Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Analisis spektra UV-Vis  senyawa kompleks
Warna senyawa kompleks
Konfigurasi elektronik atom multi-elektron                     Apakah makna konfigurasi 2p2 ?                n = 2; l = 1;...
Konfigurasi elektronik atom multi-elektron  pasangan RS                 Russell-Saunders (or LS) coupling                ...
Menentukan microstates untuk p2
Spin multiplicity = 2S + 1
Menentukan harga L, ML, S, Ms untuk terms yang berbeda        1            S2    P
Mengklasifikasikan microstates p2                                                   Largest ML is +2,                     ...
Next largest ML is +1,   Largest ML is +2,                              so L = 1 (a P term)  so L = 2 (a D term)          ...
Energy of terms (Hund’s rules)   Lowest energy (ground term)     Highest spin multiplicity       3         P term for p2 c...
before we did:p2   ML & M S                                                        the largest ML L                      ...
single e- (electronic state)  multi-e- (atomic state)
For metal complexes we need to consider                    d1-d10       d2                              3                 ...
Transitions between electronic terms will give rise to spectra
Remember what we’re after ?Theory to explain electronicexcitations/transitions observed for metalcomplexes
Selection rules                          (determine intensities)                              Laporte rule               g...
Breakdown of selection rules
Group theory analysis of term splitting
Free ion    term for    d23 F, 3P, 1G, 1D, 1S                     Real complexes
Tanabe-Sugano diagrams• show correlation of  spectroscopic transitions  observed for ideal Oh  complexes with electronic  ...
d2 complex: Electronic transitions and spectra                      only 2 of 3 predicted transitions                     ...
TS diagrams Other dn configurations                                        d3d1            d9     d2                      d8
Other configurations                                                d3   The limit betweenhigh spin and low spin
the spectra of dn hexaaqua complexes of 1st row TMs
The d5 caseAll possible transitions forbidden Very weak signals, faint color
symmetry labels
Charge transfer spectra     Metal character                                            LMCTLigand character               ...
[Cr(NH3)6]3+
Determining ∆o from spectrad1      d9     One transition allowed of energy ∆o
Determining ∆o from spectramixingmixing            Lowest energy transition = ∆o
Ground state mixing                      E (T1g→A2g) - E (T1g→T2g) = ∆o
Uv vis spektra senyawa kompleks2 penting
Uv vis spektra senyawa kompleks2 penting
Uv vis spektra senyawa kompleks2 penting
Uv vis spektra senyawa kompleks2 penting
Uv vis spektra senyawa kompleks2 penting
Uv vis spektra senyawa kompleks2 penting
Uv vis spektra senyawa kompleks2 penting
Uv vis spektra senyawa kompleks2 penting
Uv vis spektra senyawa kompleks2 penting
Uv vis spektra senyawa kompleks2 penting
Upcoming SlideShare
Loading in …5
×

Uv vis spektra senyawa kompleks2 penting

2,173 views

Published on

  • Be the first to comment

Uv vis spektra senyawa kompleks2 penting

  1. 1. Analisis spektra UV-Vis senyawa kompleks
  2. 2. Warna senyawa kompleks
  3. 3. Konfigurasi elektronik atom multi-elektron Apakah makna konfigurasi 2p2 ? n = 2; l = 1; ml = -1, 0, +1; ms = ± 1/2 Penataan elektron yang sesuai microstatesbeda energi karena tolakan antar elektron (inter-electronic repulsions)
  4. 4. Konfigurasi elektronik atom multi-elektron  pasangan RS Russell-Saunders (or LS) coupling Untuk tiap atom multi-elektronUntuk tiap elektron 2p L = total orbital angular momentum quantum number n = 2; l = 1 S = total spin angular momentum quantum number ml = -1, 0, +1 Spin multiplicity = 2S+1 ms = ± 1/2 ML = ∑ml (-L,…0,…+L) MS = ∑ms (S, S-1, …,0,…-S) • ML/MS menyatakan microstates • L/S menyatakan states (kumpulan microstates) • Group microstates dengan energi yang sama disebut terms
  5. 5. Menentukan microstates untuk p2
  6. 6. Spin multiplicity = 2S + 1
  7. 7. Menentukan harga L, ML, S, Ms untuk terms yang berbeda 1 S2 P
  8. 8. Mengklasifikasikan microstates p2 Largest ML is +2, so L = 2 (a D term) and MS = 0 for ML = +2, 2S +1 = 1 (S = 0) 1 D Next largest ML is +1, so L = 1 (a P term) and MS = 0, ±1 for ML = +1, 2S +1 = 3 3 P One remaining microstate ML is 0, L = 0 (an S term) and MS = 0 for ML = 0,Spin multiplicity = # columns of microstates 2S +1 = 1 1 S
  9. 9. Next largest ML is +1, Largest ML is +2, so L = 1 (a P term) so L = 2 (a D term) and MS = 0, ±1 for ML = +1,and MS = 0 for ML = +2, 2S +1 = 3 2S +1 = 1 (S = 0) 3 P 1 D ML is 0, L = 0 2S +1 = 1 1 S
  10. 10. Energy of terms (Hund’s rules) Lowest energy (ground term) Highest spin multiplicity 3 P term for p2 case 3 P has S = 1, L = 1 If two states havethe same maximum spin multiplicity Ground term is that of highest L
  11. 11. before we did:p2 ML & M S the largest ML L spin multiplicity = Σcolumns or 2S+1, S the largest MS Microstate Table Spin multiplicity States (S, P, D) 3 P, 1D, 1S Terms Ground state term 3 P
  12. 12. single e- (electronic state)  multi-e- (atomic state)
  13. 13. For metal complexes we need to consider d1-d10 d2 3 F, 3P, 1G, 1D, 1SFor 3 or more electrons, this is a long tedious process But luckily this has been tabulated before…
  14. 14. Transitions between electronic terms will give rise to spectra
  15. 15. Remember what we’re after ?Theory to explain electronicexcitations/transitions observed for metalcomplexes
  16. 16. Selection rules (determine intensities) Laporte rule g → g forbidden (that is, d-d forbidden) but g → u allowed (that is, d-p allowed) Spin rule Transitions between states of different multiplicities forbidden Transitions between states of same multiplicities allowedThese rules are relaxed by molecular vibrations, and spin-orbit coupling
  17. 17. Breakdown of selection rules
  18. 18. Group theory analysis of term splitting
  19. 19. Free ion term for d23 F, 3P, 1G, 1D, 1S Real complexes
  20. 20. Tanabe-Sugano diagrams• show correlation of spectroscopic transitions observed for ideal Oh complexes with electronic states• energy axes are parameterized in terms of Δo and the Racah parameter (B) which measures repulsion d2 between terms of the same multiplicity
  21. 21. d2 complex: Electronic transitions and spectra only 2 of 3 predicted transitions observed
  22. 22. TS diagrams Other dn configurations d3d1 d9 d2 d8
  23. 23. Other configurations d3 The limit betweenhigh spin and low spin
  24. 24. the spectra of dn hexaaqua complexes of 1st row TMs
  25. 25. The d5 caseAll possible transitions forbidden Very weak signals, faint color
  26. 26. symmetry labels
  27. 27. Charge transfer spectra Metal character LMCTLigand character Ligand character MLCT Metal character Much more intense bands
  28. 28. [Cr(NH3)6]3+
  29. 29. Determining ∆o from spectrad1 d9 One transition allowed of energy ∆o
  30. 30. Determining ∆o from spectramixingmixing Lowest energy transition = ∆o
  31. 31. Ground state mixing E (T1g→A2g) - E (T1g→T2g) = ∆o

×