
de um eixo.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
106
SOLICITAÇÕES MECÂNICAS
COMBINAÇÃO
12.3 Solicitações Simples
São Cinco os tipos básicos de carregamentos (forças e momentos) que podem
submeter os elementos de máquinas.
Tração: Cabo de aço;
Compressão: Latas de refrigerantes empilhadas;
Corte ou cisalhamento: Chapas parafusadas, Corte de chapas (guilhotina);
Flexão: Viga ou eixo;
Torção: Chave apertando um parafuso.
12.3.1 Tração
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
107
12.3.2 Compressão
12.3.3 Cisalhamento ou corte
Cisalhamento ou corte ocorre quando se aplica um esforço tangencial à área da
seção transversal da peça de modo a produzir nesta área uma pressão maior que a
máxima pressão (tensão admissível) suportada pela peça em questão.
12.3.4 Flexão
Flexão quando se aplica um esforço cortante na peça, as fibras superiores da peça
serão comprimidas e as fibras inferiores serão tracionadas, ou vice-versa.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
108
12.3.5 Torção
Torção quando atuar um torque em uma de suas extremidades e um contra-torque
na extremidade oposta. Assim, tendem a produzir rotação sobre o eixo longitudinal
da barra.
Resumo
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
109
12.4 Solicitações Compostas
Combinações das solicitações simples aplicadas em peças e elementos de
máquinas.
Eixo de transmissão
Barra em forma de L
Elo de corrente
Viga e tirante
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
110
12.5 Ensaio de Tração
12.5.1 Tensão Deformação
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
111
Deformação plástica - dutilidade
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
112
12.6 Modos de falhas trativas:
Material Frágil Material Dúctil
12.7 Tensões
Tensão: Esforço interno distribuído ao longo de uma seção da peça mecânica.
Parece Pressão mas não é!!!
Tensão Normal: σ = P/A (Força Normal);
Tensão Cisalhante: Esforço interno para suportar força de corte ou cisallhamento
distribuido ao longo da seção da peça
Tensão Cisalhante: τ = Q/A;
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
113
12.8 Módulo de Elasticidade
Obs.: È Comum encontrar-se o módulo de elasticidade em Mpa (megapascal)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
114
12.9 Momento de Inércia, Raio de Giração e Módulo de Resistência:
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
115
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
116
CAPÍTULO 13
13 Tração e compressão
13.1 Carregamento Axial
13.2 Deformação sob Carregamento Axial
Da lei de Hooke:
AE
P
E
E ===
σ
εεσ
Da definição de extensão:
L
δ
ε =
A deformação é expressa por:
AE
PL
=δ
Para variações da área da secção,
propriedades e/ ou cargas aplicadas:
∑=
i ii
ii
EA
LP
δ
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
117
13.3 Tensão Normal σσσσ
Lei de Hooke (cientista inglês – 1678)
13.4 Deformação Longitudinal (ε)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
118
13.5 Deformação Transversal (εt)
13.6 Estricção
13.7 Coeficiente de Segurança k
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
119
Tensão (pressão) de escoamento : quando se entra na deformação permanente
do material que está submetido a esforços de tração ou compressão. Esta situação
ocorre após o limite máxima da deformação elástica
Tensão de ruptura : quando se excede à máxima tensão (pressão) do material que
está submetido a esforços de tração ou compressão. Neste momento ocorre a
estricção.
Exemplo 1:
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
120
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
121
Exemplo 2:
A barra rígida BDE rígido é suportada por dois elementos AB e CD. O elemento AB
é feito em alumínio (E = 70 GPa) e tem uma área de secção transversal de 500
mm2
. O elemento CD é de aço (E = 200 GPa) e tem uma área de secção
transversal de 600 mm2
. Para uma força de 30 kN aplicada na extremidade da barra
BDE, determine o deslocamento:
a) do ponto B,
b) ponto D,
c) ponto E.
Resolução:
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
122
Descolamento do ponto D:
( )
mm7.73
mm200
mm0.300
mm514.0
=
−
=
=
′
′
x
x
x
HD
BH
DD
BB
( )
mm928.1
mm7.73
mm7.73400
mm300.0
=
+
=
=
′
′
E
E
HD
HE
DD
EE
δ
δ
↓= mm928.1Eδ
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
123
Exercício 1:
Exercício 2:
Exercício 3:
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
124
CAPÍTULO 14
14 Flexão
• Vigas são barras comprimidas e retas com área da seção transversal
constante que suporta cargas aplicadas perpendicularmente ao seu eixo
longitudinal.
• Exemplos: Apoio dos pinos de edifícios, tabuleiro de uma ponte ou asa de
avião, o eixo de um automóvel, a lança de um guindaste, etc.
• Vigas desenvolve força cortante e momento fletor que variam de ponto para
ponto ao longo do seu eixo.
• Consideremos elementos retos de seção transversal simétrica, feitos de
material homogêneo linear elástico.
São classificadas conforme seus apoios:
14.1 Diagrama de Força Cortante e Momento Fletor
Tipos de Carregamento em uma Viga:
o Carga concentrada: quando um carregamento é aplicada sobre uma área
muito pequena.
o Carga distribuída: quando o carregamento está distribuído pelo eixo da
viga, são medidos pela sua intensidade que é expressa em unidades de
força por unidade de distancia, por exemplo [N/m]. Podem ser
Carregamento uniformemente distribuído, ou
Carregamento com variação linear.
o Binário: é um momento que atua sobre uma força.
o Quando uma viga sofre a ação de forças e momentos, são criadas tensões
e deformações no seu interior.
Para determinar essas tensões e deformações, primeiro devemos encontrar as
forças e os momentos internos que atuam nas seções transversais da viga.
Sabendo-se calcular o valor do momento fletor e da força cortante nas infinitas
seções de uma viga torna-se possível traçar diagramas ou gráficos que representem
estes esforços.
Viga em balanço ( ou viga engastada):
Viga apoiada em apenas uma das
extremidades por um apoio do tipo engastado.
Viga simplesmente apoiada:
Viga apoiada em uma das extremidades por
um apoio articulado fixo e na outra por um
apoio articulado móvel.
Viga apoiada com extremidade em balanço:
Viga simples que se prolonga além de um ou
dos dois apoios.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
125
A fim de projetar viga adequadamente é necessário determinar o cisalhamento e
momento máximos.
Convenção de sinais: A força de cisalhamento V e o momento fletor M são positivos
no sentido mostrado:
14.2 Tensão de Flexão
A Máxima tensão de flexão (σmax) produzido pelo momento Maximo será inferior à
tensão admissível à flexão do material.
W
M
I
hM ff
adm ==≥
.
maxσσ
Mf – Momento fletor máximo (Nmm);
h – altura da linha neutra ate a extremidade (mm);
I - momento de inércia da secção (mm4
);
σ - Tensão normal num ponto na fibra externa (N/mm²);
W – Modulo de Resistencia da transferência ( N/mm).
h
I
W =
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
126
Exemplo 1:
Desenhar os diagramas de força cortante e momento fletor da viga mostrada
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
127
Exemplo 2:
Momento Fletor e Esforço Cortante
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
128
Exercícios:
1) Determine o Momento Fletor Máximo aplicado na viga que será utilizado para
calcular a Máxima tensão de flexão (σmax)
2) Determine o Momento Fletor Máximo aplicado na viga que será utilizado para
calcular a Máxima tensão de flexão (σmax)
3)
4)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
129
5)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
130
CAPÍTULO 15
15 Torção
Torção refere-se ao giro de uma barra quando carregada por torques que tendem a
reproduzir rotação sobre o eixo longitudinal da barra.
Exemplos de barras em torção: O Giro de uma chave de fenda, eixos propulsores,
brocas de furadeiras, etc.
15.1 Transmissão de Potência
Eixos e tubos com seção transversal circular são, com freqüência, empregados para
transmitir potência gerada por maquinas.
A potência é transmitida através de um movimento rotatório do eixo e a quantidade
de potência transmitida depende do torque e da velocidade de rotação
Um problema comum de dimensionamento é determinar o tamanho do eixo de tal
forma que ele transmita uma quantidade especifica de potência numa velocidade de
rotação especicada sem exceder as tensões admissíveis do material.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
131
15.1.1 Torção em Eixos de Secção Circular
• A turbina exerce sobre o eixo de transmissão o momento torçor T.
• O eixo transmite o momento T ao gerador.
• O gerador reage, exercendo sobre o eixo um momento igual e contrário T’.
15.2 Análise das Tensões num Eixo
O momento torçor T tem a mesma intensidade que a soma dos momentos dF, em
relação ao centro:
O momento torçor produz tensões tangenciais nas faces perpendiculares ao eixo da
barra.
Condições de equilíbrio requerem a existência de tensões tangenciais nas duas
faces formadas pelos planos que passam pelo eixo.
Considerando o eixo constituído por lâminas finas, verifica-se o deslizamento das
lâminas devido à aplicação de momentos, com a mesma intensidade e sentidos
opostos, nas extremidades da peça.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
132
15.3 Deformações nos Eixos de Secção Circular
O ângulo de torção é proporcional a T e ao comprimento L do eixo:
L
T
∝
∝
φ
φ
Nos eixos circulares, as secções transversais mantêm-se planas e não se
deformam.
A distorção numa barra circular varia linearmente com a distância ao eixo da barra.
L
L
ρφ
γρφγ == ou
maxmax e γ
ρ
γ
φ
γ
cL
c
==
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
133
15.4 Tensão de Torque
No caso de ter tensão de cisalhamento ( maxτ ) produzido pelo torque Maximo será
inferior a tensão admissível à torção do material.
W
M
J
rM tt
adm ==≥
.
maxττ
Mf – Momento fletor máximo (Nmm);
r – Raio (mm);
J – Momento Polar de inércia da seção (mm4
);
τ - Tensão cisalhante na fibra externa (N/mm²);
W – Modulo de Resistencia da transferência ( N/mm).
r
J
W =
15.5 Tensões no Regime Elástico
A partir da equação anterior:
maxγ
ρ
γ G
c
G =
Aplicando a lei de Hooke, γτ G= , vem:
maxτ
ρ
τ
c
=
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
134
A tensão tangencial varia linearmente com a distância ao eixo da barra.
Recordar que:
J
c
dA
c
dAT max2max τ
ρ
τ
ρτ ∫∫ ===
Fórmulas de torção no regime elástico:
emax
J
T
J
Tc ρ
ττ ==
4
2
1 cJ π=
( )4
1
4
22
1 ccJ −= π
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
135
15.6 Modos de Falha Torcionais
Os materiais ductéis geralmente rompem por tensões tangenciais.
Material ductile:
Material frágil:
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
136
Exemplo 1:
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
137
Exercício de Esforços Internos de Torção
Para o carregamento indicado e considerando que os apoios A e B permitem ao eixo
girar livremente, represente o diagrama de esforços internos de torção.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
138
Exemplo 2
O eixo circular BC é oco e tem diâmetros de 90mm e 120mm, respectivamente
interno e externo. Os eixos AB e CD são maciços, com diâmetro d. Determinar:
a) O valor máximo e mínimo da tensão tangencial no eixo BC;
b) O diâmetro necessário nos eixos AB e CD, se a tensão admissível no material
for de 65 MPa.
Resolução:
Considerar secções transversais nos eixos AB e BC, e recorrer ao equilíbrio estático:
( )
CDAB
ABx
TT
TM
=⋅=
−⋅==∑
mkN6
mkN60
( ) ( )
mkN20
mkN14mkN60
⋅=
−⋅+⋅==∑
BC
BCx
T
TM
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
139
Aplicar as fórmulas de torção no regime elástico, para determinar as tensões
tangenciais no eixo BC:
( ) ( ) ( )[ ] 46444
1
4
2 m1092.13045.0060.0
22
−
×=−=−=
ππ
ccJ
( )( ) MPa2.86
m1092.13
m060.0mkN20
46
2
2max =
×
⋅
=== −
J
cTBC
ττ
MPa7.64
mm60
mm45
MPa2.86
min
min
2
1
max
min
=
==
τ
τ
τ
τ
c
c
MPa7.64
MPa2.86
min
max
=
=
τ
τ
Aplicar a fórmula de torção no regime elástico e determinar o diâmetro necessário:
m109.38
mkN6
65
3
3
2
4
2
max
−
×=
⋅
=>−==
c
c
MPa
c
Tc
J
Tc
ππ
τ
mm8.772 == cd
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
140
15.7 Ângulo de Torção no Regime Elástico
L
cφ
γ =max
Aplicando a Lei de Hooke,
JG
Tc
G
== max
max
τ
γ
Igualando as expressões e resolvendo
em ordem ao ângulo,
JG
TL
=φ
∑=
i ii
ii
GJ
LT
φ
15.8 Eixos Estaticamente Indeterminados
Dadas as dimensões e o momento torçor aplicado, determinar as reacções ao
momento em A e B.
A partir do diagrama de corpo livre,
ftlb90 ⋅=+ BA TT
Conclui-se que o problema é estaticamente indeterminado.
Dividir o eixo em duas secções, as quais devem ter deformações compatíveis,
AB
BA
T
JL
JL
T
GJ
LT
GJ
LT
12
21
2
2
1
1
21 0 ==−=+= φφφ
Substituir na equação de equilíbrio inicial, ftlb90
12
21
⋅=+ AA T
JL
JL
T .
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
141
Exercícios:
1) Determine qual será a Torção Máxima aplicado no eixo que será utilizado para
calcular a Máxima . tensão de cisalhamento (τmax)
a)
b)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
142
2)
3)
4)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
143
CAPÍTULO 16
16 Flambagem
A flambagem ou encurvadura é um fenômeno que ocorre em peças esbeltas,
quando submetidas a um esforço de compressão axial. Acontece quando a peça
sofre flexão transversalmente devido à compressão axial.
A flambagem é considerada uma instabilidade elástica, assim, a peça pode perder
sua estabilidade sem que o material já tenha atingido a sua tensão de escoamento.
Este colapso ocorrerá sempre na direção do eixo de menor momento de inércia de
sua seção transversal. A tensão crítica para ocorrer a flambagem não depende da
tensão de escoamento do material, mas de seu módulo de Young.
16.1 Módulo de Young
O módulo de Young ou módulo de elasticidade é um parâmetro mecânico que
proporciona uma medida da rigidez de um material sólido.
Obtém-se da razão entre a tensão (ou pressão) exercida e a deformação unitária
sofrida pelo material. Isto é,
16.2 Carga Crítica de Flambagem
Pcr - carga crítica de flambagem: faz com que a peça comece a flambar.
Equilíbrio estável: P < Pcr - não há flambagem
Equilíbrio indiferente: P = Pcr
Equilíbrio instável: P > Pcr
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
144
Para determinar se uma peça irá sofrer flambagem ou compressão, temos que
calcular o seu índice de esbeltez e compará-lo ao índice de esbeltez crítico. Esse
índice é padronizado para todos os materiais.
Se o índice de esbeltez crítico for maior que o índice de esbeltez padronizado do
material, a peça sofre flambagem, se for menor, a peça sofre compressão.
16.3 Indice de Esbeltez
Mede o quão esbelto é um pilar.
Ele mede a facilidade ou a dificuldade que um pilar tem de flambar. O índice de
esbeltez de uma peça é dado por:
Consideramos uma barra homogênea de comprimento inicial L preso por pinos em
ambas as extremidades, à qual é aplicada uma força axial de compressão de
módulo P. Supomos que a barra se flexiona formando uma pequena flecha para
direita. Esta flexão acarreta que a distância entre as extremidades seja ligeiramente
reduzida de L para A. Denotamos então por u(x) a deflexão horizontal da curva
central, onde x varia entre 0 e A.
O momento da força P à altura x é dado então por:
Da teoria de vigas, sabe-se que o momento fletor se relaciona com o raio de
curvatura da barra de seguinte forma:
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
145
16.4 Flambagem de Colunas
Carga Excêntrica – Fórmula Secante
M - Momento
P - Força Axial
e - Excentricidade
O conjugado M sempre irá provocar flexão na coluna;
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
146
17 Referencias Bibliográficas:
MELCONIAN, SARKIS. Mecânica técnica e resistência dos materiais. Editora Érica,
ISBN-10: 8571946663, 2000.
Mecânica Vetorial para Engenheiros : Estática - Ferdinand P. Beer, E. Russell
Johnston Jr, Elliot R. Eisenberg e William E. Clausen, 7 Ed. Mc Graw Hill, 2006.
Mecânica: Estática - J. L. Merian, L.G. Kraige, 5 Ed. LTC, 2004.
Estática; Mecânica para Engenharia – R. C. Hibbeler, 10 Ed. Pearson, 2005.
Estática - Arthur P. Boresi, Richard J. Schmidt – 1 Ed. Thomson Learning, 2003.
Resistência dos Materiais - E. Russell Johnston, Jr. Ferdinand P. Beer e John T.
Dewolf, 4 Ed. Mcgraw Hill, 2007.
Resistência dos Materiais - R. C. Hibbeler, 5 Ed. Pearson, 2004.
Resistência dos Materiais - Manoel Henrique campos Botelho, 1 Ed. Edgard Blucher,
2008.
Mecânica dos Materiais - James M. Gere, 1 Ed. Thomson Learning, 2003.
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
147
Respostas dos Exercícios:
Capitulo 2
3)P. max=240N
5)para João subir: AC=377,9 e AB=755,81 para os dois descerem: AC=726,74 e
AB=1453,48
6)ABC=1907,5 e DE=309,96
Capitulo 3
1)16,5N
2)Mo= -2579,01 N.m
3)Ma= 1414,20 N.m
4)Ma = 19,90 kN.m
5)f = 160 N
6)Ma = - 16,281kN.m
7)Mb = -457.52 N.mm
8)W = 120 N
Capitulo 4
1)A = 7,35 kN e B = 16,65kN
4)A = 11134,10N e B = 12034,81N
5)A = 72,72N e B = 200N
6)A = 5240,80N e B 6535,22N
7)A = 8kN e B = 7,20kN
8)A = 85N e B = 115 N
9) Ax = 296,19N, Bx = - 46,19N e By = 273,20N
Capitulo 5
1)AB = 25kN (T), BD = 25kN (T), AC = -35,35kN (C) , BC = 100kN (T) e CD = -
106,06kN (C)
2)AB=12kN (T) , ED= -6,96kN (C), EB= -4kN (C), DC= -6,96kN (C), BD= 4kN (T) e
BC= 8kN (T)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
148
3)AB= -28,28kN (C), AF= -10kN (C), GB=30kN (T), BC=10kN (T), BF=19,99kN (T),
EF=9,99kN (T), EC=20kN (T), ED=10kN (T), CF= -28,28kN (C)e CD= -14,14 (C)
4)EC= 50kN (T) , ED=200kN (T), CD=0, BD=0, EC=50kN (T), BC=0, AC=O E AB=0
5)AC=0, AB=-300N (C), BD= 120N (T), BC= 323,10N (T), CE= -20N (C), CD=
53,85N (T), DF= 160N (T), DE= -53,85N (C), e EF= - 700,11N (C)
6)AC= -282,85kN (C), AB= 200kN (T), CD= -70,71kN (C), CE= -150kN (C),
DF=332,85kN (T), DE=150kN (T), BC=0,BD= -282,85kN (C), EF= -235,36kN (C)
7) BC= 20,5kN (T), HC= 12,02kN (T) e HG= -29kN (C)
10)CD=88,38kN (T), BD=125kN (T), CE= -62,50kN (C)
11)DF= -62,50N (C), EF=194,85N (T), e EG= -34,93N (C)
12)BD=87,5kN (T), CD= -17,68kN (C), CE= -75kN (C)
24)Bx= 173,20kN e By= -100kN
25)Cx= -75N e Cy=200N
26)P= 0,742kN
27)Cx=1200N e Cy= 1800N
29) AB= - 15,88kN
30)F= - 226,68N
33)C= 22,8kN, Ex= - 22,8kN e Ey= -20kN
Capitulo 6
1)
a) X=50mm e Y= 37,90mm
c)X=66,82 e Y=67,32
d)X=4,62pol e Y=1pol
e)X=2,53pol e Y=4,62pol
f) X=2a e Y= 0,58a
g)X= 2a e Y= 2a
Capitulo 7
1)
a) T=0,2s; b) f=5Hz; c) n=300rpm; d) v=4,71 m/s
2) a) ω = 58π rad/ s; b) T = 1/29 s ou 0,0345 s; c) f = 29Hz
3) v = 30km/h
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
149
Capitulo 8
1)
a) T=0,0512s
b) f1= 19,5Hz
c) n1=1170rpm
d) ω2=21,67π rad/s
e) f2=10,835Hz
f) T2=0,0922s
g) n2=650rpm
h) v=6,12 m/s
i) i=1,8
Capitulo 10
1)
2)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
150
Capitulo 11
1)
2)
Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa
151
4)
a)PI=4897,53W, PII=4751,58W, PIII= 4609,98W e PIV= 4772,60W
b)nI= 965 rpm, nII=304,04rpm, nIII = 154,68rpm e nIV = 61,15rpm
c)MTI= 48,46 N.m, MTII=149,23 N.m, MTIII= 284,6 N.m e MTIV= 745,29 N.m
c) f1=16,08 Hz, f2=5,06 Hz, f3= 2,58 Hz e f4= 1,01 Hz
d)
e)WI=32,16 rad/s, WII= 10,12 rad/s, WIII= 5,16 rad/s e WIV=2,02 rad/s
f)VTp1/2=3,618m/s, VTe1/2= 0,738 m/s, VTe3/4=0,29 m/s e VTe5/6= 0,086 m/s
g)FTI=215,37N, FTII=2044,24N, FTIII= 4992,98N e FTIV=17332,32N
h)P util= 4472,60W
i)P disc = 627,4W
j)η=0,87 (87%)
k)i= 31,56 rpm

More Related Content

What's hot

Exercicio elemaq 2ª edição
Exercicio elemaq 2ª ediçãoExercicio elemaq 2ª edição
Exercicio elemaq 2ª ediçãoJosé Junior
 
Tuxdoc.com t90943b manual-de-manutenaopdf
Tuxdoc.com t90943b manual-de-manutenaopdfTuxdoc.com t90943b manual-de-manutenaopdf
Tuxdoc.com t90943b manual-de-manutenaopdfMarcioRodrigues173060
 
Abdul Hadi Chara Internship Report
Abdul Hadi Chara Internship ReportAbdul Hadi Chara Internship Report
Abdul Hadi Chara Internship ReportAbdul Hadi Chara
 
2002 Polaris 700 XC SP SNOWMOBILE Service Repair Manual
2002 Polaris 700 XC SP SNOWMOBILE Service Repair Manual2002 Polaris 700 XC SP SNOWMOBILE Service Repair Manual
2002 Polaris 700 XC SP SNOWMOBILE Service Repair Manualkjdmjys
 
Một số giải pháp nhằm nâng cao hiệu quả hoạt động kinh doanh tại công ty tnhh...
Một số giải pháp nhằm nâng cao hiệu quả hoạt động kinh doanh tại công ty tnhh...Một số giải pháp nhằm nâng cao hiệu quả hoạt động kinh doanh tại công ty tnhh...
Một số giải pháp nhằm nâng cao hiệu quả hoạt động kinh doanh tại công ty tnhh...https://www.facebook.com/garmentspace
 
Dimensionamento de eixos
Dimensionamento de eixosDimensionamento de eixos
Dimensionamento de eixosSandro De Souza
 
Perkins 2800 series 2806 c e18 tag3 diesel engine service repair manual
Perkins 2800 series 2806 c e18 tag3 diesel engine service repair manualPerkins 2800 series 2806 c e18 tag3 diesel engine service repair manual
Perkins 2800 series 2806 c e18 tag3 diesel engine service repair manualjksnmdms
 
Apostila de estampos sp (1)
Apostila de estampos  sp (1)Apostila de estampos  sp (1)
Apostila de estampos sp (1)Sérgio Amorim
 
Elementos de-maquinas - prof moro - ifsc
Elementos de-maquinas - prof moro - ifscElementos de-maquinas - prof moro - ifsc
Elementos de-maquinas - prof moro - ifscTiago Gomes
 
Nâng cao hiệu quả sử dụng tài sản ngắn hạn tại công ty cổ phần đầu tư phát tr...
Nâng cao hiệu quả sử dụng tài sản ngắn hạn tại công ty cổ phần đầu tư phát tr...Nâng cao hiệu quả sử dụng tài sản ngắn hạn tại công ty cổ phần đầu tư phát tr...
Nâng cao hiệu quả sử dụng tài sản ngắn hạn tại công ty cổ phần đầu tư phát tr...https://www.facebook.com/garmentspace
 
Phân tích hiệu quả sản xuất kinh doanh tại công ty tnhh máy và xây dựng quang...
Phân tích hiệu quả sản xuất kinh doanh tại công ty tnhh máy và xây dựng quang...Phân tích hiệu quả sản xuất kinh doanh tại công ty tnhh máy và xây dựng quang...
Phân tích hiệu quả sản xuất kinh doanh tại công ty tnhh máy và xây dựng quang...https://www.facebook.com/garmentspace
 
PERKINS 1100 SERIES 1104D INDUSTRIAL ENGINE (Model NJ)Service Repair Manual
PERKINS 1100 SERIES 1104D INDUSTRIAL ENGINE (Model NJ)Service Repair ManualPERKINS 1100 SERIES 1104D INDUSTRIAL ENGINE (Model NJ)Service Repair Manual
PERKINS 1100 SERIES 1104D INDUSTRIAL ENGINE (Model NJ)Service Repair Manualjknmms ekdms
 

What's hot (20)

1.13.01.192 rad700 ver1.09_manual-de-falhas (1)
1.13.01.192 rad700 ver1.09_manual-de-falhas (1)1.13.01.192 rad700 ver1.09_manual-de-falhas (1)
1.13.01.192 rad700 ver1.09_manual-de-falhas (1)
 
Grelha 01-comandos e funções
Grelha 01-comandos e funçõesGrelha 01-comandos e funções
Grelha 01-comandos e funções
 
Exercicio elemaq 2ª edição
Exercicio elemaq 2ª ediçãoExercicio elemaq 2ª edição
Exercicio elemaq 2ª edição
 
Tuxdoc.com t90943b manual-de-manutenaopdf
Tuxdoc.com t90943b manual-de-manutenaopdfTuxdoc.com t90943b manual-de-manutenaopdf
Tuxdoc.com t90943b manual-de-manutenaopdf
 
Calculo viga ponte
Calculo viga ponteCalculo viga ponte
Calculo viga ponte
 
Lajes 02-critérios de projeto
Lajes 02-critérios de projetoLajes 02-critérios de projeto
Lajes 02-critérios de projeto
 
Catalogo de motores weg
Catalogo de motores wegCatalogo de motores weg
Catalogo de motores weg
 
Abdul Hadi Chara Internship Report
Abdul Hadi Chara Internship ReportAbdul Hadi Chara Internship Report
Abdul Hadi Chara Internship Report
 
Vigas 02-edição de dados
Vigas 02-edição de dadosVigas 02-edição de dados
Vigas 02-edição de dados
 
2002 Polaris 700 XC SP SNOWMOBILE Service Repair Manual
2002 Polaris 700 XC SP SNOWMOBILE Service Repair Manual2002 Polaris 700 XC SP SNOWMOBILE Service Repair Manual
2002 Polaris 700 XC SP SNOWMOBILE Service Repair Manual
 
Một số giải pháp nhằm nâng cao hiệu quả hoạt động kinh doanh tại công ty tnhh...
Một số giải pháp nhằm nâng cao hiệu quả hoạt động kinh doanh tại công ty tnhh...Một số giải pháp nhằm nâng cao hiệu quả hoạt động kinh doanh tại công ty tnhh...
Một số giải pháp nhằm nâng cao hiệu quả hoạt động kinh doanh tại công ty tnhh...
 
Dimensionamento de eixos
Dimensionamento de eixosDimensionamento de eixos
Dimensionamento de eixos
 
Perkins 2800 series 2806 c e18 tag3 diesel engine service repair manual
Perkins 2800 series 2806 c e18 tag3 diesel engine service repair manualPerkins 2800 series 2806 c e18 tag3 diesel engine service repair manual
Perkins 2800 series 2806 c e18 tag3 diesel engine service repair manual
 
Apostila de estampos sp (1)
Apostila de estampos  sp (1)Apostila de estampos  sp (1)
Apostila de estampos sp (1)
 
Elementos de-maquinas - prof moro - ifsc
Elementos de-maquinas - prof moro - ifscElementos de-maquinas - prof moro - ifsc
Elementos de-maquinas - prof moro - ifsc
 
Nâng cao hiệu quả sử dụng tài sản ngắn hạn tại công ty cổ phần đầu tư phát tr...
Nâng cao hiệu quả sử dụng tài sản ngắn hạn tại công ty cổ phần đầu tư phát tr...Nâng cao hiệu quả sử dụng tài sản ngắn hạn tại công ty cổ phần đầu tư phát tr...
Nâng cao hiệu quả sử dụng tài sản ngắn hạn tại công ty cổ phần đầu tư phát tr...
 
Dt 4 instalação e manutenção de motores ca
Dt 4   instalação e manutenção de motores caDt 4   instalação e manutenção de motores ca
Dt 4 instalação e manutenção de motores ca
 
Phân tích hiệu quả sản xuất kinh doanh tại công ty tnhh máy và xây dựng quang...
Phân tích hiệu quả sản xuất kinh doanh tại công ty tnhh máy và xây dựng quang...Phân tích hiệu quả sản xuất kinh doanh tại công ty tnhh máy và xây dựng quang...
Phân tích hiệu quả sản xuất kinh doanh tại công ty tnhh máy và xây dựng quang...
 
Berço Minicama nanda
Berço Minicama nandaBerço Minicama nanda
Berço Minicama nanda
 
PERKINS 1100 SERIES 1104D INDUSTRIAL ENGINE (Model NJ)Service Repair Manual
PERKINS 1100 SERIES 1104D INDUSTRIAL ENGINE (Model NJ)Service Repair ManualPERKINS 1100 SERIES 1104D INDUSTRIAL ENGINE (Model NJ)Service Repair Manual
PERKINS 1100 SERIES 1104D INDUSTRIAL ENGINE (Model NJ)Service Repair Manual
 

Viewers also liked

Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidoswedson Oliveira
 
Apostila de mecânica aplicada
Apostila de mecânica aplicadaApostila de mecânica aplicada
Apostila de mecânica aplicadaCaio Cesar Cardoso
 
Minicurso Matlab IVSEE 2013 UERJ
Minicurso Matlab IVSEE 2013 UERJMinicurso Matlab IVSEE 2013 UERJ
Minicurso Matlab IVSEE 2013 UERJRenan Prata
 
Analise de funções de transferencia de malha fechada com Matlab
Analise de funções de transferencia de malha fechada com MatlabAnalise de funções de transferencia de malha fechada com Matlab
Analise de funções de transferencia de malha fechada com MatlabDavid Luna Santos
 
Cinemática plana de corpo rigido força e aceleração
Cinemática plana de corpo rigido   força e aceleraçãoCinemática plana de corpo rigido   força e aceleração
Cinemática plana de corpo rigido força e aceleraçãoAlexandre Xambim Baldez
 
introdução a mecanica dos materiias
introdução a mecanica dos materiiasintrodução a mecanica dos materiias
introdução a mecanica dos materiiasDiego Henrique
 
Física - Equilíbrio de Um Corpo Rígido - Resolução de Exercícios - www.Centro...
Física - Equilíbrio de Um Corpo Rígido - Resolução de Exercícios - www.Centro...Física - Equilíbrio de Um Corpo Rígido - Resolução de Exercícios - www.Centro...
Física - Equilíbrio de Um Corpo Rígido - Resolução de Exercícios - www.Centro...Vídeo Aulas Apoio
 
Resolução do livro de estática hibbeler 10ª ed - cap 7-10
Resolução do livro de estática   hibbeler 10ª ed - cap 7-10Resolução do livro de estática   hibbeler 10ª ed - cap 7-10
Resolução do livro de estática hibbeler 10ª ed - cap 7-10Wagner R. Ferreira
 
Apostila instalação e manutenção de motores elétricos
Apostila   instalação e manutenção de motores elétricosApostila   instalação e manutenção de motores elétricos
Apostila instalação e manutenção de motores elétricoswenf
 
Aula 1 resultante de um sistema de forças
Aula 1   resultante de um sistema de forçasAula 1   resultante de um sistema de forças
Aula 1 resultante de um sistema de forçasFrancisco Netto
 
Dinâmica 10 ed - hibbeler - Mecânica para Engenharia
Dinâmica   10 ed  -  hibbeler - Mecânica para EngenhariaDinâmica   10 ed  -  hibbeler - Mecânica para Engenharia
Dinâmica 10 ed - hibbeler - Mecânica para EngenhariaGabriela_Alves_Silva
 
Beer dinamica 9e_manual_de_soluciones_c11c
Beer dinamica 9e_manual_de_soluciones_c11cBeer dinamica 9e_manual_de_soluciones_c11c
Beer dinamica 9e_manual_de_soluciones_c11ckeshow
 
Mecánica vectorial para ingenieros dinámica - 10ma edición - r. c. hibbeler
Mecánica vectorial para ingenieros   dinámica - 10ma edición - r. c. hibbelerMecánica vectorial para ingenieros   dinámica - 10ma edición - r. c. hibbeler
Mecánica vectorial para ingenieros dinámica - 10ma edición - r. c. hibbelerKoka Mitre
 
Solucionario dinamica 10 edicion russel hibbeler
Solucionario dinamica 10 edicion russel hibbelerSolucionario dinamica 10 edicion russel hibbeler
Solucionario dinamica 10 edicion russel hibbelerLeonel Ventura
 
Mecanica vectorial para ingenieros, dinamica 9 edicion solucionario copia
Mecanica vectorial para ingenieros, dinamica 9 edicion solucionario   copiaMecanica vectorial para ingenieros, dinamica 9 edicion solucionario   copia
Mecanica vectorial para ingenieros, dinamica 9 edicion solucionario copiamfcarras
 

Viewers also liked (19)

Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidos
 
Apostila de mecânica aplicada
Apostila de mecânica aplicadaApostila de mecânica aplicada
Apostila de mecânica aplicada
 
Mecanica aplicada-apostila 2
Mecanica aplicada-apostila 2Mecanica aplicada-apostila 2
Mecanica aplicada-apostila 2
 
Minicurso Matlab IVSEE 2013 UERJ
Minicurso Matlab IVSEE 2013 UERJMinicurso Matlab IVSEE 2013 UERJ
Minicurso Matlab IVSEE 2013 UERJ
 
Guia Matlab
Guia MatlabGuia Matlab
Guia Matlab
 
Analise de funções de transferencia de malha fechada com Matlab
Analise de funções de transferencia de malha fechada com MatlabAnalise de funções de transferencia de malha fechada com Matlab
Analise de funções de transferencia de malha fechada com Matlab
 
Cinemática plana de corpo rigido força e aceleração
Cinemática plana de corpo rigido   força e aceleraçãoCinemática plana de corpo rigido   força e aceleração
Cinemática plana de corpo rigido força e aceleração
 
Regressao linear multipla
Regressao linear multiplaRegressao linear multipla
Regressao linear multipla
 
Dinâmica cap17a
Dinâmica cap17aDinâmica cap17a
Dinâmica cap17a
 
introdução a mecanica dos materiias
introdução a mecanica dos materiiasintrodução a mecanica dos materiias
introdução a mecanica dos materiias
 
Física - Equilíbrio de Um Corpo Rígido - Resolução de Exercícios - www.Centro...
Física - Equilíbrio de Um Corpo Rígido - Resolução de Exercícios - www.Centro...Física - Equilíbrio de Um Corpo Rígido - Resolução de Exercícios - www.Centro...
Física - Equilíbrio de Um Corpo Rígido - Resolução de Exercícios - www.Centro...
 
Resolução do livro de estática hibbeler 10ª ed - cap 7-10
Resolução do livro de estática   hibbeler 10ª ed - cap 7-10Resolução do livro de estática   hibbeler 10ª ed - cap 7-10
Resolução do livro de estática hibbeler 10ª ed - cap 7-10
 
Apostila instalação e manutenção de motores elétricos
Apostila   instalação e manutenção de motores elétricosApostila   instalação e manutenção de motores elétricos
Apostila instalação e manutenção de motores elétricos
 
Aula 1 resultante de um sistema de forças
Aula 1   resultante de um sistema de forçasAula 1   resultante de um sistema de forças
Aula 1 resultante de um sistema de forças
 
Dinâmica 10 ed - hibbeler - Mecânica para Engenharia
Dinâmica   10 ed  -  hibbeler - Mecânica para EngenhariaDinâmica   10 ed  -  hibbeler - Mecânica para Engenharia
Dinâmica 10 ed - hibbeler - Mecânica para Engenharia
 
Beer dinamica 9e_manual_de_soluciones_c11c
Beer dinamica 9e_manual_de_soluciones_c11cBeer dinamica 9e_manual_de_soluciones_c11c
Beer dinamica 9e_manual_de_soluciones_c11c
 
Mecánica vectorial para ingenieros dinámica - 10ma edición - r. c. hibbeler
Mecánica vectorial para ingenieros   dinámica - 10ma edición - r. c. hibbelerMecánica vectorial para ingenieros   dinámica - 10ma edición - r. c. hibbeler
Mecánica vectorial para ingenieros dinámica - 10ma edición - r. c. hibbeler
 
Solucionario dinamica 10 edicion russel hibbeler
Solucionario dinamica 10 edicion russel hibbelerSolucionario dinamica 10 edicion russel hibbeler
Solucionario dinamica 10 edicion russel hibbeler
 
Mecanica vectorial para ingenieros, dinamica 9 edicion solucionario copia
Mecanica vectorial para ingenieros, dinamica 9 edicion solucionario   copiaMecanica vectorial para ingenieros, dinamica 9 edicion solucionario   copia
Mecanica vectorial para ingenieros, dinamica 9 edicion solucionario copia
 

Similar to Mecânica Aplicada, Resistência dos Materiais e Sistemas de Unidades

Mecanica aplicada-apostila
Mecanica aplicada-apostilaMecanica aplicada-apostila
Mecanica aplicada-apostilaMatheus Araujo
 
Manual ft 7800 r
Manual ft 7800 rManual ft 7800 r
Manual ft 7800 rruiv
 
Mini Curso – Controle e Segurança com Iptables
Mini Curso – Controle e Segurança com IptablesMini Curso – Controle e Segurança com Iptables
Mini Curso – Controle e Segurança com Iptablesedmafer
 
34772711 a-saude-dos-edificios-check-up-predial
34772711 a-saude-dos-edificios-check-up-predial34772711 a-saude-dos-edificios-check-up-predial
34772711 a-saude-dos-edificios-check-up-predialmjmcreatore
 
Peske et al. 2003 sementes fundamentos cientificos e tecnologicos
Peske et al. 2003 sementes   fundamentos cientificos e tecnologicosPeske et al. 2003 sementes   fundamentos cientificos e tecnologicos
Peske et al. 2003 sementes fundamentos cientificos e tecnologicosBruno Rodrigues
 
Livro sementes - fundamentos científicos e tecnológicos
Livro   sementes - fundamentos científicos e tecnológicosLivro   sementes - fundamentos científicos e tecnológicos
Livro sementes - fundamentos científicos e tecnológicosDheime Miranda
 
Manualdecombateaincndioesalvamentoemaerdromos 110413235816-phpapp01
Manualdecombateaincndioesalvamentoemaerdromos 110413235816-phpapp01Manualdecombateaincndioesalvamentoemaerdromos 110413235816-phpapp01
Manualdecombateaincndioesalvamentoemaerdromos 110413235816-phpapp01Jorge Damasceno
 
Manual de combate a incêndio e salvamento em aeródromos
Manual de combate a incêndio e salvamento em aeródromosManual de combate a incêndio e salvamento em aeródromos
Manual de combate a incêndio e salvamento em aeródromosEvertonhpn
 
Biossegurança FACID
Biossegurança   FACIDBiossegurança   FACID
Biossegurança FACIDkandarpagalas
 
Livro numerico ime usp
Livro numerico ime uspLivro numerico ime usp
Livro numerico ime usplcrslcrs
 
Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)
Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)
Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)Agassis Rodrigues
 
Guia-prático-aplicado-à-fisioterapia-aquática.pdf
Guia-prático-aplicado-à-fisioterapia-aquática.pdfGuia-prático-aplicado-à-fisioterapia-aquática.pdf
Guia-prático-aplicado-à-fisioterapia-aquática.pdfssuser7da808
 
Guia-prático-aplicado-à-fisioterapia-aquática.pdf
Guia-prático-aplicado-à-fisioterapia-aquática.pdfGuia-prático-aplicado-à-fisioterapia-aquática.pdf
Guia-prático-aplicado-à-fisioterapia-aquática.pdfLeonardo Lira
 
Manual Crioscópio Eletrônico pzl 7000 rev. 1.0
Manual Crioscópio Eletrônico pzl 7000 rev. 1.0Manual Crioscópio Eletrônico pzl 7000 rev. 1.0
Manual Crioscópio Eletrônico pzl 7000 rev. 1.0PZL Tecnologia
 
Administração de Sistema Unix
Administração de Sistema UnixAdministração de Sistema Unix
Administração de Sistema Unixelliando dias
 

Similar to Mecânica Aplicada, Resistência dos Materiais e Sistemas de Unidades (20)

Mecanica aplicada-apostila
Mecanica aplicada-apostilaMecanica aplicada-apostila
Mecanica aplicada-apostila
 
Mecanica aplicada-apostila
Mecanica aplicada-apostilaMecanica aplicada-apostila
Mecanica aplicada-apostila
 
Manual ft 7800 r
Manual ft 7800 rManual ft 7800 r
Manual ft 7800 r
 
Trabalho de redes
Trabalho de redesTrabalho de redes
Trabalho de redes
 
Apostilha8
Apostilha8Apostilha8
Apostilha8
 
Mini Curso – Controle e Segurança com Iptables
Mini Curso – Controle e Segurança com IptablesMini Curso – Controle e Segurança com Iptables
Mini Curso – Controle e Segurança com Iptables
 
34772711 a-saude-dos-edificios-check-up-predial
34772711 a-saude-dos-edificios-check-up-predial34772711 a-saude-dos-edificios-check-up-predial
34772711 a-saude-dos-edificios-check-up-predial
 
Peske et al. 2003 sementes fundamentos cientificos e tecnologicos
Peske et al. 2003 sementes   fundamentos cientificos e tecnologicosPeske et al. 2003 sementes   fundamentos cientificos e tecnologicos
Peske et al. 2003 sementes fundamentos cientificos e tecnologicos
 
Livro sementes - fundamentos científicos e tecnológicos
Livro   sementes - fundamentos científicos e tecnológicosLivro   sementes - fundamentos científicos e tecnológicos
Livro sementes - fundamentos científicos e tecnológicos
 
Manualdecombateaincndioesalvamentoemaerdromos 110413235816-phpapp01
Manualdecombateaincndioesalvamentoemaerdromos 110413235816-phpapp01Manualdecombateaincndioesalvamentoemaerdromos 110413235816-phpapp01
Manualdecombateaincndioesalvamentoemaerdromos 110413235816-phpapp01
 
Manual de combate a incêndio e salvamento em aeródromos
Manual de combate a incêndio e salvamento em aeródromosManual de combate a incêndio e salvamento em aeródromos
Manual de combate a incêndio e salvamento em aeródromos
 
Biossegurança FACID
Biossegurança   FACIDBiossegurança   FACID
Biossegurança FACID
 
Grafoes-cap1e2.pdf
Grafoes-cap1e2.pdfGrafoes-cap1e2.pdf
Grafoes-cap1e2.pdf
 
Livro numerico ime usp
Livro numerico ime uspLivro numerico ime usp
Livro numerico ime usp
 
Abnt2002
Abnt2002Abnt2002
Abnt2002
 
Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)
Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)
Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)
 
Guia-prático-aplicado-à-fisioterapia-aquática.pdf
Guia-prático-aplicado-à-fisioterapia-aquática.pdfGuia-prático-aplicado-à-fisioterapia-aquática.pdf
Guia-prático-aplicado-à-fisioterapia-aquática.pdf
 
Guia-prático-aplicado-à-fisioterapia-aquática.pdf
Guia-prático-aplicado-à-fisioterapia-aquática.pdfGuia-prático-aplicado-à-fisioterapia-aquática.pdf
Guia-prático-aplicado-à-fisioterapia-aquática.pdf
 
Manual Crioscópio Eletrônico pzl 7000 rev. 1.0
Manual Crioscópio Eletrônico pzl 7000 rev. 1.0Manual Crioscópio Eletrônico pzl 7000 rev. 1.0
Manual Crioscópio Eletrônico pzl 7000 rev. 1.0
 
Administração de Sistema Unix
Administração de Sistema UnixAdministração de Sistema Unix
Administração de Sistema Unix
 

More from Maitsudá Matos

redes ópticas russell paginado
 redes ópticas russell paginado redes ópticas russell paginado
redes ópticas russell paginadoMaitsudá Matos
 
002173 mariana carvalho-f809_rf10_0
002173 mariana carvalho-f809_rf10_0002173 mariana carvalho-f809_rf10_0
002173 mariana carvalho-f809_rf10_0Maitsudá Matos
 
Características da propagação em fibras ópticas
Características da propagação em fibras ópticasCaracterísticas da propagação em fibras ópticas
Características da propagação em fibras ópticasMaitsudá Matos
 
Capitulo 2 fibras opticas
Capitulo 2 fibras opticasCapitulo 2 fibras opticas
Capitulo 2 fibras opticasMaitsudá Matos
 
Calculo diferencial e integral schaum
Calculo diferencial e integral   schaumCalculo diferencial e integral   schaum
Calculo diferencial e integral schaumMaitsudá Matos
 
Planejamento projeto masiero
Planejamento projeto masieroPlanejamento projeto masiero
Planejamento projeto masieroMaitsudá Matos
 
Medicao petroleo & gas natural 2a ed
Medicao petroleo & gas natural 2a edMedicao petroleo & gas natural 2a ed
Medicao petroleo & gas natural 2a edMaitsudá Matos
 
Exercicios sobre Colisões e Sistema de Massa Variavel
Exercicios sobre Colisões e Sistema de Massa VariavelExercicios sobre Colisões e Sistema de Massa Variavel
Exercicios sobre Colisões e Sistema de Massa VariavelMaitsudá Matos
 
Exercicios sobre Centro de Massa
Exercicios sobre Centro de MassaExercicios sobre Centro de Massa
Exercicios sobre Centro de MassaMaitsudá Matos
 

More from Maitsudá Matos (16)

Dispers complet
Dispers completDispers complet
Dispers complet
 
fibras opticas
fibras opticasfibras opticas
fibras opticas
 
redes ópticas russell paginado
 redes ópticas russell paginado redes ópticas russell paginado
redes ópticas russell paginado
 
002173 mariana carvalho-f809_rf10_0
002173 mariana carvalho-f809_rf10_0002173 mariana carvalho-f809_rf10_0
002173 mariana carvalho-f809_rf10_0
 
Características da propagação em fibras ópticas
Características da propagação em fibras ópticasCaracterísticas da propagação em fibras ópticas
Características da propagação em fibras ópticas
 
Capitulo 2 fibras opticas
Capitulo 2 fibras opticasCapitulo 2 fibras opticas
Capitulo 2 fibras opticas
 
Aplicação do otdr
Aplicação do otdrAplicação do otdr
Aplicação do otdr
 
Regras diferenciacao[1]
Regras diferenciacao[1]Regras diferenciacao[1]
Regras diferenciacao[1]
 
Calculo diferencial e integral schaum
Calculo diferencial e integral   schaumCalculo diferencial e integral   schaum
Calculo diferencial e integral schaum
 
Tabela integrais 2
Tabela integrais 2Tabela integrais 2
Tabela integrais 2
 
Tabela integrais
Tabela integraisTabela integrais
Tabela integrais
 
Planejamento projeto masiero
Planejamento projeto masieroPlanejamento projeto masiero
Planejamento projeto masiero
 
Medicao petroleo & gas natural 2a ed
Medicao petroleo & gas natural 2a edMedicao petroleo & gas natural 2a ed
Medicao petroleo & gas natural 2a ed
 
Exercicios sobre Colisões e Sistema de Massa Variavel
Exercicios sobre Colisões e Sistema de Massa VariavelExercicios sobre Colisões e Sistema de Massa Variavel
Exercicios sobre Colisões e Sistema de Massa Variavel
 
Exercicios sobre Centro de Massa
Exercicios sobre Centro de MassaExercicios sobre Centro de Massa
Exercicios sobre Centro de Massa
 
Conservaçãode energia
Conservaçãode energiaConservaçãode energia
Conservaçãode energia
 

Recently uploaded

Estatística aplicada à experimentação animal
Estatística aplicada à experimentação animalEstatística aplicada à experimentação animal
Estatística aplicada à experimentação animalleandroladesenvolvim
 
Treinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção IndividualTreinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção Individualpablocastilho3
 
LEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurançaLEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurançaGuilhermeLucio9
 
MODELO LAUDO AVALIAÇÃO MÁQUINAS EQUIPAM
MODELO LAUDO AVALIAÇÃO MÁQUINAS  EQUIPAMMODELO LAUDO AVALIAÇÃO MÁQUINAS  EQUIPAM
MODELO LAUDO AVALIAÇÃO MÁQUINAS EQUIPAMCassio Rodrigo
 
Tecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade AnhangueraTecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade AnhangueraGuilhermeLucio9
 
Eletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante TamandaréEletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante TamandaréGuilhermeLucio9
 
Aula de classificação de rolamentos norma DIN
Aula de classificação de rolamentos norma DINAula de classificação de rolamentos norma DIN
Aula de classificação de rolamentos norma DINFabioFranca22
 
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdfLivro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdfSamuel Ramos
 
PLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdf
PLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdfPLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdf
PLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdfAroldoMenezes1
 
FISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animal
FISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animalFISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animal
FISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animalPauloHenrique154965
 
A Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboralA Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboralFranciscaArrudadaSil
 

Recently uploaded (11)

Estatística aplicada à experimentação animal
Estatística aplicada à experimentação animalEstatística aplicada à experimentação animal
Estatística aplicada à experimentação animal
 
Treinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção IndividualTreinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção Individual
 
LEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurançaLEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurança
 
MODELO LAUDO AVALIAÇÃO MÁQUINAS EQUIPAM
MODELO LAUDO AVALIAÇÃO MÁQUINAS  EQUIPAMMODELO LAUDO AVALIAÇÃO MÁQUINAS  EQUIPAM
MODELO LAUDO AVALIAÇÃO MÁQUINAS EQUIPAM
 
Tecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade AnhangueraTecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade Anhanguera
 
Eletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante TamandaréEletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante Tamandaré
 
Aula de classificação de rolamentos norma DIN
Aula de classificação de rolamentos norma DINAula de classificação de rolamentos norma DIN
Aula de classificação de rolamentos norma DIN
 
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdfLivro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
 
PLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdf
PLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdfPLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdf
PLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdf
 
FISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animal
FISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animalFISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animal
FISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animal
 
A Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboralA Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboral
 

Mecânica Aplicada, Resistência dos Materiais e Sistemas de Unidades

  • 1. CSO-Ifes-55-2009 GERÊNCIA DE ENSINO COORDENADORIA DE RECURSOS DIDÁTICOS MECÂNICA APLICADA E RESISTÊNCIA DOS MATERIAIS Mecânica
  • 2. CSO-Ifes-55-2009 MECÂNICA APLICADA E RESISTÊNCIA DOS MATERIAIS JOÃO PAULO BARBOSA São Mateus, Fevereiro de 2010.
  • 3. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 1 Sumário 1 Sistemas de Unidades................................................................................... 3 1.1 Sistema Internacional - SI - ............................................................................6 1.2 Sistema Inglês................................................................................................6 1.3 Sistema Gravitacional Britânico......................................................................7 2 Estática de pontos materiais ...................................................................... 11 2.1 Introdução ....................................................................................................11 2.2 Força Resultante..........................................................................................11 2.3 Forças no Plano...........................................................................................11 2.4 Componentes Cartesianas de uma força.....................................................12 2.5 Equilíbrio de um ponto material....................................................................14 3 Corpos Rígidos: sistemas equivalentes de forças................................... 20 3.1 Classificação das forças atuantes em corpos rígidos...................................20 3.2 Princípio de transmissibilidade.....................................................................21 3.3 Momento de uma força em relação a um ponto...........................................22 3.4 Momento de um conjugado..........................................................................22 3.5 Conjuntos Equivalentes................................................................................23 4 Equilíbrio de corpos rígidos ....................................................................... 28 4.1 Equilíbrio de um Corpo Rígido em duas dimensões: ...................................28 4.2 Reações nos Apoios e Conexões. ...............................................................29 5 Análise das Estruturas................................................................................ 40 5.1 Análise de Treliças.......................................................................................40 5.2 Análise de uma estrutura .............................................................................44 5.3 Máquinas......................................................................................................48 6 Centróide e Baricentro ................................................................................ 66 6.1 Áreas e Linhas - Placas e Arames Compostos ............................................67 7 Movimento Circular ..................................................................................... 72 7.1 Velocidade Angular (ω) ...............................................................................72 7.2 Período (T)...................................................................................................72 7.3 Frequencia (f)...............................................................................................72 7.4 Rotação (n)...................................................................................................73 7.5 Velocidade Periférica ou Tangencial (v).......................................................73 8 Relação de Transmissão (i) ........................................................................ 75 8.1 Transmissão por Correias ............................................................................75 8.2 Transmissão por engrenagens.....................................................................76 9 Torção Simples............................................................................................ 78 9.1 Momento Torçor ou Torque (MT)..................................................................78 9.2 Torque nas Transmissões............................................................................79
  • 4. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 2 10 Potência (P).................................................................................................. 81 10.1 Torque X Potência ....................................................................................82 10.2 Força Tangencial (FT) ...............................................................................83 11 Rendimento das Transmissões (ηηηη) ............................................................ 94 11.1 Rendimento das transmissões..................................................................94 11.2 Perdas nas Transmissões.........................................................................95 12 Noções de Resistência dos Materiais.......................................................103 12.1 Introdução...............................................................................................103 12.2 Esforços externos ou carregamentos......................................................104 12.3 Solicitações Simples ...............................................................................106 12.4 Solicitações Compostas..........................................................................109 12.5 Ensaio de Tração....................................................................................110 12.6 Modos de falhas trativas: ........................................................................112 12.7 Tensões ..................................................................................................112 12.8 Módulo de Elasticidade...........................................................................113 12.9 Momento de Inércia, Raio de Giração e Módulo de Resistência: ...........114 13 Tração e compressão.................................................................................116 13.1 Carregamento Axial ................................................................................116 13.2 Deformação sob Carregamento Axial .....................................................116 13.3 Tensão Normal σ ....................................................................................117 13.4 Deformação Longitudinal (ε) ...................................................................117 13.5 Deformação Transversal (εt) ...................................................................118 13.6 Estricção .................................................................................................118 13.7 Coeficiente de Segurança k....................................................................118 14 Flexão ..........................................................................................................124 14.1 Diagrama de Força Cortante e Momento Fletor......................................124 14.2 Tensão de Flexão ...................................................................................125 15 Torção..........................................................................................................130 15.1 Transmissão de Potência........................................................................130 15.2 Análise das Tensões num Eixo...............................................................131 15.3 Deformações nos Eixos de Secção Circular...........................................132 15.4 Tensão de Torque...................................................................................133 15.5 Tensões no Regime Elástico ..................................................................133 15.6 Modos de Falha Torcionais.....................................................................135 15.7 Ângulo de Torção no Regime Elástico....................................................140 15.8 Eixos Estaticamente Indeterminados......................................................140 16 Flambagem..................................................................................................143 16.1 Módulo de Young....................................................................................143 16.2 Carga Crítica de Flambagem..................................................................143 16.3 Indice de Esbeltez...................................................................................144 16.4 Flambagem de Colunas..........................................................................145 17 Referencias Bibliográficas:........................................................................146
  • 5. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 3 CAPÍTULO 1 1 Sistemas de Unidades Se o instrumento é utilizado para medir variáveis de processos, convém então mencionar rapidamente sobre sistemas de unidades usados para medir a magnitude de grandezas (as variáveis dos processo mecânicos) e expressá-las como dimensões. Na medida em que ainda há diversos sistemas de unidades utilizados pelo homem, a sua definição e estabelecimento corretos auxiliam no processo de conversão de unidades entre os vários sistemas de unidades disponíveis. Há vários sistemas de unidades em uso nos ambientes industrial, comercial, laboratorial, residencial, etc. Por convenção, há um sistema aceito internacionalmente, estabelecido pela Conferência Geral de Pesos e Medidas (toda a documentação das Conferências é mantida e divulgada pelo Bureau International des Poids et Mesures – BIPM), o Sistema Internacional de Unidades - SI. As unidades básicas do SI, como todos sabemos, são o metro [m], a massa [kg], o segundo [s], o Kelvin [K], o Ampere [A] o mole [mol] e a candela [cd], para as dimensões comprimento, a massa, o tempo, a temperatura, a corrente, a quantidade de matéria e a intensidade luminosa, respectivamente. Todas as outras unidades são chamadas de unidades derivadas (joule [J] para trabalho, watt [W] para potência, etc), pois são definidas em termos das unidades básicas. Atribui valores numéricos específicos para fenômenos físicos observáveis, de maneira que estes possam ser descritos analiticamente. DIMENSÃO quantidade física utilizada para definir qualitativamente uma propriedade que pode ser medida ou observada. Exemplo: Comprimento [L], Tempo [t], Massa [M], Força [F] e Temperatura [θ]. UNIDADE são nomes arbitrários atribuídos às dimensões. Exemplo: dimensão → comprimento unidades → centímetros, pés, polegadas,
  • 6. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 4 Grandezas e unidades derivadas de SI – Sistema Internacional de Unidades Assim, a dimensão especifica a magnitude da grandeza (variável do processo) medida de acordo com o sistema de unidades adotado. No SI a unidade da grandeza comprimento é o metro, em outros sistemas de unidade podem ser em a polegada, o centímetro, o kilômetro, a milha, etc. Em várias áreas industriais diferentes sistemas de unidades que misturam unidades do SI, com unidades inglesas e antigas unidades de comércio têm uso corrente. São comumente referidas como Unidades de Engenharia. É o caso, por exemplo, da indústria hidráulica: o diâmetro de tubulações é usualmente referido em polegadas (dimensão típica em uso nos USA e outros países de língua e industrialização de origem inglesa e americana), e o comprimento desta mesma tubulação pode ser referido em metros. Compra-se no comércio, mesmo no Brasil, uma tubulação de PVC de 6 m comprimento e 2” (polegadas) de diâmetro, classe 10 - pressão de trabalho de 10 atm (atmosferas, ou 1.01325 x 106 N/m2 ). Na indústria do petróleo a produção (a vazão de óleo, volume na unidade de tempo) é medida em barris/dia [bbl/dia].
  • 7. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 5 Grandezas e unidades derivadas de SI – Sistema Internacional de Unidades O Sistema CGS foi corrente na área da mecânica, e se baseava em três dimensões e suas unidades básicas: o centímetro, o grama e o segundo. Na indústria automobilística de matriz baseada nos USA, todas as dimensões – folgas de válvulas, bitola de parafusos e porcas, tamanho de rodas, etc, têm por base o Sistema Inglês de Unidades. O Sistema Inglês, por sua vez, tem unidades de uso próprio nos USA, que diferem, em valor, de unidades usadas na Inglaterra: o pé inglês é maior que o pé americano, assim como o galão, etc.
  • 8. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 6 1.1 Sistema Internacional - SI - L Comprimento metro m M Massa quilograma kg t Tempo segundo s θθθθ Temperatura graus Celsius ou Kelvin °C ou K Força: definida pela 2ª Lei de Newton a.mF = F - força [N] m - massa [kg]       == N s m kgamF 2 . a - aceleração [m/s2 ] 1.2 Sistema Inglês L Comprimento Pés ft M Massa libra-massa lbm F Força libra-força lbf t Tempo Segundo s θθθθ Temperatura graus Fahrenheit ou Rankine °F ou °R Força: é estabelecido como uma quantidade independente definida por procedimento experimental: a força de 1 lbf acelerará a massa de 1 lbm 32,174 pés por segundo ao quadrado. - Ao relacionar força e massa pela lei de Newton, surge uma constante de proporcionalidade, gc: lbf g sftlbm g am F cc 1 )/174,32.(1. 2 === - gc terá as dimensões MLF-1 t-2 - para sistema inglês: 2 . .174,32 slbf ftlbm gc = gc tem o mesmo valor numérico que a aceleração da gravidade ao nível do mar, mas não é aceleração da gravidade. Serve para relacionar estas quantidades.
  • 9. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 7 1.3 Sistema Gravitacional Britânico L Comprimento pés ft M Massa slug slug F Força libra-força lbf t Tempo segundo s θ Temperatura graus Fahrenheit ou Rankine °F ou °R Outros: - Sistema Técnico de Engenharia: kg, m, s, kgf gc= 9,80665 kg.m/(kgf.s2 ) - Sistema CGS: g, cm, s, dina PESO ≠≠≠≠ MASSA O Peso de um corpo é definido como a força que age no corpo resultante da aceleração da gravidade. Varia com a altitude. Prefixo usados no SI Para facilitar a escrita de grandezas de magnitude muito grande ou muito pequenas, as unidades podem ser acompanhadas de prefixos que designam seus múltiplos e submúltiplos. Prefixos do SI Prefixo Símbolo Fator multiplicador exa E 1.000.000.000.000.000.000 peta P 1.000.000.000.000.000 terá T 1.000.000.000.000 giga G 1.000.000.000 mega M 1.000.000 quilo k 1.000 hecto h 100 deca da 10 deci d 0,1 centi c 0,01 mili m 0,001 micro µ 0,000 001 nano n 0,000 000 001 pico p 0,000 000 000 001 femto f 0,000 000 000 000 001 atto a 0,000 000 000 000 000 001
  • 10. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 8
  • 11. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 9
  • 12. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 10 1) Exercícios: Reescrever as unidades das grandezas como é indicado. a) 20000mm: m b) 14000000000 W: GW c) 2,75x104 Pa: kPa d) 0,000055kg: g e) 0,00023cm: µm f) 250kN: N g) 0,0043 MPa: Pa h) 0,000025A: mA 2) Exercícios: Reescrever as unidades das grandezas como é indicado. a) 50000N: kN b) 200000MPa: GPa c) 75000N: kN d) 0,000014kg: g e) 0,1x10-3 mm µm f) 500 000 000 N/m² kN/mm² g) 150km/h: m/s h) 20m/s km/h i) 30m/s km/min j) 120km/h m/min k) 50l m³ l) 100m³ l m) 200m² cm² n) 10pol cm o) 100mm pol p) 120HP KW q) 2000W CV r) 50Bar Psi
  • 13. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 11 CAPÍTULO 2 2 Estática de pontos materiais 2.1 Introdução O que é Mecânica? Pode ser definida como a ciência que descreve e prediz as condições de repouso ou movimento de corpos sob ação de forças. Corpos rígidos, deformáveis e fluidos. 2.2 Força Resultante A somatória das forças que atuam em um dado ponto material é a força resultante. (produz o mesmo efeito que as forças originais) 2.3 Forças no Plano Uma força representa a ação de um corpo sobre o outro. Ela é caracterizada por seu ponto de aplicação, sua intensidade, direção e sentido. 2ª Lei Newton: F=m.a e no SI (N) Fazendo a regra do Paralelograma. As forças não obedecem às regras de adição definidas na álgebra ou na aritmética. Caso possua mais de um vetor P P + Q + S Q + S Q S P R Q P R Q ou A P P Q Q RR = P + Q
  • 14. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 12 2.4 Componentes Cartesianas de uma força Em muitos problemas é desejável decompor uma força em duas componentes normais uma à outra. Fx = F cos θ e Fy = F sen θ F² = Fx²+ Fy² Adição de forças pela soma das componentes segundo x e y. Resultante da soma dos vetores P, Q e S. Teremos as componentes: Rx + Ry; Px + Py ; Qx + Qy ; Sx + Sy. Sendo assim: Rx = Px + Qx + Sx e Ry = Py + Qy + Sy Aonde: Rx = ΣFx e Ry = ΣFy R² = Rx²+ Ry² S P Q A S P Q A Sx Sy Px Py Qx Qy Ry Rx R Fy Fx F y xo θ F x y θFy Fx
  • 15. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 13 Exemplo 1: Dois cabos sujeitos a trações conhecidas estão presos ao ponto A. Um terceiro cabo AC é usado para sustentação. Determine a tração em AC sabendo que a resultante das três forças aplicadas em A deve ser vertical. Calculando a distância AC = 25 m. Como é vertical Rx = ΣFx=0 Logo a Resultante é Ry Decompondo os vetores XY F1 = (-30.cos 25°) em x e (-30.sen 25°) em y F2 = (12.sen 10°) em x e (-12.cos 10°) em y TAC = (TAC.sen θ) em x e (-TAC.cos θ) em y (adotado o sentido de TAC) 25 15 =θsen 25 20 cos =θ 010cos1225cos30 =+°+°−== ∑ θsenTFR ACxx 619,25 sen 10cos12-25cos30 = ° = θ ACT KNRy TsensenFR ACyy 257,35 cos10122530 −= +°+°−== ∑ θ A B C 10°25° 30kN=F1 12kN=F2 15 m 20 m θ20 25 15 F1 = 30 KN F2 = 12 KN Tac= ? R ↨
  • 16. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 14 2.5 Equilíbrio de um ponto material Quando a resultante de todas as forças que atuam sobre um ponto material é zero, este ponto está em equilíbrio. ∴= 0R ∑ ∑ == == 0 0 yy xx FR FR 100N 100N Exemplo 2: Como parte do projeto de um novo veleiro deseja-se determinar a força de arrasto a uma dada velocidade. Com esse objetivo, um modelo do casco é colocado em um canal para testes, sendo mantido alinhado com o eixo do canal por meio de três cabos presos a sua proa. Leituras de dinamômetro indicam que, para uma dada velocidade da água, a tração no cabo AB é de 200N e de 300N no cabo AE. Determine a força de arrasto no casco e a tração no cabo AC. Decompondo os vetores XY Encontrar α e β 75,1 2,1 1,2 ==αtg e 375,0 2,1 45,0 ==βtg α = 60,26° β = 20,56° AEACAB TTTTR +++= Corpo em equilíbrio NF senTsenTF F ACAB x 37,98 0 0 = =+− =∑ βα NT TTT F AC ACABAE y 5,214 0coscos 0 = =++− =∑ βα TAB TAc F TAE A α β A B C E Fluxo 1,2m 1,2m 0,45m2,10m α β AB = 200N AE = 300N Fmastro = ? AC = ?
  • 17. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 15 Exemplo 3: A manga A pode deslizar livremente sobre o eixo horizontal, sem atrito. A mola presa à manga tem constante 1751 N/mm e elongação nula quando a manga está diretamente embaixo do suporte B. Determine a intensidade da força P necessária para manter o equilíbrio quando: (a) c= 228 mm e (b) c= 406 mm. mmLLx mmLCLL 8,75 8,380²²² 0 0 =−=∆ =⇒+= NF xKF 72,132 1088,751751 3 = ××=∆⋅= − (F: força da mola; ∆x: deslocamento da mola) D.C.L F Fat=0 Μ=0 N ω P Equilíbrio L C FP FP Fx = =− =⊕→ ∑ 0cos 0 θ L C =θcos L L0 C A B C 305 mm P k = 1751 N/m P = ? C = 228 mm
  • 18. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 16 Exemplo 4: Caixotes de 30 kg estão suspensos por diversas combinações de corda e roldana. Determine, em cada caso, a tração na corda. (A tração na corda é a mesma dos dois lados da roldana, Veremos isto mais tarde). b) c) A T T T T T P T’ T T T’ B C Roldana B TT T’ Roldana C T T T’ P T’ = 2T 4 22 02'0 P T PTT PTTFy = =+ =−+=∑ T T T T T T T T T R P P TR Fy 2 0 = =∑ 2 02 0 P T PT Fy = =− =∑
  • 19. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 17 Exercícios: 1) Determine a Força resultante das quatros forças aplicadas na figura abaixo: a) b) 2) Determine a Força Resultante das Forças aplicada no desenho abaixo. a) b)
  • 20. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 18 3) Determine o peso máximo do motor que pode ser suportado sem exceder uma força de 450N na corrente AB e de 480N na corrente AC. 4) Uma caixa é erguida com um guincho pelas cordas AB e AC. Cada corda resiste a uma força de tração máxima de 2500 N sem se romper. Se AB permanece sempre horizontal e AC permanece com θ = 30°, determine o peso máximo da caixa para que ela posa ser levantada. 3) 4) 5) João tenta alcançar Maria subindo com velocidade constante por uma corta amarrada no ponto A. Qualquer um dos três segmentos de corda suporta uma força máxima de 2 kN sem se romper. Determine se João, que tem massa de 65 kg, pode subir pela corda. Em caso positivo, verifique se ele, juntamente com Maria, que tem massa de 60 kg, pode descer pela corda com velocidade constante.
  • 21. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 19 6) Um bloco de 200kg pende de uma pequena polia que pode rolar sobre o cabo ACB. A polia e sua carga são mantidas na posição mostrada abaixo por um segundo cabo DF, paralelo ao trecho CB do cabo. Determine a tração no cabo ACB e no cabo DF. Despreze o raio da polia e a massa dos cabos e da roldana. Adote gravidade 10m/s².
  • 22. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 20 CAPÍTULO 3 3 Corpos Rígidos: sistemas equivalentes de forças 3.1 Classificação das forças atuantes em corpos rígidos a) Forças Externas: Representam a ação de outros corpos sobre o corpo rígido considerado. Causarão o movimento (rotação/translação) ou assegurarão a permanência em repouso. b) Forças Internas: Mantém unidas as partículas que formam o corpo rígido. Se o corpo rígido é composto de diversas partes, essa força que mantém estas partes unidas. (Somatório das forças internas é zero) Guindastes: D.C.L. Guindaste (estrutura) D.C.L. da Barra BE D.C.L. da Barra ABC EBBE FF −= jCiCC yx += PTDG A Ay Ax jAiAA yx += 0=++=∑ DGext TPAF P Barras: .,, ABCDCEFBE D C E F G A B
  • 23. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 21 D.C.L. da Barra DCEF 3.2 Princípio de transmissibilidade Este princípio é definido pelos pontos em que a força pode estar atuando em um corpo, sem que altere o efeito que ela exerce sobre o corpo. Uma força pode atuar em qualquer ponto sobre a sua linha de ação que o efeito causado no corpo será o mesmo. F F’ F” A A’ A” = R1 R1R2 R2 P P F F Cx Cy FEB P TDE α E FBE B FEB FBE Ay Ax Cy Cx
  • 24. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 22 3.3 Momento de uma força em relação a um ponto Momento é a tendência de giro que uma força aplicada a um ponto tende a outro ponto do corpo. Força no Plano xy α α FsenF FF FeF Fdescomponente y x yx = = cos θ θ rsend rd ded rdescomponente y x yx = = cos Momento de uma força em relação a um ponto é força vezes a distancia da linha de ação da força ao ponto aonde quero calcular o momento. yxxy dFdFM −=0 3.4 Momento de um conjugado Duas forças F e –F que tenham o mesmo módulo, linhas de ação paralelas e sentidos opostos formam binários 0 0 ≠ = ∑ ∑ M F Podemos calcular o momento das duas forças em relação a qualquer ponto do corpo, que o momento sempre será o mesmo. x y A B d F-F No caso de forças binárias, o momento é calculado pela força e a menor distância entre elas. M=F.d A Fy Fx F α r y x θ x y A B rA rB F-F = A F α r y x = θ F -F
  • 25. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 23 3.5 Conjuntos Equivalentes (Os três binários têm o mesmo efeito sobre a caixa) Exemplo 1: Uma força P de 300 N é aplicada ao ponto A da figura. (a) Calcule o momento de P em relação a O utilizando as componentes horizontal e vertical da força. P = 300N a) P OM = ? (componentes y e x) a) °= °= = = 40200 40cos200 30cos 30 seny x PP PsenP y x ( )mmNM xpyPM O yxo ⋅= +−= 20527 .. AB o 30° 40° 40° 200mm 120mm P M M M y z x 100N 100N 0,15m 150N 150N 150N 150N 0,1m 0,1m
  • 26. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 24 Exemplo 2: A força P é aplicada a uma pequena roda que se desloca sobre um cabo ACB. Sabendo que a tração nas duas partes do cabo é de 750N, determine o módulo de P. TABC = 750N P = ? NTTT ABCBCAC 750=== D.C.L Roda α α cos 45 45cos 30 30cos PPy PsenPx senTT TT senTT TT BCBCx BCBCx ACACy ACACx = = °= °= °= °= r r r r NPx PxTT F BCAC x 19,119 045cos30cos 0 = =+°+°− =∑ NPy PysenTsenT F BCAC y 33,905 04530 0 = =−°+° =∑ Sendo: 33,905;19,119 −== PyPx , teremos: P²=Px²=Py² -> P = 913,15N TAC TBC P 30° 45° α A B C α P 30° 45°
  • 27. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 25 Exercícios: 1) Determine o momento no ponto A das cargas aplicadas mostrados, que atuam sobre o corpo. 2) Determine o Momento das três forças em relação ao ponto A. 3)Determine o momento da força F em relação ao ponto A. θ = 45°.
  • 28. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 26 4) Determine o momento no ponto A das cargas aplicadas mostrados, que atuam sobre o corpo. 5) Determine a intensidade F da força aplicada no cabo da alavanca, de modo que a resultante das três forças passe pelo ponto 0. 4) 5) 6) Determine o momento no ponto A das cargas aplicadas e do momento (conjugado), mostrados, que atuam sobre o suporte vertical. 7) Uma força F e aplicada ao pedal de freio em A. Sabendo que F = 500N, determine o momento de F em relação a B. ( as medidas estão em milímetros). 6) 7)
  • 29. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 27 8) O corpo de 330N é mantido dentro no equilíbrio pelo peso W. E o sistema das polias excedentes B e C tem uma corda é contínua. As duas polias B e C estão presas em A e giram como uma unidade as cordas de A para B e C é prendido às bordas das polias em A. Determine o peso W para o equilíbrio do sistema e Todas as tensões nas demais cordas. 9) Quatro pinos são presos a tábua. Dois barbantes, apoiados nos pinos, são tracionadas. Determine o diâmetro dos pinos sabendo que o momento do binário resultante aplicado à tábua é de 54,8N, anti-horário. A B C D 111N 111N 156N 156N 203mm 152mm x y z
  • 30. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 28 CAPÍTULO 4 4 Equilíbrio de corpos rígidos 4.1 Equilíbrio de um Corpo Rígido em duas dimensões: ;0=∑F r )2( )1( ;0 ;0 = = ∑ ∑ y x F F ∑ = 0OM r )3( ∑ = 0zM r
  • 31. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 29 4.2 Reações nos Apoios e Conexões. Vinculo Reação Numero de incógnitas 1 1 1 2 3
  • 32. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 30 Exemplo 1: Um tanque cilíndrico de 250 kg tem 2 m de diâmetro e deve galgar uma plataforma de 0,5 m de altura. Um cabo é enrolado no tanque e puxado horizontalmente. Sabendo que o canto A da plataforma é áspero, calcule a força de tração no cabo necessária para levantar o tanque e a reação em A. - Massa do tanque: 250kg - Canto A é áspero T = ? Reação em A = ? TR TR F AX AX X = =− =∑ 0 0 mgPR RP F Ay Ay y == =+− =∑ 0 0 5,1 05,1 0 lP T lPT M A ⋅ = =⋅−⋅ =∑ r ²5,0²1 −=l A G P B T 2m 0,5m obs: 0=BR r (força T para retirar o tanque do chão ) 1 l 0,5
  • 33. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 31 Exemplo 2: Determine em A e B quando: (a) α = 0, (b) α = 90 (c) α = 30 . 02,0cos2,0 0 0250 0 0cos 0 =⋅+⋅ = =++− = =+ = ∑ ∑ ∑ αα α α BB A BAy y BAx x RsenR M senRR F RR F r A B 0,15m0,15m 0,2m 250N α
  • 34. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 32 Exemplo 3: Sabendo que a tração em todos os pontos da correia é 300N, determine as reações nos apoios A e B, quando: (a) α = 0 (b) α = 90 e (c) α = 30 . T = 300N Reações nos apoios A e B para: a) α = 0° b) α = 90° c) α = 30° D.C.L yyyy y xxxx x BABA F BABA F −=⇒=+ = −=⇒=++− = ∑ ∑ 0 0 0300300 0 75000400250 0400250350300100300 0 =− =⋅−⋅+⋅−⋅ =∑ xy xy A BB BB M Para cada α dado, encontramos os valores das reações α Ax By Bx Ay Ax 300N 300N A Ay A Ay sen A Ax == αα ;cos A B 300N 300mm 250mm 200mm 300N 50mm α
  • 35. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 33 Exemplo 4: Uma haste delgada BC de comprimento e peso P está presa a dois cabos, como se vê. Sabendo que o cabo AB está na horizontal, determine: (a) o ângulo θ que o cabo CD forma com a horizontal e (b) a força de tração em cada cabo. a) θ = ? b) TCD = ? e TAB = ? D.C.L. ° ⋅ °⋅ = =°⋅+°⋅− ° ⋅− =∑ 40 1 2 40cos 040cos40 2 40cos 0 sen P T lTlsenT l P M CDx CDyCDx B r TCD TCDx TCDy TAB P l lcos40° lsen40°40° A B Cl 40° θ PTPT F TT F CDyCDy y ABCDx x =⇒=− = =− = ∑ ∑ 0 0 0 0
  • 36. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 34 Exemplo 5: Uma barra delgada de comprimento L está apoiada em C e na parede vertical. Ela suporta uma carga P em sua extremidade A. Desprezando o atrito e o peso da barra, determine o ângulo θ correspondente ao equilíbrio. D.C.L. ( ) ( ) )2(00 )1(00 =⋅− ⋅ −∴= = ⋅ −−∴= ∑ ∑ aC tg aC lsenPM tg aB aLsenPM y x B C θ θ θ θ r r ( )       =⇒= ⋅=⋅ =⋅−⋅−⋅+⋅ =⋅− ⋅ +⋅ = ⋅ −− L a arcsen L a sen aPLsenP aPaPLsenPLsenP aP tg aB LsenP tg aB aLsenP θθ θ θθ θ θ θ θ 22 0 0 0 P B Cx Cy A P L a B θ 00 00 =−∴= =−∴= ∑ ∑ PCF BCF yy xx
  • 37. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 35 Exemplo 6: Uma barra leve AD suporta uma carga vertical P e esta presa a mangas B e C que deslizam livremente nas hastes. Sabendo que o fio preso em A forma um ângulo α = 30 com a horizontal, determine: (a) a força de tração no fio e (b) as reações em B e C. )2(030cos30cos300 )1(0303030cos0 =−°+°+°−∴= =°+°+°−∴= ∑ ∑ PCBAsenF CsenBsenAF y x CBasenCasenB M A 2023030 0 −=⇒=⋅°⋅+⋅°⋅ =∑ eq (1) CA CACCA ⋅−= =⋅−⋅−⇒=⋅+−⋅− 866,0 5,0 05,0866,005,0866,0 60° 60° 30° P A B C A B C D 30° 30° 30° a a a °= °= °= °= −= °= °= 30cos 30 30cos 30 30 30cos CCy CsenCx BBy BsenBx PyP AsenAy AAx P
  • 38. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 36 eq (2) 577,0 0577,0 0866,0866,025,0 866,0 5,0 P CPC PCCC −=⇒=−− =−⋅+⋅⋅−⋅⋅ 577,0 2P B = 577,0866,0 5,0 P A ⋅= Exercícios: 1) Determine as reações nos apoios em A (rolete) e B (pino) da estrutura. 2) Determine a intensidade das reações na viga em A e B. Despreze a espessura da viga.
  • 39. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 37 3) Determine as componentes horizontal e vertical do pino A e a reação no rolete B, necessárias para treliça. Considere F= 600N. 4) Determine as reações em A e B. A barra tem espessura de 0,1m. 5) A barra uniforme de 30 kg com roldanas nas extremidades está apoiada pelas superfícies horizontal e vertical e pelo arame AC. Calcule a força no arame e as reações contra as roldanas em A e B.
  • 40. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 38 6) Determine as reações em A e B. 7) Determine as reações em A (roletes) e B (pino). 8) O redutor de engrenagens, esta sujeito a dois conjugados, o seu peso de 200 N e a uma força vertical em cada uma das bases A e B. Se a resultante deste sistema de dois conjugados e de três forças for zero, determinar as forças em A e B.
  • 41. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 39 9) Determine as reações em A e B.
  • 42. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 40 CAPÍTULO 5 5 Análise das Estruturas Princípio Básico: 3ª lei de Newton- Estabelece que forças de ação e reação entre corpos em contato, possuem o mesmo módulo, mesma linha de ação e sentidos opostos. Categoria de estruturas: 1) Treliça; 2) Estruturas; 3) Máquinas; 5.1 Análise de Treliças Treliça: Barra comprimida ou tracionada Método dos Nós Eficaz quando é necessário determinar as forças em todas as barras da treliça. Método das Seções Eficaz quando a força em uma ou poucas barras são desejadas.
  • 43. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 41 5.1.1 Análise das treliças pelo método dos nós. F = 1000N Estrutura de 5 barras ∑ =∴= ;00 xx AF NAFBAF yyyy 50000 =⇒=−+∴=∑ ∑ =⋅+⋅−∴=+ 0210 yA BFM NBB yy 500 2 1000 =⇒= Nó A: ∑ =⋅++∴= 0º45cos0 ACAD FFAxFx NFAD 500= Tração ∑ =⋅+∴= 0º450 senFAF ACyy NFAC 707−= Compressão A B C D 1 1 1 Ay Ax By F ACF BCF CBF DBFBDFADF DAF CAF CDF A D A C B B F D C C D DCF yA xA yB 45º ACF ADF yA xA
  • 44. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 42 Nó B: ∑ =⋅+∴= 0º450 senFBF BCyy NFBC 707−= Compressão ∑ =⋅−−∴= 0º45cos0 BCBDx FFF NFBD 500= Tração Nó D: ∑ = 0yF 0=− FFDC NFDC 1000= )(T ∑ = 0xF 0=− DADB FF DADB FF =⇒ ADF CDF F BDF BCF BCF yB 45º
  • 45. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 43 5.1.2 Análise das treliças pelo método das Seções. D.C.L. da treliça: ∑ ∴= 0xF 0=xG ∑ ∴= 0yF 0321 =++−−− yy GEFFF NGy 3000−=⇒ 0=⊕ ∑ GM 01123 321 =⋅−⋅+⋅+⋅ yEFFF NEy 6000= Seção 1 ∑ = 0Fx 0º45 =⋅++ senFFF BEBDCE ∑ = 0yF 0º45cos21 =⋅−−− BEFFF N FF FBE 4,2828 º45cos 2 −= −− =⇒ 0=⊕ ∑ BM NFNFF FF BDCE CE 30001000 011 1 1 =∴−=−= =⋅+⋅ 1 1 1 2F 3F1F A B D C E G xG yG yE 1 3F 1F 2F A B BDF BEF CEF E C º45 YG xG B E D yE EBF DBF ECF G + NFFF ³10321 ===
  • 46. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 44 5.2 Análise de uma estrutura • Treliças ⇒ É uma estrutura com barras retas submetidas a apenas duas forças. ⇒ Vamos considerar agora estruturas que possuem pelo menos uma barra submetida a três ou mais forças. 2 1 LCB LAC = = 1F e 2F atuam no ponto médio de cada barra. D.C.L. da estrutura D.C.L. barra AC: D.C.L. barra CB A B C F1 F2 βα xA 2F1F yA xB yB xA yA yC 1F xC xB yB 2F yC xC
  • 47. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 45 D.C.L estrutura 00 00 21 =−−+∴= −=⇒=+∴=∑ FFBAF BABAF yyy xxxxx ( ) 0coscoscos 2 coscos 2 21 2 12 1 1 =++      +−⋅− βαβαα LLB L LF L F y ( )    +⋅ ++⋅ = βα βαα coscos 2coscos2cos 21 21211 LL LLFLF By Com isso teremos, By e Ay D.C.L AC     =−+∴= =+∴= ∑ ∑ 00 00 1FCAF CAF yyy xxx Logo teremos xC e yC também. ∑ =⊕ 0CM 0cos 2 cos 1 111 =⋅+⋅+⋅− ααα L FsenLALA xy    ⋅ ⋅⋅−⋅⋅ = α αα senL LFLA Ax y 1 111 2coscos Teremos xA ∑ =⊕ 0AM
  • 48. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 46 Exemplo 1: Sabendo que a polia tem um raio de 0,5m, determine a componente das reações em A e E. Raio da Polia é 0,5m. Reações “A” e “B”. D.C.L da estrutura ∑ =+∴= 00 xxx EAF NAEAF yyyy 25007000 =⇒=−+∴=∑ ∑ =⊕ 0AM NE E y y 450 05,47007 = =⋅−⋅ A B C D E Ax Ay Ex Ey 1m 1m 2m 3m 3m 700N
  • 49. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 47 D.C.L (Polia) ∑ =∴= NDF xx 7000 ∑ =∴= NDF yy 7000 D.C.L (Barra ABC) ∑ =⊕ 0CM 0131700 =⋅−⋅+⋅+ yx AA NAA xx 150 3 250700 −=⇒ +− = Logo: NE NC x x 150 550 = −= xA yA yC xC 700 xD 700 700 yD ∑ =++∴= 07000 xxx CAF NCCAF yyyy 25000 −=⇒=+∴=∑
  • 50. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 48 5.3 Máquinas • Máquinas são estruturas projetadas para transmitir e modificar forças. Seu principal objetivo é transformar forças de entrada em forças de saída. Exemplo 2: Analisamos as forças e momentos nas partes separadas ΣF=0; ΣM=0.
  • 51. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 49 Exemplo 3: A tesoura de poda pode ser ajustada apoiando-se o pino A em um dos vários dentes da lâmina ACE. Sabendo que forças verticais de 1500N são necessárias para cortar um ramo, determine o modulo P das forças que devem ser aplicadas nos apoios de mão quando a tesoura está ajustada como ilustrada. D.C.L(Barra AB) 3,16 A B ABF BAF 8,13 α 65,0 76,0cos º25,40 3,16 8,13 ⋅=⋅= ⋅=⋅= == ABABABY ABABABX FsenFF FFF arctg α α α
  • 52. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 50 D.C.L (ACE) 076,0 0 0150065,0 0 =⋅+ = =++⋅− = ∑ ∑ ABx x yAB y FC F CF F ∑ =⊕ 0CM NF FF AB ABAB 1740 01,3565,05,1276,05,371500 −= =⋅⋅+⋅⋅+⋅ logo NC NC y x 2631 1323 −= = D.C.L (MCD) ∑ =⊕ 0DM NPP CP x 7,150 5,87 132355,325,371500 055,325,3715005,87 =⇒ ⋅−⋅ = =⋅+⋅−⋅ P 1500 32,55 37,587,5 Cx Cy Dy Dx FAB FC E 37,535,1 12,5
  • 53. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 51 Exemplo 4: Uma barra uniforme de forma circular está presa por um pino em B e apoiada em uma parede sem atrito em A. determine as reações em A e B. ∑ = 0BM PBPBF r r r P BBAF rr rPA r rPrA yyy xxxx x x =⇒=−⇒=       −−=⇒=+⇒=       −= =      −+⋅− ∑ ∑ 00 2 00 12 0 2 0 π π π r 2r/π By Ax P Bx
  • 54. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 52 Exemplo 5: Determine as forças nas barras GJ, GK e IK da treliça. KNkT kTLF KNjT LjT M G Gxx G xG 50 0cos0 30 034 01 −= =⋅−∴= = =⋅+⋅− = ∑ ∑ θ D.C.L (estrutura) KNLL F KNLLA F KNA A M yy y xxx x x x L 45151515 0 400 0 10 041581512159 0 =⇒−−− = −=⇒=+ = = =⋅+⋅+⋅+⋅− = ∑ ∑ ∑ kNkTLkTsenkTjTF IyIGGy 4500 −=⇒=++⋅+∴=∑ θ J L TGk TIkTGj θ 3 3 4
  • 55. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 53 Exemplo 6: Usando o método dos nós, determine a força em cada barra da treliça. Indique se cada barra esta tracionada ou comprimida. D.C.L (Estrutura) ∑ = 0CM ∑ ∑ =⇒+−∴ =⇒=+∴= −=⇒=⋅+⋅ 6,16,1 300 306,136,1 yyy xxxx xx CCF KNCFCF KNFF Método dos Nós D.C.L (A) kNT TTF arctg BA DABAx 3 0cos0 07,28 5,1 8,0 = =⋅+∴= =      = ∑ θ θ BAT DAT 1,6 kNT senT F DA DA y 4,3 06,1 0 −= =⋅−− =∑ θ
  • 56. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 54 Exemplo 7: Determine a força P que deve ser aplicada ao elo articulado CDE para manter o suporte ABC na posição. D.C.L (toda estrutura) 60 09000 00 0150900150300150 0 −= =−+∴= =++∴= =⋅+⋅+−⋅− = ∑ ∑ ∑ x yyy xxx yx E A EAF PEAF PAA M D.C.L (ABC) 09000 00 0150900450300 0 =−+∴= =+∴= =⋅+⋅−⋅− = ∑ ∑ ∑ yyy xxx xy C CAF CAF AA M D.C.L (ED) 00 00 025150 =+∴= =++∴= =⋅−⋅−∴ ∑ ∑ ∑ yyy xxx yxD DEF PDEF EEM D.C.L (D.C) 00 00 025150 0 =−−∴= =+−−∴= =⋅−⋅ = ∑ ∑ ∑ yyy xxx yx D DCF PDCF CC M
  • 57. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 55 Exercícios: 1) Determine as forças em todas as Barras, e indique se ela esta sofrendo tração ou compressão. 2) Determine a força em cada barra da treliça e indique se essas barras estão sob ação de tração ou compressão. Considere que P1 = P2 = 4 kN. 3) Determine a força em cada barra da treliça e indique se essas barras estão sob tração ou compressão. Considere que P1 = 0 eP2 = 20 kN.
  • 58. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 56 4) Determine as forças em todas as barras da treliça e indique se eles estão sob tração ou compressão. 5) Determine a força em cada barra da treliça. Indique se cada barra esta tracionada ou comprimida. As forças estão em [N]. 6) Determine as forças em todas as barras da treliça e indique se eles estão sob tração ou compressão.
  • 59. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 57 7) Determine as forças nas barras BC, HC e HG para a treliça da ponte e indique se eles estão sob tração ou compressão. 8) Determine as forças nas barras GF, CF e CD para a treliça da ponte e indique se eles estão sob tração ou compressão. 7) e 8) 9) Determine as forças nos elementos CE, CD e BD da treliça e indique se eles estão sob tração ou compressão. 10) Determine as forças nas Barras CE, CD e BD, e indique se ela esta sofrendo tração ou compressão.
  • 60. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 58 11) Determine as forças nas barras DF, EF e EG da treliça. As forças estão em [N]. 12) Determine as forças nos elementos CE, CD e BD da treliça e indique se eles estão sob tração ou compressão. 13) Calcular a força suportada pela barra BH da treliça, em balanço, carregada.
  • 61. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 59 14) Calcular as forças que atuam nas barras IH, BH e BC da treliça, carregada pelas forças de 40 E 60 kN. 15) Calcular as forças que atuam nas barras CH, CB e GH da treliça em balanço. 16) No guindaste em ponte rolante mostrado, todos os elementos cruzados são barras de amarração esbeltas incapazes de suportar compressão. Determine as forças nos elementos DF e EF e encontre a reação horizontal na treliça em A. (15) (16) 17) Calcule a força no elemento HN da treliça carregada.
  • 62. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 60 18) Determine a força no elemento DK da treliça para placas de sinalização carregada. 19) As estruturas articuladas ACE e DFB estão interligadas pelas duas barras articuladas, AB e CD, que se cruzam sem estarem ligadas. Calcular a força que atua em AB. 20) A treliça é composta de triângulos retângulos isósceles. As barras cruzadas nos dois painéis centrais são tirantes esbeltos, incapazes de suportar compressão. Calcular as forças nas barras MN, GM e FN.
  • 63. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 61 21) A treliça suporta uma rampa (mostrada com uma linha tracejada) que se estende de um nível de chegada fixo próximo ao ponto F até um nível de saída fixo perto de J. As cargas mostradas representam o peso da rampa. Determine as forças nos elementos BH e CD e indique se eles estão sob tração ou compressão. 22) Determine as forças nos elementos CD, CF e CG e indique se eles estão sob tração ou compressão. 23) Determine as forças nos elementos DE, EI, FI e HI da treliça do telhado em arco e indique se eles estão sob tração ou compressão.
  • 64. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 62 24) Determinar a força suportada pelo pino B da estrutura, para as cargas aplicadas. As duas barras ABC e BD estão ligadas por este pino. 25) Determine os componentes horizontal e vertical da força em C exercida pelo elemento ABC sobre o elemento CEF. 26) Determine a maior força P que deve ser aplicada à estrutura, sabendo-se que a maior força resultante em A deve ter intensidade de 2 kN. 30
  • 65. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 63 27) Determinar a força suportada pelo pino C da estrutura carregada. 28) Determinar a força suportada pelo pino B da estrutura, para a carga aplicada de 300 kg. As duas polias estão ligadas entre si, formando uma unidade integral. 29) O elevador para carros permite que o carro seja movido para a plataforma, após o que as rodas traseiras são levantadas. Se o carregamento devido a ambas as rodas traseiras vale 6 kN, determine a força no cilindro hidráulico AB. Despreze o peso da plataforma. O elemento BCD é um suporte em ângulo reto preso por pino à plataforma em C.
  • 66. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 64 30) Uma força de 75 N é aplicada ao cabo OAB do saca-rolha. Determine a força de extração F exercida sobre a rolha. 31) Para a tesoura de poda mostrada, determine a força Q aplicada ao galho circular de 15 mm de diâmetro para uma força de aperto P=200 N. 32) O rebitador é usado para inúmeras operações de junção. Para a posição do cabo dada por α = 10º e um aperto no cabo P = 150 N, calcule a força de aperto C gerada. Observe que os pinos A e D são simétricos em relação à linha de centro horizontal da ferramenta.
  • 67. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 65 33) Um lingote de aço pesando 40kN é levantado pela tenaz. Determine as forças aplicadas nos pontos C e E da peça BCE.
  • 68. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 66 CAPÍTULO 6 6 Centróide e Baricentro Baricentro: Centro de Gravidade Centróide: Centro Geométrico gAtgVgmP ⋅⋅⋅=⋅⋅=⋅= ρρ g⋅= ρδ específicopeso espessurat específicamassadadensidade : : : δ ρ P G x y z x y ∆P x y z x y = AçoMadeira Baricentro Centróide
  • 69. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 67 6.1 Áreas e Linhas - Placas e Arames Compostos Placas Arames ∑∑ ∑∑ ⋅= ⋅= AiiYAiY AiiXAiX ∑ ∑ ⋅= ⋅= LiiYLiY LiiXLiX Alguns centróides são tabelados devidos as suas formas comuns como veremos nas tabelas a seguir. ∑= AiA x y X Y C x y C1 C2 C3 A3 A2 A1
  • 70. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 68
  • 71. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 69 Exemplo 1: i Xi Ai XiAi 1 - + - 2 + + + 3 + - - + _ A1 A2 A3 A1 A2 A3 Furo x y 0=Y , pois tem o eixo de simetria no eixo x. Ai XiAi X ∑=
  • 72. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 70 Exemplo 2: i X Y L LX LY 1 2 L 0 L 2 ²L 0 2 rL + π r2 − r⋅π ( ) rrL ⋅⋅+ π ²2r− ( ) ( ) ( ) rL rrL L X rrL L rLX iLiXLiX ⋅+ ⋅++ = ⋅++=⋅+ = ∑∑ π π ππ 2 ² 2 ² rL r Y ⋅+ − = π ²20 Exercícios: Determine o centróide da área sombreada em relação aos eixos x e y. a) b) 1 2 y xr L
  • 73. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 71 c) d) e) f) g)
  • 74. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 72 CAPÍTULO 7 7 Movimento Circular 7.1 Velocidade Angular (ωωωω) Um ponto material “P”, descrevendo uma trajetória circular de raio “r”, apresenta uma variação angular (∆ϕ) em um determinado intervalo de tempo (∆t). A relação entre a variação angular (∆ϕ) e o intervalo de tempo (∆t) define a velocidade angular do movimento. t∆ ∆ = ϕ ω Em que: ω = velocidade angular [rad/s] ∆ϕ = variação angular [rad] ∆t = variação de tempo [s] 7.2 Período (T) É o tempo necessário para que um ponto material "P",movimentando-se em uma trajetória circular de raio "r",complete um ciclo. ω π2 =T Em que: T = período [s] ω = velocidade angular [rad/s] π =constante trigonométrica 3,1415... 7.3 Frequencia (f) É o número de ciclos que um ponto material "P" descreve em um segundo, movimentando-se em trajetória circular de raio "r". A freqüência (f) é o inverso do período (T). π ω 2 1 == T f Em que: f = freqüência [Hz] T = período [s] ω = velocidade angular [rad/s] π = constante trigonométrica 3,1415...
  • 75. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 73 Radiano É o arco de circunferência cuja medida é o raio. 7.4 Rotação (n) É o número de ciclos que um ponto material "P", movimentando-se em trajetória circular de raio "r", descreve em um minuto. Desta forma,podemos escrever que: Logo: fn 60= Como π ω 2 =f , tem-se π ω 2 60 =n , portanto: π ω30 =n Em que: n = rotação [rpm] f = freqüência [Hz] ω = velocidade angular [rad/s] π =constante trigonométrica 3,1415... 7.5 Velocidade Periférica ou Tangencial (v) A velocidade tangencial ou periférica tem como característica a mudança de trajetória a cada instante, porém o seu módulo permanece constante A relação entre a velocidade tangencial (v) e a velocidade angular (ω) é definida pelo raio da peça. r v = ω , portanto: rv .ω= mas,isolando ω na expressão da rotação,obtém-se: substituindo ω na expressão anterior,obtém-se: Em que: v =velocidade periférica [m/s] π =constante trigonométrica 3,1415... n =rotação [rpm] r =raio [m] ω =velocidade angular [rad/s]
  • 76. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 74 Exercícios: 1) A roda da figura possui d= 300mm ,gira com velocidade angular (J) = 10π rad/s. Determinar para o movimento da roda: a) Período(T) b) Freqüência (f) c) Rotação(n) d) Velocidade periférica (Vp) 2) O motor elétrico da figura possui como característica de desempenho a rotação n= 1740rpm. Determine as seguintes características de desempenho do motor: a) Velocidade angular (ω) b) Período (T) c) Freqüência (f) 3) O ciclista da figura monta uma bicicleta aro 26 (d=660mm), viajando com um movimento que faz com que as rodas girem com n= 240rpm. Qual a velocidade do ciclista? V[km/h].
  • 77. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 75 CAPÍTULO 8 8 Relação de Transmissão (i) 8.1 Transmissão por Correias 1 2 2 1 2 1 2 1 1 2 T T M M n n f f d d i ===== ω ω Em que: i = relação de transmissão [adimensional] d1 =diâmetro da polia (1)(menor) [m; ...] d2 =diâmetro da polia (2) (maior) [m; ...] ω1 =velocidade angular (1) [rad/s] ω2 =velocidade angular (2) [rad/s] f1 =freqüência (1) [Hz] f2 =freqüência (2) [Hz] n1 =rotação (1) [rpm] n2 =rotação (2) [rpm] MT1 =torque (1) [N.m] MT2 =torque (2) [N.m]
  • 78. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 76 Exercício: 1) A transmissão por correias, representada na figura, é composta por duas polias com os seguintes diâmetros respectivamente: polia (1) motora d1 =100mm polia (2) movida d2 =180mm A polia (1)(motora) atua com velocidade angular ω =39π rad/ s. Determinar para transmissão: a) Período da polia (1) (T1) b) Freqüência da polia (1) (f1) c) Rotação da polia (1) (n1) d) Velocidade angular da polia (2) (ω2) e) Freqüência da polia (2) (f2) f) Período da polia (2) (T2) g) Rotação da polia (2) (n2) h) Velocidade periférica da transmissão (vp) i) Relação de transmissão (i) 8.2 Transmissão por engrenagens Diâmetro primitivo da engrenagem: do= m . z Em que: do - diâmetro primitivo m – módulo da engrenagem z – número de dentes 1 2 2 1 2 1 2 1 1 2 1 2 . . T T o o M M n n f f zm zm d d i ====== ω ω
  • 79. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 77 Observação Para que haja engrenamento entre duas engrenagens, é condição indispensável que os módulos sejam iguais. Portanto: 1 2 2 1 2 1 2 1 1 2 1 2 T T o o M M n n f f z z d d i ====== ω ω Em que: i – relação de transmissão [adimensional] d01 - diâmetro primitivo do pinhão (1) [m] d02 – diâmetro primitivo da coroa (2) [m] Z1 – número de dentes do pinhão(1) [adimensional] Z2 – número de dentes da coroa (2) [adimensional] ω1 – velocidade angular do pinhão(1) [rad/s] ω2 – velocidade angular da coroa (2) [rad/s] f1 – freqüência do pinhão (1) [Hz] f2 – freqüência da coroa (2)[Hz] n1 – rotação do pinhão(1) [rpm] n2 – rotação da coroa (2) [rpm] MT1 - torque do pinhão (1) [Nm] MT2 – torque da coroa (2) [Nm] REDUTOR DE VELOCIDADE A transmissão será redutora de velocidade quando o pinhão acionara coroa. AMPLlADOR DE VELOCIDADE A transmissão será ampliadora de velocidade quando a coroa acionar o pinhão.
  • 80. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 78 CAPÍTULO 9 9 Torção Simples Uma peça encontra-se submetida a esforço de torção,quando sofre a ação de um torque (MT) em uma das extremidades e um contratorque (MT) na extremidades oposta. 9.1 Momento Torçor ou Torque (MT) É definido por meio do produto entre a carga (F) e a distância entre o ponto de aplicação da carga e o centro da seção transversal da peça (ver figura anterior). MT=2F.S Em que: MT- torque (Nm) F – carga aplicada (N) S – distância entre o ponto de aplicação da carga e o centro da seção transversal da peça (m). Exemplo1: Determinar o torque de aperto na chave que movimenta as castanhas na placa do torno. A carga aplicada nas extremidades da haste F=80N. O comprimento da haste é l= 200mm. Resolução: MT=2Fs MT=2.80.100 MT=16000 Nmm MT=16 Nm Exemplo 2: Dada a figura, determinar o torque de aperto (MT) no parafuso da roda do automóvel. A carga aplicada pelo operador em cada braço da chave é F = 120N,e o comprimento dos braços é l=200mm. Resolução: MT=2F.l MT=2.120.200 MT=48000 Nmm MT=48 Nm
  • 81. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 79 9.2 Torque nas Transmissões Para as transmissões de movimento, o torque é definido por meio do produto entre a força tangencial (FT) e o raio(r) da peça. MT=F.r Em que: MT- Torque [Nm] FT – Força tangencial [N] r – raio da peça [m] Exemplo 3: A transmissão por correias, representada na figura, é composta pela polia motora (1) que possui diâmetro d1= 100mm e a polia movida (2) que possui diâmetro d2=240mm. A transmissão é acionada por uma força tangencial FT= 600N. Determinar para transmissão: a) Torque na polia (1) b) Torque na polia (2)
  • 82. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 80
  • 83. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 81 CAPÍTULO 10 10 Potência (P) Define-se por meio do trabalho realizado na unidade de tempo. Tem-se então: W-Watt Em que: P – potência [W] FT – força tangencial [N] Vp - velocidade periférica [m/s] No século XVIII ao inventar a máquina a vapor James Watt decidiu demonstrar ao povo inglês quantos cavalos equivalia a sua máquina. Para isso,efetuou a seguinte experiência: F= Qmáx= 76 kgf Carga máxima que o cavalo elevou com velocidade V= 1m/s. Resultado em: P=F.v P=76kgf. 1m/s P=76kgfm/s
  • 84. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 82 Como: kgf=9,80665N P=76.9,80665N.1m/s P=745,...Nm/s, a unidade Nm/s = 1W, homenagem a J. Watt, surgiu dessa experiência o HP (horsepower). hp=745,...w – cuja utilização é vedada no SI. Após algum tempo a experiência foi repetida na França constando-se que Q=75kgf. Resultou daí o cv (cavalo vapor) P=F.v P=75kgf. 1m/s P=75kgfm/s Como kgf=9,80665N Conclui-se que: P = 75 . 9,80665Nm/s p=735,5 W temporariamente permitida a utilização no SI. RELAÇÕES IMPORTANTES hp = 745,...W (horse power) – vedada a utilização no SI. cv = 735,5W (cavalo vapor) – permitida temporariamente a utilização no SI. OBSERVAÇÕES IMPORTANTES hp (horse power)-unidade de potência ultrapassada que não deve ser utilizada. cv (cavalo-vapor) – unidade de potência cuja utilização é admitida temporariamente no SI. 10.1 Torque X Potência
  • 85. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 83 10.2 Força Tangencial (FT) Exemplo 1: O elevador da figura encontra-se projetado para transportar carga máxima Cmáx= 7000N (10pessoas). O peso do elevador é Pe=1KN e o contra peso possui a mesma carga Cp=1kN. Determine a potência do motor M para que o elevador se desloque com velocidade constante v=1m/s.
  • 86. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 84 Exemplo 2: A figura dada representa um servente de pedreiro erguendo uma lata de concreto com peso Pc=200N. A corda e a polia são ideais. A altura da laje é h=8m, o tempo de subida é t= 20s. Determinar a potência útil do trabalho do operador.
  • 87. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 85 Exemplo 3: Supondo que, no exercício anterior, o operador seja substituído por um motor elétrico com potência P=0,25kW, determinar: a) Velocidade de subida da lata de concreto (vs) b) Tempo de subida da lata (ts) Exemplo 4: Uma pessoa empurra o carrinho de supermercado, aplicando uma carga F=150N,deslocando-se em um percurso de 42m no tempo de 1minuto. Determinar a potência que movimenta o veículo.
  • 88. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 86 Exemplo 5: A transmissão por correias, representada na figura, é acionada por um motor elétrico com potência P=5,5kW com rotação n=1720rpm chavetando a polia (1) do sistema. As polias possuem respectivamente os seguintes diâmetros: d1=120mm (diâmetro da polia 1) d2=300mm (diâmetro da polia 2) Desprezar as perdas. Determinar para transmissão: a) Velocidade angular da polia 1 (W1) b) Freqüência da polia 1 (f1) c) Torque da polia 1 (MT) I d)Velocidade angular da polia 2 (W2) e)Freqüência da polia 2 (f2) f) Rotação da polia 2 (n2) g)Torque da polia 2 (MT2) h)Relação de transmissão (i) i) Velocidade periférica da transmissão (Vp) j) Força tangencial da transmissão (FT)
  • 89. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 87
  • 90. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 88 Exemplo 6: A transmissão por engrenagens, representada na figura, é acionada por intermédio de um motor elétrico que possui potência P=0,75KW e gira com rotação n=1140rpm, acoplado à engrenagem (1) (pinhão). As engrenagens possuem as seguintes características: Pinhão (1) Coroa (2) Número de dentes Número de dentes Z1=25 dentes Z2=47dentes Módulo Módulo M=2mm M=2mm Desprezando as perdas, determinar para a transmissão: a) Velocidade angular do pinhão 1 (ω1) b) Freqüência do pinhão 1 (f1) c) Torque no pinhão 1 (MT1) d) Velocidade angular da coroa 2(ω2) e) Freqüência da coroa 2 (f2) f) Rotação da coroa 2 (n2) g) Torque na coroa 2 (MT2) h) Relação de transmissão (i) i) Força tangencial da transmissão (FT) j) Velocidade periférica da transmissão (v)
  • 91. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 89
  • 92. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 90
  • 93. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 91 Exercícios: 1) A transmissão por correias, representada na figura, é acionada por meio da polia 1 por um motor elétrico com potência P= 7,5kW (P = 10cv) e rotação n=1140rpm. As polias possuem respectivamente os seguintes diâmetros: d1 = 120mm (diâmetro da polia 1) d2 = 220mm (diâmetro da polia 2) Determinar para transmissão: a) Velocidade angular da polia 1(ω1) b) Freqüência da polia 1 (f1) c) Torque da polia 1 (MT1) d) Velocidade angular da polia 2 (ω2) e) Freqüência da polia 2 (f2) f)Rotação da polia 2 (n2) g) Torque da polia 2(MT2) h) Velocidade periférica da transmissão (v) i) Força tangencial (FT) j) Relação de transmissão (i)
  • 94. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 92 2) A transmissão por engrenagens, representada na figura, é acionada por meio do pinhão 1 acoplado a um motor elétrico de IV pólos com potência P= 15kW (p=20cv) e rotação n=1720rpm. As características das engrenagens são: Pinhão (engrenagem 1) Coroa (engrenagem 2) Z1=24dentes (número de dentes) Z2=73dentes (número de dentes) m=4mm (módulo) m=4mm (módulo) Determinar para a transmissão: Engrenagem 1 (pinhão) Engrenagem 2 (coroa) a) velocidade angular (ω1) d) velocidade angular (ω2) b) freqüência (f1) e) freqüência (f2) c) torque (MT1) f) rotação (n2) g) torque (MT2) Características da transmissão: h) velocidade periférica (v) i) força tangencial (FT) j) relação de transmissão (i) 3) O motor elétrico da figura possui como característica de desempenho a rotação n= 1500rpm. Determine as seguintes características de desempenho do motor: a) Velocidade angular (ω) b) Período (T) c) Freqüência (f)
  • 95. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 93 4) A transmissão por correias, representada na figura, é acionada por um motor elétrico com potência P=2,5kW com rotação n=2000rpm chavetando a polia (1) do sistema. As polias possuem respectivamente os seguintes diâmetros: d1=120mm (diâmetro da polia 1) d2=300mm (diâmetro da polia 2) Desprezar as perdas. Determinar para transmissão: a)Freqüência da polia 2 (f2) b) Rotação da polia 2 (n2) c)Torque da polia 2 (MT2) d)Relação de transmissão (i) e) Velocidade tangencial da transmissão (VT) f) Força tangencial da transmissão (FT)
  • 96. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 94 CAPÍTULO 11 11 Rendimento das Transmissões (ηηηη) Em qualquer tipo de transmissão, é inevitável a perda de potência que ocorre nas engrenagens, mancais, polias, correntes, rodas de atrito, originada pelo atrito entre as superfícies, agitação do oléo lubrificante, escorregamento entre correia e polia,etc. Desta forma, constata-se que a potência de entrada da transmissão é dissipada em parte sob a forma de energia, transformada em calor, resultando a outra parte em potência útil geradora de trabalho. Pe = Pu + Pd Em que: Pe - potência de entrada [W;kW;...] Pu – potência útil [W;kW;...] Pd – potência dissipada [W;kW;...] 11.1 Rendimento das transmissões Transmissão por parafuso sem fim
  • 97. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 95 11.2 Perdas nas Transmissões A transmissão da figura é acionada por um motor elétrico com potência (P) e rotação (n). As polias possuem os seguintes diâmetros: d1 – diâmetro da polia 1 d2 – diâmetro da polia 2 As engrenagens possuem os seguintes números de dentes: Z1 – número de dentes da engrenagem 1 Z2 – número de dentes da engrenagem 2 Z3 – número de dentes da engrenagem 3 Z4 – número de dentes da engrenagem 4 Os rendimentos: ηc - rendimento da transmissão por correias ηe - rendimento da transmissão por engrenagens ηm - rendimento do par de mancais Exemplo 1: Determinar as expressões de: a) Potência útil nas árvores (1, 2 e 3) b) Potência dissipada/estágio c) Rotação das árvores(1, 2 e 3) d) Torque nas árvores(1, 2 e 3) e) Potência útil do sistema f) Potência dissipada do sistema g) Rendimento da transmissão
  • 98. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 96
  • 99. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 97 Exemplo 2: A transmissão da figura é acionada por um motor elétrico com potência P=5,5kW (P=7,5CV) e rotação n=1740 rpm. As polias possuem os seguintes diâmetros: d1=120mm d2 = 280mm As engrenagens possuem os seguintes números de dentes: Z1= 23 dentes; Z2= 49 dentes; Z3=27 dentes; Z4= 59 dentes Os rendimentos são: ηc = 0,97 (Transmissão por correia em V) ηe = 0,98 (Transmissão/par de engrenagens) ηm = 0,99 (Par de mancais (rolamentos)) Determinar na transmissão: a) Potência últil nas árvores 1, 2 e 3. b) Potência dissipada/estágio c) Rotação das árvores 1, 2 e3. d) Torque nas árvores 1, 2 e 3 e) Potência útil do sistema f) Potência dissipada do sistema g) Rendimento da transmissão
  • 100. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 98
  • 101. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 99 Exercícios: 1) A transmissão da figura é acionada por um motor elétrico compotência P=3,7kW (p= 5cv) e rotação n=1710rpm. Os diâmetros das polias são: d1=100mm(polia motora) d2= 250mm(polia movida) O número de dentes das engrenagens: Z1= 21dentes; Z2= 57dentes; Z3= 29dentes e Z4= 73dentes Rendimentos dos elementos de transmissão: ηc= 0,97 (transmissão por correias) ηe= 0,98 (transmissão por engrenagens) ηm= 0,99 [par de mancais (rolamentos)] Determinar para transmissão: a) Potência útil nas árvores 1, 2 e 3 b) Potência dissipada/estágio c) Rotação das árvores 1, 2 e 3 d) Torque nas árvores 1, 2 e 3 e) Potência útil do sistema f) Potência dissipada do sistema g) Rendimento da transmissão
  • 102. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 100 2) 3) A transmissão da figura é acionada por um motor elétrico com potência P=5,0kW e rotação n=1500 rpm. As polias possuem os seguintes diâmetros: d1=100mm d2 = 200mm As engrenagens possuem os seguintes números de dentes: Z1= 23 dentes; Z2= 59 dentes; Z3=27 dentes; Z4= 49 dentes Os rendimentos são: ηc = 0,97 (Transmissão por correia em V) ηe = 0,98 (Transmissão/par de engrenagens) ηm = 0,99 (Par de mancais (rolamentos)) Determinar na transmissão: a) Torque na saída do sistema. b) Potência útil do sistema. c) Potência dissipada do sistema. d) Rendimento da transmissão.
  • 103. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 101 4) A transmissão da figura é acionada por um motor elétrico com potência P = 5,1 kW e rotação de n=1930 rpm. Os diâmetros das polias são: d1=225mm(polia motora) d2= 450mm(polia movida) O número de dentes das engrenagens de módulo 2mm: Z1= 23dentes, Z2= 73dentes; Z3= 29dentes, Z4= 57dentes; Z5= 17dentes e Z6= 43dentes Rendimentos dos elementos de transmissão: ηc= 0,97 (transmissão por correias) ηe= 0,98 (transmissão por engrenagens) ηm= 0,99 [par de mancais (rolamentos)] Determinar para transmissão: a) Potência útil nos eixos I, II, III e IV; b) Rotação nos eixos I, II, III e IV; c) Torque nos eixos I, II, III e IV; d) Freqüência nos eixos I, II, III e IV; e) Velocidade angular nos eixos I, II, III e IV; f) Velocidade Tangencial de cada transmissão (da polia 1 para 2, e das engrenagens de 1 para 2, 3 para 4 e 5 para 6); g) Força tangencial da de cada transmissão (da polia 1 para 2, e das engrenagens de 1 para 2, 3 para 4 e 5 para 6); h) Potência útil do sistema; i) Potência dissipada do sistema; j) Rendimento da transmissão; k) Qual a relação de transmissão do sistema (motor até a saída da transmissão)?
  • 104. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 102 5) A transmissão da figura é acionada por um motor elétrico com potência P = 9,5 kW e rotação de n=2500 rpm. Os diâmetros das polias são: d1=125mm(polia motora) d2= 400mm(polia movida) O número de dentes das engrenagens de módulo 2mm: Z1= 17dentes, Z2= 31dentes; Z3= 21dentes, Z4= 47dentes; Z5= 27dentes e Z6= 53dentes Rendimentos dos elementos de transmissão: ηc= 0,97 (transmissão por correias) ηe= 0,98 (transmissão por engrenagens) ηm= 0,99 [par de mancais (rolamentos)] Determinar para transmissão: a) Potência útil nos eixos I, II, III e IV; b) Rotação nos eixos I, II, III e IV; c) Torque nos eixos I, II, III e IV; d) Freqüência nos eixos I, II, III e IV; e) Velocidade angular nos eixos I, II, III e IV; f) Velocidade Tangencial de cada transmissão (da polia 1 para 2, e das engrenagens de 1 para 2, 3 para 4 e 5 para 6); g) Força tangencial da de cada transmissão (da polia 1 para 2, e das engrenagens de 1 para 2, 3 para 4 e 5 para 6); h) Potência útil do sistema; i) Potência dissipada do sistema; j) Rendimento da transmissão; k) Qual a relação de transmissão do sistema (motor até a saída da transmissão)?
  • 105. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 103 CAPÍTULO 12 12 Noções de Resistência dos Materiais 12.1 Introdução A Resistência dos materiais é um ramo da mecânica que estuda as relações entre cargas externas aplicadas a um corpo deformável e a intensidade das forças internas que atuam dentro do corpo. Abrangência Cálculo da deformação do corpo Estudo da estabilidade do corpo quando ele está submetido a forças externas. Nomes Mecânica dos materiais e Mecânica dos corpos deformáveis Corpos sólidos considerados: Barras com carregamentos axiais, eixos em torção, vigas em flexão e colunas em compressão. Por que o entendimento do comportamento mecânico é essencial? Pense nos parafusos que são usados no acoplamento da estrutura apresentada na figura ao lado. Forças Externas: Força de superfície ou força de corpo. Forças de superfície: Causadas pelo contato direto de um corpo com a superfície de outro ⇒ Força distribuída na área de contato entre os corpos. Caso particular: Carga concentrada Por que? Forças de Corpo: Um corpo exerce uma força sobre outro, sem contato físico direto entre eles. Ex: Efeitos causados pela gravidade da terra…etc
  • 106. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 104 Os objetivos do estudo da resistência dos materiais são: Analisar o comportamento dos elementos ou estruturas quando estes estão sendo solicitados; Determinar as propriedades dos elementos (dimensões, forma, material) que o fazem ser capaz de resistir à ação destas solicitações; Descobrir as possíveis causas das falhas dos elementos. 12.2 Esforços externos ou carregamentos Os esforços externos que estão interagindo com o elemento a ser estudado, devem ser determinados com certa exatidão, para que o projeto seja valido. Os esforços externos podem ser divididos em: Forças externas; Momentos externos. Forças externas Quanto ao ponto de aplicação Quanto ao fato de serem ação ou reação Quanto em relação ao eixo Quanto à direção relativa a uma seção Quanto ao tipo de carregamento Força Normal N e Força Cortante Q A força normal N é perpendicular a superfície ou seção, enquanto que a força cortante Q é tangencial a esta superfície ou seção. Momentos externos Momentos de torção Momentos de flexão
  • 107. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 105 Momento de Flexão O momento fletor tende a encurvar as barras ou eixos MOMENTO DE TORÇÃO O momento torçor ou torque tende a produzir giro ou deslizamento entre as seções de um eixo.
  • 108. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 106 SOLICITAÇÕES MECÂNICAS COMBINAÇÃO 12.3 Solicitações Simples São Cinco os tipos básicos de carregamentos (forças e momentos) que podem submeter os elementos de máquinas. Tração: Cabo de aço; Compressão: Latas de refrigerantes empilhadas; Corte ou cisalhamento: Chapas parafusadas, Corte de chapas (guilhotina); Flexão: Viga ou eixo; Torção: Chave apertando um parafuso. 12.3.1 Tração
  • 109. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 107 12.3.2 Compressão 12.3.3 Cisalhamento ou corte Cisalhamento ou corte ocorre quando se aplica um esforço tangencial à área da seção transversal da peça de modo a produzir nesta área uma pressão maior que a máxima pressão (tensão admissível) suportada pela peça em questão. 12.3.4 Flexão Flexão quando se aplica um esforço cortante na peça, as fibras superiores da peça serão comprimidas e as fibras inferiores serão tracionadas, ou vice-versa.
  • 110. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 108 12.3.5 Torção Torção quando atuar um torque em uma de suas extremidades e um contra-torque na extremidade oposta. Assim, tendem a produzir rotação sobre o eixo longitudinal da barra. Resumo
  • 111. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 109 12.4 Solicitações Compostas Combinações das solicitações simples aplicadas em peças e elementos de máquinas. Eixo de transmissão Barra em forma de L Elo de corrente Viga e tirante
  • 112. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 110 12.5 Ensaio de Tração 12.5.1 Tensão Deformação
  • 113. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 111 Deformação plástica - dutilidade
  • 114. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 112 12.6 Modos de falhas trativas: Material Frágil Material Dúctil 12.7 Tensões Tensão: Esforço interno distribuído ao longo de uma seção da peça mecânica. Parece Pressão mas não é!!! Tensão Normal: σ = P/A (Força Normal); Tensão Cisalhante: Esforço interno para suportar força de corte ou cisallhamento distribuido ao longo da seção da peça Tensão Cisalhante: τ = Q/A;
  • 115. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 113 12.8 Módulo de Elasticidade Obs.: È Comum encontrar-se o módulo de elasticidade em Mpa (megapascal)
  • 116. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 114 12.9 Momento de Inércia, Raio de Giração e Módulo de Resistência:
  • 117. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 115
  • 118. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 116 CAPÍTULO 13 13 Tração e compressão 13.1 Carregamento Axial 13.2 Deformação sob Carregamento Axial Da lei de Hooke: AE P E E === σ εεσ Da definição de extensão: L δ ε = A deformação é expressa por: AE PL =δ Para variações da área da secção, propriedades e/ ou cargas aplicadas: ∑= i ii ii EA LP δ
  • 119. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 117 13.3 Tensão Normal σσσσ Lei de Hooke (cientista inglês – 1678) 13.4 Deformação Longitudinal (ε)
  • 120. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 118 13.5 Deformação Transversal (εt) 13.6 Estricção 13.7 Coeficiente de Segurança k
  • 121. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 119 Tensão (pressão) de escoamento : quando se entra na deformação permanente do material que está submetido a esforços de tração ou compressão. Esta situação ocorre após o limite máxima da deformação elástica Tensão de ruptura : quando se excede à máxima tensão (pressão) do material que está submetido a esforços de tração ou compressão. Neste momento ocorre a estricção. Exemplo 1:
  • 122. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 120
  • 123. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 121 Exemplo 2: A barra rígida BDE rígido é suportada por dois elementos AB e CD. O elemento AB é feito em alumínio (E = 70 GPa) e tem uma área de secção transversal de 500 mm2 . O elemento CD é de aço (E = 200 GPa) e tem uma área de secção transversal de 600 mm2 . Para uma força de 30 kN aplicada na extremidade da barra BDE, determine o deslocamento: a) do ponto B, b) ponto D, c) ponto E. Resolução:
  • 124. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 122 Descolamento do ponto D: ( ) mm7.73 mm200 mm0.300 mm514.0 = − = = ′ ′ x x x HD BH DD BB ( ) mm928.1 mm7.73 mm7.73400 mm300.0 = + = = ′ ′ E E HD HE DD EE δ δ ↓= mm928.1Eδ
  • 125. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 123 Exercício 1: Exercício 2: Exercício 3:
  • 126. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 124 CAPÍTULO 14 14 Flexão • Vigas são barras comprimidas e retas com área da seção transversal constante que suporta cargas aplicadas perpendicularmente ao seu eixo longitudinal. • Exemplos: Apoio dos pinos de edifícios, tabuleiro de uma ponte ou asa de avião, o eixo de um automóvel, a lança de um guindaste, etc. • Vigas desenvolve força cortante e momento fletor que variam de ponto para ponto ao longo do seu eixo. • Consideremos elementos retos de seção transversal simétrica, feitos de material homogêneo linear elástico. São classificadas conforme seus apoios: 14.1 Diagrama de Força Cortante e Momento Fletor Tipos de Carregamento em uma Viga: o Carga concentrada: quando um carregamento é aplicada sobre uma área muito pequena. o Carga distribuída: quando o carregamento está distribuído pelo eixo da viga, são medidos pela sua intensidade que é expressa em unidades de força por unidade de distancia, por exemplo [N/m]. Podem ser Carregamento uniformemente distribuído, ou Carregamento com variação linear. o Binário: é um momento que atua sobre uma força. o Quando uma viga sofre a ação de forças e momentos, são criadas tensões e deformações no seu interior. Para determinar essas tensões e deformações, primeiro devemos encontrar as forças e os momentos internos que atuam nas seções transversais da viga. Sabendo-se calcular o valor do momento fletor e da força cortante nas infinitas seções de uma viga torna-se possível traçar diagramas ou gráficos que representem estes esforços. Viga em balanço ( ou viga engastada): Viga apoiada em apenas uma das extremidades por um apoio do tipo engastado. Viga simplesmente apoiada: Viga apoiada em uma das extremidades por um apoio articulado fixo e na outra por um apoio articulado móvel. Viga apoiada com extremidade em balanço: Viga simples que se prolonga além de um ou dos dois apoios.
  • 127. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 125 A fim de projetar viga adequadamente é necessário determinar o cisalhamento e momento máximos. Convenção de sinais: A força de cisalhamento V e o momento fletor M são positivos no sentido mostrado: 14.2 Tensão de Flexão A Máxima tensão de flexão (σmax) produzido pelo momento Maximo será inferior à tensão admissível à flexão do material. W M I hM ff adm ==≥ . maxσσ Mf – Momento fletor máximo (Nmm); h – altura da linha neutra ate a extremidade (mm); I - momento de inércia da secção (mm4 ); σ - Tensão normal num ponto na fibra externa (N/mm²); W – Modulo de Resistencia da transferência ( N/mm). h I W =
  • 128. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 126 Exemplo 1: Desenhar os diagramas de força cortante e momento fletor da viga mostrada
  • 129. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 127 Exemplo 2: Momento Fletor e Esforço Cortante
  • 130. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 128 Exercícios: 1) Determine o Momento Fletor Máximo aplicado na viga que será utilizado para calcular a Máxima tensão de flexão (σmax) 2) Determine o Momento Fletor Máximo aplicado na viga que será utilizado para calcular a Máxima tensão de flexão (σmax) 3) 4)
  • 131. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 129 5)
  • 132. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 130 CAPÍTULO 15 15 Torção Torção refere-se ao giro de uma barra quando carregada por torques que tendem a reproduzir rotação sobre o eixo longitudinal da barra. Exemplos de barras em torção: O Giro de uma chave de fenda, eixos propulsores, brocas de furadeiras, etc. 15.1 Transmissão de Potência Eixos e tubos com seção transversal circular são, com freqüência, empregados para transmitir potência gerada por maquinas. A potência é transmitida através de um movimento rotatório do eixo e a quantidade de potência transmitida depende do torque e da velocidade de rotação Um problema comum de dimensionamento é determinar o tamanho do eixo de tal forma que ele transmita uma quantidade especifica de potência numa velocidade de rotação especicada sem exceder as tensões admissíveis do material.
  • 133. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 131 15.1.1 Torção em Eixos de Secção Circular • A turbina exerce sobre o eixo de transmissão o momento torçor T. • O eixo transmite o momento T ao gerador. • O gerador reage, exercendo sobre o eixo um momento igual e contrário T’. 15.2 Análise das Tensões num Eixo O momento torçor T tem a mesma intensidade que a soma dos momentos dF, em relação ao centro: O momento torçor produz tensões tangenciais nas faces perpendiculares ao eixo da barra. Condições de equilíbrio requerem a existência de tensões tangenciais nas duas faces formadas pelos planos que passam pelo eixo. Considerando o eixo constituído por lâminas finas, verifica-se o deslizamento das lâminas devido à aplicação de momentos, com a mesma intensidade e sentidos opostos, nas extremidades da peça.
  • 134. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 132 15.3 Deformações nos Eixos de Secção Circular O ângulo de torção é proporcional a T e ao comprimento L do eixo: L T ∝ ∝ φ φ Nos eixos circulares, as secções transversais mantêm-se planas e não se deformam. A distorção numa barra circular varia linearmente com a distância ao eixo da barra. L L ρφ γρφγ == ou maxmax e γ ρ γ φ γ cL c ==
  • 135. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 133 15.4 Tensão de Torque No caso de ter tensão de cisalhamento ( maxτ ) produzido pelo torque Maximo será inferior a tensão admissível à torção do material. W M J rM tt adm ==≥ . maxττ Mf – Momento fletor máximo (Nmm); r – Raio (mm); J – Momento Polar de inércia da seção (mm4 ); τ - Tensão cisalhante na fibra externa (N/mm²); W – Modulo de Resistencia da transferência ( N/mm). r J W = 15.5 Tensões no Regime Elástico A partir da equação anterior: maxγ ρ γ G c G = Aplicando a lei de Hooke, γτ G= , vem: maxτ ρ τ c =
  • 136. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 134 A tensão tangencial varia linearmente com a distância ao eixo da barra. Recordar que: J c dA c dAT max2max τ ρ τ ρτ ∫∫ === Fórmulas de torção no regime elástico: emax J T J Tc ρ ττ == 4 2 1 cJ π= ( )4 1 4 22 1 ccJ −= π
  • 137. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 135 15.6 Modos de Falha Torcionais Os materiais ductéis geralmente rompem por tensões tangenciais. Material ductile: Material frágil:
  • 138. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 136 Exemplo 1:
  • 139. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 137 Exercício de Esforços Internos de Torção Para o carregamento indicado e considerando que os apoios A e B permitem ao eixo girar livremente, represente o diagrama de esforços internos de torção.
  • 140. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 138 Exemplo 2 O eixo circular BC é oco e tem diâmetros de 90mm e 120mm, respectivamente interno e externo. Os eixos AB e CD são maciços, com diâmetro d. Determinar: a) O valor máximo e mínimo da tensão tangencial no eixo BC; b) O diâmetro necessário nos eixos AB e CD, se a tensão admissível no material for de 65 MPa. Resolução: Considerar secções transversais nos eixos AB e BC, e recorrer ao equilíbrio estático: ( ) CDAB ABx TT TM =⋅= −⋅==∑ mkN6 mkN60 ( ) ( ) mkN20 mkN14mkN60 ⋅= −⋅+⋅==∑ BC BCx T TM
  • 141. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 139 Aplicar as fórmulas de torção no regime elástico, para determinar as tensões tangenciais no eixo BC: ( ) ( ) ( )[ ] 46444 1 4 2 m1092.13045.0060.0 22 − ×=−=−= ππ ccJ ( )( ) MPa2.86 m1092.13 m060.0mkN20 46 2 2max = × ⋅ === − J cTBC ττ MPa7.64 mm60 mm45 MPa2.86 min min 2 1 max min = == τ τ τ τ c c MPa7.64 MPa2.86 min max = = τ τ Aplicar a fórmula de torção no regime elástico e determinar o diâmetro necessário: m109.38 mkN6 65 3 3 2 4 2 max − ×= ⋅ =>−== c c MPa c Tc J Tc ππ τ mm8.772 == cd
  • 142. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 140 15.7 Ângulo de Torção no Regime Elástico L cφ γ =max Aplicando a Lei de Hooke, JG Tc G == max max τ γ Igualando as expressões e resolvendo em ordem ao ângulo, JG TL =φ ∑= i ii ii GJ LT φ 15.8 Eixos Estaticamente Indeterminados Dadas as dimensões e o momento torçor aplicado, determinar as reacções ao momento em A e B. A partir do diagrama de corpo livre, ftlb90 ⋅=+ BA TT Conclui-se que o problema é estaticamente indeterminado. Dividir o eixo em duas secções, as quais devem ter deformações compatíveis, AB BA T JL JL T GJ LT GJ LT 12 21 2 2 1 1 21 0 ==−=+= φφφ Substituir na equação de equilíbrio inicial, ftlb90 12 21 ⋅=+ AA T JL JL T .
  • 143. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 141 Exercícios: 1) Determine qual será a Torção Máxima aplicado no eixo que será utilizado para calcular a Máxima . tensão de cisalhamento (τmax) a) b)
  • 144. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 142 2) 3) 4)
  • 145. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 143 CAPÍTULO 16 16 Flambagem A flambagem ou encurvadura é um fenômeno que ocorre em peças esbeltas, quando submetidas a um esforço de compressão axial. Acontece quando a peça sofre flexão transversalmente devido à compressão axial. A flambagem é considerada uma instabilidade elástica, assim, a peça pode perder sua estabilidade sem que o material já tenha atingido a sua tensão de escoamento. Este colapso ocorrerá sempre na direção do eixo de menor momento de inércia de sua seção transversal. A tensão crítica para ocorrer a flambagem não depende da tensão de escoamento do material, mas de seu módulo de Young. 16.1 Módulo de Young O módulo de Young ou módulo de elasticidade é um parâmetro mecânico que proporciona uma medida da rigidez de um material sólido. Obtém-se da razão entre a tensão (ou pressão) exercida e a deformação unitária sofrida pelo material. Isto é, 16.2 Carga Crítica de Flambagem Pcr - carga crítica de flambagem: faz com que a peça comece a flambar. Equilíbrio estável: P < Pcr - não há flambagem Equilíbrio indiferente: P = Pcr Equilíbrio instável: P > Pcr
  • 146. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 144 Para determinar se uma peça irá sofrer flambagem ou compressão, temos que calcular o seu índice de esbeltez e compará-lo ao índice de esbeltez crítico. Esse índice é padronizado para todos os materiais. Se o índice de esbeltez crítico for maior que o índice de esbeltez padronizado do material, a peça sofre flambagem, se for menor, a peça sofre compressão. 16.3 Indice de Esbeltez Mede o quão esbelto é um pilar. Ele mede a facilidade ou a dificuldade que um pilar tem de flambar. O índice de esbeltez de uma peça é dado por: Consideramos uma barra homogênea de comprimento inicial L preso por pinos em ambas as extremidades, à qual é aplicada uma força axial de compressão de módulo P. Supomos que a barra se flexiona formando uma pequena flecha para direita. Esta flexão acarreta que a distância entre as extremidades seja ligeiramente reduzida de L para A. Denotamos então por u(x) a deflexão horizontal da curva central, onde x varia entre 0 e A. O momento da força P à altura x é dado então por: Da teoria de vigas, sabe-se que o momento fletor se relaciona com o raio de curvatura da barra de seguinte forma:
  • 147. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 145 16.4 Flambagem de Colunas Carga Excêntrica – Fórmula Secante M - Momento P - Força Axial e - Excentricidade O conjugado M sempre irá provocar flexão na coluna;
  • 148. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 146 17 Referencias Bibliográficas: MELCONIAN, SARKIS. Mecânica técnica e resistência dos materiais. Editora Érica, ISBN-10: 8571946663, 2000. Mecânica Vetorial para Engenheiros : Estática - Ferdinand P. Beer, E. Russell Johnston Jr, Elliot R. Eisenberg e William E. Clausen, 7 Ed. Mc Graw Hill, 2006. Mecânica: Estática - J. L. Merian, L.G. Kraige, 5 Ed. LTC, 2004. Estática; Mecânica para Engenharia – R. C. Hibbeler, 10 Ed. Pearson, 2005. Estática - Arthur P. Boresi, Richard J. Schmidt – 1 Ed. Thomson Learning, 2003. Resistência dos Materiais - E. Russell Johnston, Jr. Ferdinand P. Beer e John T. Dewolf, 4 Ed. Mcgraw Hill, 2007. Resistência dos Materiais - R. C. Hibbeler, 5 Ed. Pearson, 2004. Resistência dos Materiais - Manoel Henrique campos Botelho, 1 Ed. Edgard Blucher, 2008. Mecânica dos Materiais - James M. Gere, 1 Ed. Thomson Learning, 2003.
  • 149. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 147 Respostas dos Exercícios: Capitulo 2 3)P. max=240N 5)para João subir: AC=377,9 e AB=755,81 para os dois descerem: AC=726,74 e AB=1453,48 6)ABC=1907,5 e DE=309,96 Capitulo 3 1)16,5N 2)Mo= -2579,01 N.m 3)Ma= 1414,20 N.m 4)Ma = 19,90 kN.m 5)f = 160 N 6)Ma = - 16,281kN.m 7)Mb = -457.52 N.mm 8)W = 120 N Capitulo 4 1)A = 7,35 kN e B = 16,65kN 4)A = 11134,10N e B = 12034,81N 5)A = 72,72N e B = 200N 6)A = 5240,80N e B 6535,22N 7)A = 8kN e B = 7,20kN 8)A = 85N e B = 115 N 9) Ax = 296,19N, Bx = - 46,19N e By = 273,20N Capitulo 5 1)AB = 25kN (T), BD = 25kN (T), AC = -35,35kN (C) , BC = 100kN (T) e CD = - 106,06kN (C) 2)AB=12kN (T) , ED= -6,96kN (C), EB= -4kN (C), DC= -6,96kN (C), BD= 4kN (T) e BC= 8kN (T)
  • 150. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 148 3)AB= -28,28kN (C), AF= -10kN (C), GB=30kN (T), BC=10kN (T), BF=19,99kN (T), EF=9,99kN (T), EC=20kN (T), ED=10kN (T), CF= -28,28kN (C)e CD= -14,14 (C) 4)EC= 50kN (T) , ED=200kN (T), CD=0, BD=0, EC=50kN (T), BC=0, AC=O E AB=0 5)AC=0, AB=-300N (C), BD= 120N (T), BC= 323,10N (T), CE= -20N (C), CD= 53,85N (T), DF= 160N (T), DE= -53,85N (C), e EF= - 700,11N (C) 6)AC= -282,85kN (C), AB= 200kN (T), CD= -70,71kN (C), CE= -150kN (C), DF=332,85kN (T), DE=150kN (T), BC=0,BD= -282,85kN (C), EF= -235,36kN (C) 7) BC= 20,5kN (T), HC= 12,02kN (T) e HG= -29kN (C) 10)CD=88,38kN (T), BD=125kN (T), CE= -62,50kN (C) 11)DF= -62,50N (C), EF=194,85N (T), e EG= -34,93N (C) 12)BD=87,5kN (T), CD= -17,68kN (C), CE= -75kN (C) 24)Bx= 173,20kN e By= -100kN 25)Cx= -75N e Cy=200N 26)P= 0,742kN 27)Cx=1200N e Cy= 1800N 29) AB= - 15,88kN 30)F= - 226,68N 33)C= 22,8kN, Ex= - 22,8kN e Ey= -20kN Capitulo 6 1) a) X=50mm e Y= 37,90mm c)X=66,82 e Y=67,32 d)X=4,62pol e Y=1pol e)X=2,53pol e Y=4,62pol f) X=2a e Y= 0,58a g)X= 2a e Y= 2a Capitulo 7 1) a) T=0,2s; b) f=5Hz; c) n=300rpm; d) v=4,71 m/s 2) a) ω = 58π rad/ s; b) T = 1/29 s ou 0,0345 s; c) f = 29Hz 3) v = 30km/h
  • 151. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 149 Capitulo 8 1) a) T=0,0512s b) f1= 19,5Hz c) n1=1170rpm d) ω2=21,67π rad/s e) f2=10,835Hz f) T2=0,0922s g) n2=650rpm h) v=6,12 m/s i) i=1,8 Capitulo 10 1) 2)
  • 152. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 150 Capitulo 11 1) 2)
  • 153. Mecânica Aplicada e Resistência dos Materiais – IFES – Campus São Mateus – Prof. João Paulo Barbosa 151 4) a)PI=4897,53W, PII=4751,58W, PIII= 4609,98W e PIV= 4772,60W b)nI= 965 rpm, nII=304,04rpm, nIII = 154,68rpm e nIV = 61,15rpm c)MTI= 48,46 N.m, MTII=149,23 N.m, MTIII= 284,6 N.m e MTIV= 745,29 N.m c) f1=16,08 Hz, f2=5,06 Hz, f3= 2,58 Hz e f4= 1,01 Hz d) e)WI=32,16 rad/s, WII= 10,12 rad/s, WIII= 5,16 rad/s e WIV=2,02 rad/s f)VTp1/2=3,618m/s, VTe1/2= 0,738 m/s, VTe3/4=0,29 m/s e VTe5/6= 0,086 m/s g)FTI=215,37N, FTII=2044,24N, FTIII= 4992,98N e FTIV=17332,32N h)P util= 4472,60W i)P disc = 627,4W j)η=0,87 (87%) k)i= 31,56 rpm