Ivry Diaporama Intervention Jean Jouzel

1,358 views

Published on

Paléoclimatologue et glaciologue de renom, vice-président du Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC), prix Nobel de la paix en 2007, Jean Jouzel a donné une conférence sur le réchauffement climatique à Ivry. Elle ouvrait l'exposition dédiée au Plan climat énergie de la Ville à l'Espace Gérard Philipe (du 14 janvier au 2 avril 2010).
http://www.ivry94.fr/environnement-urbanisme/actualites/jean-jouzel-un-nobel-de-la-paix-a-ivry/

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,358
On SlideShare
0
From Embeds
0
Number of Embeds
242
Actions
Shares
0
Downloads
17
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Residue is included in the land sink
  • En France, le réchauffement sur le dernier siècle est plus marqué sur le sud que sur le nord. Les températures minimales se sont plus réchauffées que les températures maximales.
  • Figure 6.6. Relative vulnerability of coastal deltas as shown by the indicative population potentially displaced by current sea-level trends to 2050 (Extreme > 1 million; High =1 million to 50,000; Medium 50,000 to 5,000). Nearly 300 million people inhabit a sample of 40 deltas globally, including all the large megadeltas. Much of the population of these 40 deltas is at risk through coastal erosion and land loss, primarily as a result of decreased sediment delivery by the rivers, but also through accentuated rates of sea-level rise. WG2 Chapter 6 p.327 The population in the near-coastal zone (i.e., within 100 m elevation and 100 km distance of the coast) has been calculated at between 600 million and 1.2 billion; 10% to 23% of the world’s population. Globally, coastal populations are expected to increase rapidly, while coastal settlements are at increased risk of climate change-influenced sea-level rise. WG2 Chapter 7 p.372
  • Figure 9.1. Zonal mean atmospheric temperature change from 1890 to 1999 (  C per century) as simulated by the PCM model from (a) solar forcing, (b) volcanoes, (c) well-mixed greenhouse gases, (d) tropospheric and stratospheric ozone changes, (e) direct sulphate aerosol forcing and (f) the sum of all forcings. Plot is from 1,000 hPa to 10 hPa (shown on left scale) and from 0 km to 30 km (shown on right). See Appendix 9.C for additional information. Based on Santer et al. (2003a).
  • Figure TS.7. Observed surface (D) and upper air temperatures for the lower troposphere (C), mid- to upper troposphere (B) and lower stratosphere (A), shown as monthly mean anomalies relative to the period 1979 to 1997 smoothed with a seven-month running mean filter. Dashed lines indicate the times of major volcanic eruptions. {Figure 3.17}
  • Figure 9.9. Estimated contribution from greenhouse gas (red), other anthropogenic (green) and natural (blue) components to observed global mean surface temperature changes, based on ‘optimal’ detection analyses (Appendix 9.A). (a) 5 to 95% uncertainty limits on scaling factors (dimensionless) based on an analysis over the 20th century, (b) the estimated contribution of forced changes to temperature changes over the 20th century, expressed as the difference between 1990 to 1999 mean temperature and 1900 to 1909 mean temperature (°C) and (c) estimated contribution to temperature trends over 1950 to 1999 (°C per 50 years). The horizontal black lines in (b) and (c) show the observed temperature changes from the Hadley Centre/Climatic Research Unit gridded surface temperature data set (HadCRUT2v; Parker et al., 2004). The results of full space-time optimal detection analyses (Nozawa et al., 2005; Stott et al., 2006c) using a total least squares algorithm (Allen and Stott, 2003) from ensembles of simulations containing each set of forcings separately are shown for four models, MIROC3.2(medres), PCM, UKMO-HadCM3 and GFDL-R30. Also shown, labelled ‘EIV’, is an optimal detection analysis using the combined spatio-temporal patterns of response from three models (PCM, UKMO-HadCM3 and GFDL-R30) for each of the three forcings separately, thus incorporating inter-model uncertainty (Huntingford et al., 2006).
  • AT THE BOTTOM, this figure shows the same summary of observational overlap - darker grays denote more proxy agreement - that we were just looking at in orange colors. NOTE, that in this graphic, we are only looking at the LAST 1000 YEARS. SUPERIMPOSED are decadally-smoothed temperatures simulated using THREE climate models forced by the climate forcing shown in the UPPER PANEL IN THE UPPER PANEL, the hypothesized climate forcings of the last 1000 years are shown. These include, VOLCANIC, SOLAR, and ANTHROPOGENIC - labeled “other” VOLCANIC - describe, ALL CLIMATE MODEL SIMULATIONS plotted at bottom used this same record of volcanic forcing TWO time series of inferred SOLAR FORCING are change: 1) a higher amplitude time series (BLUE) assuming a 0.25% total amplitude from the so-called Maunder Minimum of the 17th century to present (commonly used in many simulations since the TAR) and a lower amplitude series (BROWN) with a 0.08% amplitude MM to present. This latter lower-amplitude time series is that thought most consistent with the new estimates of solar variability discussed in Chapter 2 ALL OTHER - natural, slowly varying GHG up into the 19th century where ANTROPOGENIC INCREASES IN GHG AND TROPOSPHERIC AEROSOLS Thus, at the BOTTOM, - thick/thin lines and DOTTED Lines (natural - vol and solar only). The MOST IMPORTANT element of the COMPARISON between simulated and observed is the GOOD DEGREE OF MATCH BACK 7 OR 8 CENTURIES, and the implication that volcanic forcing to a large degree, and solar forcing, to a smaller degree, appear to explain the major changes in NH Temp over pre-industrial time, WHEREAS, climate of the 20th century cannot be simulated with natural forcing only (dotted lines), and require natural PLUS anthropogenic forcing (solid lines) - as will be discussed to a greater degree in the SCIENCE PRESENTATION ON ATTRIBUTION. The LACK OF GOOD MATCH BEFORE 12TH CENTURY suggests the data quality (obs climate and forcing) isn’t as well known for prior to this time. (could go farther - mismatch more likely due to poor obs climate - volc and solar prob known as well as 13-15th centuries?) ORIGINAL BULLET FROM SPM: It is very likely that climate changes of at least the seven centuries prior to 1950 were not due to unforced variability alone. A significant fraction of the reconstructed Northern Hemisphere 19 interdecadal temperature variability over those centuries is very likely attributable to volcanic 20 eruptions and changes in solar output, and it is likely that anthropogenic forcing contributed to the 21 early 20th century warming evident in these records. {2.7, 2.8, 6.6, 9.3} 22
  • Figure 9.4. Contribution of external forcing to several high-variance reconstructions of NH temperature anomalies, (Esper et al., 2002; Briffa et al., 2001; Hegerl et al., 2007, termed CH-blend and CH-blend long; and Moberg et al., 2005). The top panel compares reconstructions to an EBM simulation (equilibrium climate sensitivity of 2.5°C) of NH 30°N to 90°N average temperature, forced with volcanic, solar and anthropogenic forcing. All timeseries are centered on the 1500-1925 average. Instrumental temperature data are shown by a green line (centered to agree with CH-blend average over the period 1880-1960). The displayed data are low-pass filtered (20-year cutoff) for clarity. The bottom panel shows the estimated contribution of the response to volcanic (blue lines with blue uncertainty shade), solar (green) and greenhouse gas (GHG) and aerosol forcing (red line with yellow shades, aerosol only in 20th century) to each reconstruction (all timeseries are centered over the analysis period). The estimates are based on multiple regression of the reconstructions on fingerprints for individual forcings. The contributions to different reconstructions are indicated by different line styles (Briffa et al.: solid, fat; Esper et al.: dotted; Moberg: dashed; CH-blend: solid, thin; with shaded 90% confidence limits around best estimates for each detectable signal). All reconstructions show a highly significant volcanic signal, and all but Moberg et al. (which ends in 1925) show a detectable greenhouse gas signal at the 5% significance level. The latter shows a detectable greenhouse gas signal with less significance. Only Moberg et al. contains a detectable solar signal (only shown for these data and CH-blend, where it is not detectable). All data are decadally averaged. The reconstructions represent slightly different regions and seasons: Esper et al. (2002) is calibrated to 30°N to 90°N land temperature, CH-blend and CH-blend long (Hegerl et al., 2007) to 30°N to 90°N mean temperature and Moberg et al. (2005) to 0° to 90°N temperature. From Hegerl et al. (2007).
  • Ivry Diaporama Intervention Jean Jouzel

    1. 1. Le 14 Janvier 2010 : Ivry De Copenhague à Ivry/Seine Quels impacts pour le Changement climatique Jean Jouzel Institut Pierre Simon Laplace Laboratoire des Sciences du Climat et de l’Environnement (CEA/CNRS/UVSQ, Saclay) CNRS - Université Pierre et Marie Curie - Université Versailles/Saint-Quentin, Université Denis Diderot, Université Paris XII, CEA - CNES - Ecole Polytechnique - Ecole Normale Supérieure - IRD LATMOS - LPMAA - LMD - LOCEAN - LSCE - SA
    2. 2. <ul><li>Les activités humaines modifient la composition de l’atmosphère en gaz à effet de serre </li></ul><ul><li>Gaz carbonique 35% </li></ul><ul><li>Méthane multiplié par 2,5 </li></ul><ul><li>Oxydes d’azote + 15% </li></ul>Depuis le début de l’ère industrielle la quantité d’énergie disponible pour « chauffer » les basses couches de l’atmosphère a augmenté de 2,5 Watts/m 2 (de 240 à 242,5) dont : * 60% pour le gaz carbonique * 20% pour le méthane * Longue durée de vie pour CO 2 Atmosphère et révolution Industrielle : l’Anthropocène Gaz carbonique : CO 2 Méthane : CH 4 Protoxyde d’azote : N 2 O
    3. 3. En France : 1.7 tC/an (CO 2 ) Dans le monde : disparités importantes Gaz carbonique : CO2 - 6, 4 GtC/an (années 1990) ~  8 en 2005 - Pétrole - Charbon - Gaz naturel - Cimenteries (3%) - Déforestation ~  2 GtC - Puits : Océans (1,7 GtC/an) - Végétation (3,7 GtC/an) Méthane : CH 4 - Emissions naturelles (marais) - Hydrocarbures - Agriculture - Décharges …. Oxyde Nitreux - Emissions naturelles - Agriculture, élevage, biomasse - Activités industrielles HFC, PFC, SF6 Ozone …. En 2004 <ul><li>Transports + 22,7 % </li></ul><ul><li>Résidentiel/ Tert + 22,3 % </li></ul><ul><li>Industrie - 21,6 % </li></ul><ul><li>Agriculture - 10,5 % </li></ul><ul><li>Energie - 17, 0 % </li></ul><ul><li>Déchets - 8, 5 % </li></ul>De 1990 à 2004
    4. 4. Fate of Anthropogenic CO 2 Emissions (2000-2008) Le Quéré et al. 2009, Nature-geoscience; Canadell et al. 2007, PNAS, updated 1.4 PgC y -1 + 7.7 PgC y -1 3.0 PgC y -1 29% 4.1 PgC y -1 45% 26% 2.3 PgC y -1
    5. 5. CO 2 emissions (PgC y -1 ) Fossil Fuel Emissions and Cement Production 9 8 7 6 1990 2000 2010 1.0% 3.4% 2008 : Emissions: 8.7 PgC Growth rate: 2.0% 1990 levels: +41% 2000-2008 Growth rate: 3.4% Le Quéré et al. 2009, Nature-geoscience; CDIAC 2009
    6. 6. Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience; Data: Peters & Hetwich 2009; Peters et al. 2008; Weber et al 2008; Guan et al. 2008; CDIAC 2009 Transport of Embodied Emissions CO 2 emissions (PgC y -1 ) Annex B Developed Nations Developing Nations Non-Annex B 1990 2000 2010 5 4 3 2 55% 45% 1990 2000 2010 5 25% of growth Annex B Developed Nations Developing Nations Non-Annex B 4 3 2
    7. 7. Le réchauffement est sans équivoque Glace de mer en Arctique 1978-2008
    8. 9. Temp moyenne 2008 /1951 - 1980 (Hansen et al., 2009) Réchauffement moyen de 0.44 °C
    9. 10. Tendance de la température moyenne 1901/2000 (°C/siècle)
    10. 11. PHENOLOGIE DE LA VIGNE J.-C. ANDRE, Journées Gérard MEGIE, Paris, 13 Janvier 2006 Merci à B. Seguin
    11. 12. Forçages naturels (activité solaire, volcans) Observations Activités humaines Effet de serre et aérosols + Forçages naturels L’essentiel de l’accroissement observé sur la température moyenne globale depuis le milieu du 20 e siècle est très vraisemblablement dû à l’augmentation observée des gaz à effet de serre anthropiques Les activités humaines ont-elles déjà influencé le climat ?
    12. 13. Le climat des 20 prochaines années est joué B1 983 GtC A1B 1499 GtC A2 1862 GtC 2.8°C 1.7 - 4.4 Mais celui de la fin du siècle dépend de nous 1.8°C 1.1 - 2.9 3.4°C 2.0 - 5.4
    13. 14. Très probablement plus de vagues de chaleur, moins de périodes froides <ul><li>Probablement : </li></ul><ul><ul><li>plus de régions affectées par la sécheresse </li></ul></ul><ul><ul><li>risques d’inondations dans d’autres régions </li></ul></ul><ul><ul><li>plus d’événements de précipitation intense </li></ul></ul><ul><ul><li>plus de cyclones tropicaux intenses </li></ul></ul><ul><ul><li>Acidification des océans </li></ul></ul>Précipitations Hiver Eté Europe La fin du siècle par rapport à 2000 Températures
    14. 15. Réchauffement l’été B 2 Modèle ARPEGE Météo - France A 2 2070-2099 / 1960-1989
    15. 16. De 20 à 60 cm d’ici la fin du siècle, voire plus avec des risques de plusieurs mètres d’ici quelques siècles Deltas La population devrait augmenter rapidement dans les régions côtières avec des risques accrus liés à l’élévation du niveau de la mer
    16. 17. Convention cadre des Nations-Unies sur le changement climatique (CCNUCC) Article 2 « stabiliser les concentrations des gaz à effet de serre dans l’atmosphère à un niveau qui empêche toute perturbation dangereuse du système climatique. Il conviendra d’atteindre ce niveau dans un délai convenable pour que les écosystèmes puissent s’adapter naturellement aux changements, que la production alimentaire ne soit pas menacée et que le développement économique puisse se poursuivre d’une manière durable » <ul><li>Le réchauffement climatique </li></ul><ul><li>est inéluctable </li></ul><ul><li>mais nous devons tout faire </li></ul><ul><li>pour le limiter </li></ul><ul><li>et en limiter les conséquences </li></ul><ul><li>Double nécessité </li></ul><ul><ul><li>diminuer nos émissions </li></ul></ul><ul><ul><li>s’adapter </li></ul></ul>1000 450 Ce qu’il faut faire : stabiliser l’effet de serre Que pouvons-nous faire ?
    17. 18. Scénarios de stabilisation 2°C : diminution de 50 à 85 %, pic d’émissions 2015 au plus tard
    18. 19. WK3 : Chapter 13, page 776 Feuille de route de Bali 2° C : entre -25 % et - 40 % pays développés en 2020 puis division par 5 (au moins) en 2050 Autres pays : substantiel signifie entre -15 et -30 / base
    19. 20. <ul><li>Accord de Copenhague : recognizes the scientific view that the increase in global temperature should be below 2°C </li></ul><ul><li>as documented by the IPCC Fourth Assessment Report </li></ul><ul><ul><li>Diviser les émissions par 3 d’ici 2050 (- 85 / - 50 ; puis continuer) </li></ul></ul><ul><ul><li>Commencer à diminuer au plus tard en 2015 (2000 - 2015) </li></ul></ul><ul><li>Autre approche, il faut des émissions de 44 GtC eq en 2020: </li></ul><ul><ul><li>Business as usual 54, avec engagements fermes, 51 </li></ul></ul><ul><ul><li>Engagements oraux (à confirmer fin janvier) : manquent de 2 à 4 GtC </li></ul></ul><ul><ul><li>Accord en contradiction avec l’objectif : plut ôt 3°C </li></ul></ul><ul><ul><li>Urgence de revenir à des objectifs « émission » ambitieux </li></ul></ul><ul><li>Aspects positifs : </li></ul><ul><ul><li>Déforestation ; engagement envisageable de tous les grands pays </li></ul></ul>Effets à long terme : niveau de la mer
    20. 22. Figure 9.1
    21. 23. Figure TS.7
    22. 28. «  Le réchauffement du système climatique est sans équivoque … Il est très probable que la température moyenne de l’Hémisphère Nord au cours de la deuxième moitié du 20 e siècle soit la plus élevée des 500 dernières années … Il est probable que cette période soit la plus chaude du millénaire  » Quatrième Rapport IPCC, 2007
    23. 29. Concordia station Current state and potentiality for research activities
    24. 30. North GRIP Project : (NGRIP community, Nature, 2004) Groenland : découverte de variations climatiques extr êmement rapides (quelques années) et importantes
    25. 31. <ul><li>Collapse of the Atlantic Meridional Overturning Circulation </li></ul><ul><li>(If land ice melting is taken into account (Swingedouw et al., 2007) </li></ul><ul><li>No significant change in the global warming (3.2 ° C - 3.5 °C) </li></ul><ul><li>Si le Gulf-Stream </li></ul><ul><li>S’arr êtait dans un </li></ul><ul><li>Climat plus chaud </li></ul><ul><li>Pas de refroidissement global </li></ul><ul><li>Retour au climat actuel dans l’atlantique nord mais </li></ul><ul><li>Pas en Bretagne </li></ul>Didier Swingedouw
    26. 35. Réchauffement de 0,19 °C /décennie
    27. 38. Climate Forcing and Response (Simulated and Observed) over the Last 1000 Years Year 6-14
    28. 39. Figure 9.4
    29. 40. Le Groenland contribue à l’élévation du niveau de la mer

    ×