SlideShare a Scribd company logo
1 of 324
Download to read offline
Segunda edición
"
http://carlos2524.jimdo.com/
Transferencia
de calor
T f "]6 '] )13 ,"¿(JO 2,
. (
http://carlos2524.jimdo.com/
http://carlos2524.jimdo.com/
d
Transferencia
de calor
Segunda edición
José Ángel Manrique Valadez
OXFORD
UNIVE R SI TY P R ESS
TP 368 M8 2002
JOSE ANGEL MANRIQUE VALADEZ
1111111 1111111111 11111 11111 11111 11111111111111111111 l1li 1111
0233002790
TRANSFERENCIA DE CALOR.
f1. Alfaomega
http://carlos2524.jimdo.com/
l'
It
1:
OXFORD
UNIVERSITY PRESS
Antonio Caso 142, San Rafael,
Delegación Cuauhtémoc, c.P. 06470, México, D.F.
Tel.: 5592 4277, Fax: 5705 3738, e-mail: oxford@oupmex.com.mx
Oxford University Press es un departamento de la Universidad de Oxford.
Promueve el objetivo de la Universidad relativo a la excelencia en la investigación, erudición
y educación mediante publicaciones en todo el mundo en
Oxford New York
Auckland Cape Town Dar es Salaam Hong Kong
Karachi Kuala Lumpur Madrid Melboume Mexico City
Nairobi New Delhi Shanghai Taip.ei Toronto
Con oficinas en
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal .Singapore South Korea
Switzerland Thailand Turkey Ukraine Vietnam
Oxford es una marca registrada de Oxford University Press en el Reino Unido y Olros paises.
Publicado en México por Oxford University Press México, S.A. de c.v.
División: Universitaria
Área: Ingeniería
Sponsor editor: Jorge Alberto Ruiz González
Edición: Ester Alizeri Femández
Sergio Gerardo López Hemández
Producción: Jorge A. Martínez Jiménez
TRANSFERENCIA DE CALOR
Todos ios derechos reservados © 2002, respecto a la segunda edición por
Oxford University Press México, S.A. de c.v.
Ninguna parte de esta publicación puede reproducirse, almacenarse en un sistema
de recuperación o transmitirse, en ninguna forma ni por ningún medio,
sin la autorización previa y por escrito de
Oxford University Press México, S,A. de C.v.
Las consultas relativas a la reproducción deben enviarse al Departamento de Derechos
de Autor de Oxford University Press México, S,A. de C.v.,
al domicilio que se señala en la parte superior de esta página.
Miembro de la Cámara Nacional de la Industria
Editorial Mexicana, registro número 723.
ISBN 970-613-671-1
A/faomega Grupo Editor es distribuidor exclusivo para todos los países de habla hispana
de es/a coedición realizada entre Oxford University Press México, S.A. de C. V
y A/faomega Grupo Edito,; S.A . de C. V
ISBN 970-15-1161-1
Alfaomega Grupo Editor, S,A. de c.v.
Pitágoras 1139, Col. Del Valle, 03100, México, D.F.
Impreso en México
P.;mera reimpresión: octubre de 2005
Esta obra se lemlinó de imprimir en OClubre de 2005 en
Jmpresos 2000, S. A. de C. v.,
Callejón de San Amonio Núm, 69, Col. Tránsito, México, D.F.,
sobre papel Bond Editor Alta Opacidad de 75 g.
Elliraje fue de 2 000 ejemplares.
f
http://carlos2524.jimdo.com/
índice de contenido
Prólogo ................................................. ix
1. Introducción 1
1.1. Conducción .... ......... ........ .. .. .. .. .... ... ... . 2
1.2. Convección ... . ... ...... ...... ....... ........ .. ... . 7
1.3. Radiación .. . .. .... ..... .... ..... .. ... .... .. . ... .. .. 10
1.4. Transferencia simultánea de calor. ... ...... ........... . .. 12
1.5. Resumen . .. ....... .. .............. ... ......... .. .. 15
Problemas ......................................... 15
Bibliografía ........................................ 22
2. Conducción unidimensional en estado estable. . . . . . . . . . . . . . . . . 23
2.1. Placa .................... ... ..... ..... ... . . . .... .. 23
2.2. Cilindro hueco .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3. Radio crítico . . . .... ......... .. .......... .... ....... 37
2.4. Esfera .... . .... .. ......... .... . .... ............... 40
2.5. Placa con generación uniforme de calor. . . . . . . . . . . . . . . . . . . 45
2.6. Cilindro CaD generación uniforme de calor . . . . . . . . . . . . . . . . . 49
2.7. Superficies extendidas . .. . .. ... ... ... ........ . ........ 54
2.7.1. Ecuación general para una superficie extendida ... . . . .. 55
2.7.2. Superficies extendidas de sección transversal constante .. 56
2.7.3. Aletas circulares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.7.4. Aletas rectangulares de perfil triangular . . . . . . . . . . . . . . 65
2.7.5. Eficiencia de las aletas. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Problemas ..................... .. ...... .... .... . ... 69
Bibliografía ........ .. ....... . . ................ .. ... 77
3. Conducción de calor en estado estable, varias dimensiones. . . . . . 79
3.1 . Método analítico .. ............... .... ........... . ... 79
3.2. Diferencias finitas ............ ... . .. .. ............... 86
http://carlos2524.jimdo.com/
vi Índice de contenido
3.3. Método de relajación . ... .. ..... . .......... . .......... 90
3.4. Condiciones de frontera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5. Formulación en diferencias finitas para problemas
unidimensionales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.6. Método gráfico. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.7. Método analógico. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Problemas . . .............. .. ...... :..... . .......... 105
Bibliografía ... .. . . ........ ... ........... ... ....... . 114
4. Conducción de calor en estado transitorio ................... 115
4.1. Análisis de parámetros concentrados . ...... .. .... . ....... 115
4.2. Placa infinita .. .. ........ . .. . ....................... 126
4.3. Cilindro infinito y esfera ... . .. .. ........ .. . .. ....... . . 139
4.4. Sólido semiinfinito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.5. Conducción transitoria en más de una dimensión . . . . . . . . . . . . 150
4.6. Diferencias finitas. Método explícito ...... . ..... . . . ...... 157
4.7. Método gráfico de Schmidt . . .. . ............. . ......... 163
Problemas .................. . ...................... 164 .
Bibliografía .. . . . ............. . . . .... .. .. ... ....... . 169
5. Fundamentos de convección forzada. . . . . . . . . . . . . . . . . . . . . . . . 171
5.1. Transferencia de calor en una placa plana con convección
forzada en régimen laminar ................. . ........ 171
5.2. Analogía entre la transferencia de calor y la fricción . ........ 187
S3. Transferencia de calor en una placa con convección
.forzada en régimen turbulento. . . . . . . . . . . . . . . . . . . . . . . . . 189
5.4 . Transferencia de calor en un ducto circular con régimen laminar
donde la densidad de calor es constante. ...... . . . ....... 193
5.5 Fórmulas empíricas para convección forzada en tubos ...... . . 200
5.6 Fórmulas empíricas para convección forzada sobre tubos. . . . . . 203
Problemas .. ... .... . . ... .. . ... . ..... ... .... . . ... . . . 205
Bibliografía . . . .. .. .. ..... .. .... .. .. . ............ ... 206
6. Convección natural. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.1 Parámetros adimensionales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.2. Fórmulas para la transferencia de calor por convección natural
en una placa vertical. ...... . ... .. ............ . ..... . 213
6.3. Fórmulas para convección natural en otras geometrías. ...... . 214
Problemas ..... .. ............ . ........ .. .. . ....... . 217
Bibliografía. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
http://carlos2524.jimdo.com/
Índice de contenido VÜ
7. Transferencia de calor con cambio de fase ................... 219
7.1. Condensación...... ....... .......... .. ... .. ... . . .... 219
7.2. Condensación en fonna de película sobre cilindros hOlizontales 225
7.3. Ebullición .. .... ......... .... ............... ... .... 225
Problemas ..... ..... ............ ... ..... .. ......... 230
Bibliografía . . . .. .. . . ... .. .......................... 230
8. Intercambiadores de calor. . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . 231
8.1. La diferencia media logarítmica de temperaturas ............ 232
8.2. El método efectividad-número de unidades de transferencia. . . . 242
8.3. Diseño o selección de un intercambiador de calor ........... 250
Problemas ......... ... ............. .. ......... .. ... 251
Bibliografía ........................................ 252
9. Principios de radiación. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
9.1. Radiación de un cuerpo negro ... .... ... . ........ .. .. . .. 253
9.2. Intensidad de la radiación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
9.3. Emitancia y absortancia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
9.4. Reflactancia y transmitancia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
9.5. El factor de fonna para radiación. ........... . .... ... .... 270
9.6. Intercambio de calor por radiación entre cuerpos negros ..... . 277
9.7. Intercambio de radiación entre cuerpos grises .. .. . .. ... . .. . 280
9.8. Radiación solar .......... .. ......... .. .. . ..... . .... . 284
Problemas . .... ................. . ...... ......... .. . 285
Bibliografía ... ... ... .... ... . ...... . .. .......... . ... 286
Apéndice
Tabla A.l . Propiedades de algunos fluidos en estado saturado . . . . . . 287
Tabla A 2. Propiedades de gases a presión atmosférica . .......... 290
Tabla A3. Propiedades de algunos metales. . . . . . . . . . . . . . . . . . . . 293
Tabla A.4. Propiedades de los no metales ..................... 296
Tabla A.5. Vapor de agua saturado ... .... ..... ... ........ .. . 297
Tabla A6. Vapor de agua saturado ........... .. .. .... ....... 298
Tabla A7. Vapor de agua sobrecalentado ..................... 299
Figura Al. Conductividad térmica del agua . . . . . . . . . . . . . . . . . . . . 303
Figura A2. Número de Prandtl del agua . . . . . . . . . . . . . . . . . . . . . . . 304
Índice analítico ...................................... . .... 305
http://carlos2524.jimdo.com/
http://carlos2524.jimdo.com/
.,..'
....
Prólogo
Las técnicas para la solución de problemas de transferencia de calor han experi-
mentado un desarrollo sorprendente durante los últimos años y por ello su
conocimiento es imprescindible en la actuación profesional del ingeniero.
En este texto se presentan en forma elemental los principios básicos de trans-
ferencia de calor, los cuales se complementan con numerosos ejercicios resueltos
que adoptan el Sistema Internacional de unidades en toda la obra. Cada capítulo
termina con una sección de problemas a fin de que el estudiante pueda comprobar
los conocimientos adquiridos.
Los principales temas de la materia pueden estudiarse en un curso semestral
con duración de tres sesiones de una hora por semana. Los temas cubiertos en la
obra están destinados a estudiantes de ingeniería de licenciatura y de posgrado du-
rante los primeros semestres. Desde luego, es recomendable que posean ciertos
conocimientos sobre termodinámica, mecánica de fluidos y ecuaciones diferencia-
les ordinarias y parciales para entender mejor la materia.
El autor ha tenido el privilegio de enseñar el material de este texto a sus estu-
diantes de ingeniería del Instituto Tecnológico y de Estudios Superiores de
Monterrey durante varios años, y su paciencia, sugerencias y comentarios han
contribuido de manera especial y significativa a la presentación del material, por
lo que espera que la obra refleje sus inquietudes y estimule aún más su interés por
la disciplina.
Muchas personas han sido muy generosas con sus comentarios, sugerencias y
estímulo, por lo que el autor desea hacer patente su agradecimiento a todas ellas.
También quiere dejar constancia de su agradecimiento a Karla Lucía Salinas,
quien con todo esmero participó en la realización del manuscrito de la obra.
Finalmente, también desea reconocer la importante cooperación y apoyo recibidos
de los editores de Oxford University Press.
José A. Manrique
http://carlos2524.jimdo.com/
http://carlos2524.jimdo.com/
, .
Transferencia
de calor
http://carlos2524.jimdo.com/
http://carlos2524.jimdo.com/
1. Introducción
Participar en la construcción
y mejoramiento de la Patria:
he ahí la tarea más noble de
un ciudadano.
CARLOS PRIETO
La alimentación, la salud y la generación de potencia han sido una preocupación
vital de la humanidad a lo largo de la historia. El progreso en estas áreas ha lleva-
do al desarrollo conjunto de la transferencia de calor como una ciencia, por lo que
su estudio es de capital importancia para el ingeniero.
Esta disciplina de transporte tiene aplicaciones de suma relevancia en casi
cualquier campo de la ingeniería. Así, se utiliza prácticamente en todos los proce-
sos de la industria del vidrio; interviene en el diseño de los hornos, los regenera-
dores de calor, el enfriamiento de los moldes, el templado de los cristales, el flo-
tado de los vidrios, etc. En el área del acondicionamiento del aire ambiental es
imprescindible para evaluar con precisión las cargas térmicas de enfriamiento y
calefacción que tiene un edificio. También forma parte del diseño de ciertos com-
ponentes de un sistema de refrigeración, como el evaporador, el condensador y las
líneas de transmisión de agua helada, entre otros.
En el ámbito de los combustibles fósiles se requiere un análisis de la transfe-
rencia de calor en presencia de reacciones químicas para mejorar la eficiencia de
la combustión en hornos y calderas.
La investigación de la energía solar en los últimos años ha aportado conoci-
mientos muy promisorios para el acondicionamiento del aire para edificios me-
diante sistemas de absorción. Cabe mencionar que en varios países el aire acondi-
cionado precisa una fracción significativa de la producción primaria de energía,
por lo que el uso de la energía solar en este campo podría tener repercusiones sig-
nificativas. El diseño de esos sistemas supone un amplio conocimiento de la trans-
ferencia de calor.
Casi todos los alimentos en el curso de su preservación y preparación requie-
ren tratamientos en los que la transferencia de calor juega también un papel impor-
tante. Debido a las condiciones adversas en algunas regiones agrícolas del mundo
se pierden considerables cantidades de grano por falta de secado inmediato después
de la cosecha; por ello, el uso de la energía solar u otros mecanismos de secado
1
http://carlos2524.jimdo.com/
2 1. Introducción
apropiados podrían ser ventajosos. El congelamiento, la deshidratación y la coc-
ción de alimentos exigen asimismo un conocimiento cabal de esta materia.
En el diseño actual de edificios se requiere cada vez más un análisis de la
transferencia de calor a fin de promover el ahorro de energía.
A medida que surgen ideas novedosas y cada vez más refinadas en la tecnolo-
gía moderna, la teoría de la transferencia de calor debe resolver problemas nuevos y
cada vez más complejos. Así, desempeña igualmente un papel de gran relevancia
en el enfriamiento de equipo eléctrico y electrónico; por ejemplo, en motores y ge-
neradores eléctricos, transformadores, transistores y conductores, entre otros.
Con la termodinámica se predice el intercambio de calor en un sistema al rea-
lizar un proceso, pero no puede preverse el tipo de mecanismo por el cual se lle-
va a cabo tal transferencia. Así, al aplicar la primera y la segunda leyes de la ter-
modinámica en un intercambiador de calor se obtiene información relacionada con
el flujo de calor que debe transferirse del fluido caliente al frío. No obstante, la ter-
modinámica no suministra datos con respecto al diámetro, longitud, material o
arreglo geométrico de los tubos que deben emplearse. Estas características de di-
seño se obtienen mediante un análisis detallado de la transferencia de calor.
De manera análoga, el estudio termodinámico de un motor de combustión in-
terna brinda información relativa a sus requisitos de enfriamiento. Sin embargo, la
transferencia de calor contempla la posibilidad de enfriarlo con aire o con agua,
así como las dimensiones físicas que deben tener los conductos por donde circula
el agua en caso de emplearla como refrigerante, o bien, las dimensiones de las ale-
tas de enfriamiento para lograr la refrigeración con aire.
De lo anterior se desprende que la termodinámica y la transferencia de calor son
dos ciencias afines que se complementan. La primera predice los requisitos de trans-
ferencia de calor de un sistema; la segunda, cómo se lleva a cabo tal transferencia.
A fin de que el lector tenga un panorama general de las distintas formas bási-
cas de transferencia de calor, en este capítulo se describen en forma sucinta y cua-
litativa sus tres mecanismos básicos:
• conducción
o convección
• radiación
En los capítulos siguientes nos ocuparemos detenidamente de cada uno de estos me-
canismos.
1.1. Conducción
El fenómeno de transferencia de calor por conducción constituye un proceso de
propagación de energía en un medio sólido, líquido o gaseoso mediante la comu-
nicación molecular directa cuando existe un gradiente de temperatura.
http://carlos2524.jimdo.com/
1.1. Conducción 3
En el caso de líquidos y gases, tal transferencia es importante siempre que se
tomen las precauciones debidas para eliminar las corrientes naturales del flujo que
pueden presentarse como consecuencia de las diferencias de densidad que presen-
tan ambos fluidos. De aquí que la transferencia de calor por conducción sea de
particular importancia en sólidos sujetos a una variación de temperaturas.
Al haber un gradiente de temperatura en el medio, la segunda ley de la termo-
dinámica establece que la transferencia de calor se lleva a cabo de la región de ma-
yor temperatura a la de menor, como s~ muestra en la figura 1.1.
En tales circunstancias, se dice que el flujo de calor por unidad de área es pro-
porcional al gradiente de temperatura. Es decir,
q" =-k dT
dX
(1.1)
donde q" denota el flujo de calor por unidad de área o densidad de calor en la di-
rección x, y k es la conductividad térmica del material. Sus unidades son W/mK
(watt por metro kelvin) en el Sistema Internacional (SI) de unidades. También se
emplean de manera indistinta las unidades W/m°C. A la ecuación 1.1 se le agrega
un signo negativo para que cumpla la segunda ley de la termodinámica, es decir, que
el calor debe fluir de mayor a menor temperatura. Esta ecuación se conoce como
la ley de Fourier y --cabe destacar- define la conductividad térmica k. Aun cuan-
do esta propiedad de transporte varía con la temperatura, en numerosas aplicacio-
nes puede suponerse constante. En la tabla 1.1 se presentan algunos valores de la
conductividad térmica, y en la figura 1.2, la variación con respecto a la tempera-
tura de la conductividad térmica de algunos sólidos, líquidos y gases.
T
Perfil de temperatura
x
Figura 1.1. Temperatura como función de la distancia.
* Cuando la transferencia de calor se Ueve a cabo en más de una dirección, la ley de Fourier puede escribirse como
q"=-k"ílT
donde q" es el vector correspondiente a la densidad de calor y "ílT el gradiente de temperatura con dirección opuesta.
http://carlos2524.jimdo.com/
4 l. Introducción
Tabla 1.1. Conductividad térmica de algunos materiales o sustancias a 300 K.
Material k, W/moC
Poliestireno rígido 0.027
Fibra de vidrio 0.036
Aire 0.0263
Agua 0.613
Ladrillo común 0.72
Refractario 1.0
Acero AISI 302 15.1
Acero AISI 1010 63.9
Aluminio puro 237
Cobre puro 401
Fuente: F. P. Incropera y D. P. DeWitt, Introduction lO Heal Transfer, 3a. ed., Jolm Wiley, 1996.
Cuando los materiales tienen una alta conductividad térmica se denominan con-
ductores; los que la tienen baja se llaman aislantes. Cabe agregar que las conduc-
tividades térmica y eléctrica de los metales puros están relacionadas entre sí. Sin
embargo, a temperaturas muy bajas los metales se toman superconductores de la
electricidad, pero no del calor. En los datos de la tabla 1.1 puede observarse que
los aislantes tienen una conductividad térmica entre 0.03 y 0.04 W/moC; en tanto,
la del cobre es del orden de 400 W/moC. En esa tabla también se aprecia que el
aire tiene una conductividad térmica muy baja, como la de los aislantes. No obs-
tante, es difícil tener conducción solamente por él, ya que hay gradientes de den-
sidad y, por tanto, movimiento en presencia de un campo gravitacional cuando el
aire está expuesto a una diferencia de temperaturas. Para que se comporte como
un verdadero aislante debe encontrarse estático aun en presencia de un gradiente
de temperaturas. Hay algunas aplicaciones de aislantes donde el aire prácticamen-
te está estático y se comporta como aislante; por ejemplo, el aire atrapado en un
aislante de fibra de vidrio o en las pequeñas burbujas del material plástico que se
utiliza para los empaques.
Con la ecuación 1.1 puede determinarse la transferencia de calor por conduc-
ción en un sistema siempre que se conozcan la conductividad térmica y el gradien-
te de temperatura. En la circunstancia de que el flujo de calor sea constante puede
determinarse mediante una integración directa de la ley de Fourier. Así, si se con-
sidera una pared de espesor L cuyas superficies están expuestas a dos temperatu-
ras constantes TI y Tb como se muestra en la figura 1.3, y se supone además que
la conductividad térmica k es constante,
http://carlos2524.jimdo.com/
1.1. COMucción
1000
500
200
100
50
20
1- 10
ID
'6.
5
<E
::J
f-
en
oí 2u
'E
:ffi
1J
ro
1J
.:;
ti 0.5
:::J
1J
e
O
Ü
0.2
0.1
r 0.05
0.02
0.01
0.005
0.002
Temperatura, cC
o 100 200 300 400 500 600
I I I I I I I
1000
Plata
Cobre
Oro
Magnesio Aluminio
Cinc
100
SOd,! líquido
' "Estaño Hierro (puro)
Plomo Hierro fOrjad, (C < 0.5%)
Acero Inoxidable tioo 430
O
~ Mercurio
1
-- U02 (denso)
ZrOz (denso)
1
Agua (lIqUida) Ladrillo de alto contenido
de alúmina a 3000 cF
. ' 2800 cF
Ladrillo de alto contenido de alumlna a
Asbesto (26 Ib)Pie2)I
Querosina o petróleo
0.1
Aceite lubricante SAE 10 I . ra ~~
,.-
de rOca ,g~ -
~ --_ ~-I3g~ Aire (gas)
~ -- rgon (gas)-
~--~
-¡:-
~
- -
rreb(C::-'::;;;:' 9"1
O 200 400
Vapor (H20 vapor)
600
Temperatura, cF
800
0.01
1000 1200
s
~
E
~
oí
u
'E
~
1J
ro
1J
.:;
n:::J
1J
e
O
Ü
Figura 1.2. Conductividad térmica de algunos materiales. (Fuente: M. N. Ozisik, Basic
Heat Transfer, McGraw-Hill, Nueva York, 1977.)
http://carlos2524.jimdo.com/
6
"
¡I
Ejemplo 1.1.
l. Introducción
k = constante
T,
A
L
Figura 1.3. Pared de espesor L con conducción de calor en estado estable.
En la tabla 1.2 se muestran algunos factores de conversión para la conductividad
térmica expresada en otras unidades.
Tabla 1.2. Factores de conversión para la conductividad térmica k.
1 cal/s cmoC 1 BTU/h 1 BTU/h 1 W/cmK
pieoF pie2°F/pu1g
1 cal/s cmoC 241.9 2903 4.186
1 BTU/h pieoF 4.134 x 10-3 1 12 0.0173
1 BTU/h pie2°F/pu1g 3.445 x 10-4 0.08333 1 1.442 x 10-3
1 W/cmK 0.2389 57.793 693.5 1
Fuente: W. M. Rohsenow y J. P. Hartnett, Handbook ofHeat Transfer, McGraw-Hill, Nueva York, 1973.
Considérese una pared plana con una conductividad térmica k constante. En la
figura E.1.1 se observa la distribución de temperatura en cierto instante. Indi-
que si la pared opera en condiciones de estado estable, si está enfriándose o ca-
lentándose.
-L-
k = constante
Temperatura como
función de la distancia
Figura E.l.1.
http://carlos2524.jimdo.com/
1.2. Convección 7
Solución
Con base en el diagrama, el calor que entra en la superficie del lado izquierdo es
-kAfJTj fJxt=o
el calor que sale por la superficie del lado derecho es
-kAfJTj fJxt=L
Con el análisis de los gradientes de temperatura en x =°y en x = L se observa
que entra más calor que el que sale. Si recurrimos ahora a la primera ley de la
termodinámica, qneto' = dU/dT > 0, por lo que se deduce que la pared está ca-
lentándose.
1.2. Convección
El fenómeno de transferencia de calor por convección es un proceso de transpor-
te de energía que se lleva a cabo como consecuencia del movimiento de un fluido
(líquido o gas) en la vecindad de una superficie, y está íntimamente relacionado
con su movimiento. Para explicar esto, considérese una placa cuya superficie se
mantiene a una temperatura Ts (fig. 1.4) Yque disipa el calor hacia un fluido cuya
temperatura es T=. La experiencia indica que el siste1na disipa más calor cuando
se le hace pasar aire proveniente de un ventilador que cuando sólo está expues-
to al aire ambiente; de ello se desprende que la velocidad del fluido tiene un efec-
to importante sobre la transferencia de calor a lo largo de la superficie. De mane-
ra similar, la experiencia indica que el flujo de calor e~ diferente si la placa se
enfría en agua o en aceite en vez de aire. De aquí que las propiedades del fluido
deben tener también una influencia importante en la transferencia de calor.
Puesto que la velocidad relativa del fluido con respecto a la placa es, en gene-
ral, igual a cero en la interfase sólido-fluido (y =0),* el calor se transfiere total-
mente por conducción sólo en este plano del fluido. Sin embargo, <tun cuando el" .
calor disipado por la placa puede calcularse con la ecuación 1.1, el gradiente de --
temperatura en el fluido depende de las características, a menudo compléjas1
del
flujo de éste. Por tanto, es más conveniente estimar el flujo de calor disipado por
el sistema en términos de la diferencia total de temperaturas entre su superficie y el
fluido. Es decir,
(1.2)
• Esta suposición es válida excepto para gases muy diluidos, donde la trayectoria media libre de las moléculas
es comparable con las dimensiones del sistema (flujo deslizante) o mucho mayor (flujo Knudsen).
http://carlos2524.jimdo.com/
8
K L
Perfil de
velocidad
Figura 1.4. Placa expuesta a enfriamiento convectivo.
~erl;lde
temperatura
I
)1
l. Introducción
donde h es el coeficiente local de transferencia de calor o coeficiente de película.
Sus unidades en el SI son W/m2
K (watt por metro cuadrado kelvin). También se
emplean de manera indistinta las unidades W/m2°C. La ecuación 1.2 se conoce co-
mo la ley de Newton de enfriamiento. Cabe precisar que esta expresión, más que
una ley fenomenológica, define el coeficiente local de transferencia de calor 11.
Como su nombre lo indica, varía a lo largo de toda la superficie.
En la figura 1.5 se muestra la variación del coeficiente local de transferencia
de calor a lo largo del eje x.
I(
h
Perfil de
velocidad
~Perl"de~mperatura
I
L --------------~)I
hl----------~~-------------------
x
Figura 1.5. Variación del coeficiente local de transferencia de calor a lo largo de la
coordenada x.
http://carlos2524.jimdo.com/
1.2. Convección 9
Más importante que el coeficiente local es el coeficiente promedio -ambos- de
transferencia de calor, o simplemente coeficiente de transferencia de calor. Si se com-
binan las ecuaciones 1.1 y 1.2, tal coeficiente puede determinarse con la expresión
r_k
aT
) dx
_ o ay -o
h = y -
(r, - Too )
(1 .3)
Así, con esta definición nueva,
(l A)
donde A es el área de transferencia de calor por convección.
El fenómeno de transferencia de calor por convección suele clasificarse en dos
categorías:. convección forzada y convección libre o natural. En la primera se ha-
ce pasar el fluido por el sistema mediante la acción de algún agente externo, diga-
mos un ventilador, una bomba o agentes meteorológicos. Por su pru;te, en el segun-
do caso el movimiento del fluido es resultado de los gradientes en densidad que
experimenta éste, al estar en contacto con una superficie a mayor temperatura y en
presencia de un campo gravitacional (o centrífugo).
Un caso típico de convección forzada es el radiador en el sistema de enfda-
miento del motor de un automóvil u otro intercambiador de calor. De igual mane-
ra, ejemplos clásicos de convección libre son el calentamiento de agua en un reci-
piente antes de sufrir ebullición o el enfriamiento de equipo eléctrico (algunos
transformadores, transistores, etcétera).
El coeficiente de transferencia de calor en algunas geometrías sencillas puede
determinarse con la ecuación 1.3, la cual presupone que se conoce el perfil de la
temperatura en el fluido, que puede obtenerse analíticamente mediante la aplica-
ción de las ecuaciones de cambio, esto es, continuidad, movimiento y energía. En
el caso de geometrías más complejas, el coeficiente de transferencia de calor pue-
de evaluarse mediante correlaciones empídcas o recurriendo a la expedmentación.
El coeficiente de transferencia de calor (de aquí en adelante se le designará
con la letra h, a menos que se especifique lo contrario) para la convección forza-
da depende de vados parámetros; por ejemplo,
h =h(L, k, uoo, 11, p, cp' ...) (l .5)
y, para el caso de convección natural,
h =h[L, k, p, g, f3 (Ts - Too), 11, cp' ... ] (1.6)
donde L es una dimensión característica del sistema; por ejemplo, L es la longitud
en la placa de la figura lA, k la conductividad térmica del fluido, Uoo la velocidad
http://carlos2524.jimdo.com/
10
~.,¡
l. Introducción
con la que se aproxima el fluido al sistema, J.L la viscosidad del fluido, p la densidad
del fluido, cp el calor específico a presión constante del fluido, f3 el coeficiente de
expansión volumétrica del fluido y g la aceleración de la gravedad u otra acelera-
ción externa. Todas estas variables pueden reducirse a dos grandes parámetros: la
geometría del sistema y las propiedades físicas y características del flujo de fluido.
De lo anterior se desprende que incluso cuando la apariencia de la ecuación
1.4 es muy sencilla, el proceso de transferencia de calor por convección es muy
complejo. En la tabla 1.3 se muestran algunos valores del orden de magnitud del
coeficiente de transferencia de calor h, y en la 1.4 algunos factores de conversión
para las unidades empleadas con más frecuencia.
Tabla 1.3. Valores típicos del coeficiente de transferencia de calor h.
Proceso h, W/m2
K
Convección libre
Gases 2-25
Líquidos 50-1000
Convección forzada
Gases 25-250
Líquidos 50-20000
Convección con cambio de fase
Ebullición o condensación 2500-100 000
Fuenle: F. P. IncTopera y D. P. DeWitt, lntroduction lo Heat Transfer, 3a. ed., John Wiley, 1996.
Tabla 1.4. Factores de conversión para el coeficiente de transferencia de calor h.
caUs cm20C 1 BTU/h pie2°F 1 kcaUh m20C 1 W/cm2
K
1 caUs cm2°C 7376 36000 4.186
1 BTU/h pie2°F 1.356 x 10-4 1 4.8826 5.6785 x 10-4
1 kcaUh m2°C 2.778 x 10-5 0.20489 1 1.163 x 10-4
1 W/cm2K 0.2391 1761 8600 1
Fuente: W. M. Rohsenow y J. P. Hartnett, Handbook of Heal Transfer, McGraw-Hill, Nueva York, 1973.
1.3. Radiación
Tanto los mecanismos de transferencia de calor por conducción como por convec-
ción requieren un medio para propagar la energía. Sin embargo, el calor puede
http://carlos2524.jimdo.com/
1.3. Radiación 11
también propagarse en el vaCÍo absoluto mediante radiación. A una temperatura
dada todos los cuerpos emiten radiación en diferentes longitudes de onda, pero la
magnitud de ésta depende de la temperatura absoluta y de las características su-
perficiales de dichos cuerpos.
Por otra parte, sólo se considera radicación térmica la que se ubica en el ran- .
go de longitudes de onda entre 0.1 y 100 micrones, aproximadamente. Dentro de
ese intervalo del espectro electromagnético se ubican el rango ultravioleta, el in-
frarrojo y el visible. Este último comprende nada más entre 0.38 y 0.78 micrones.
Un radiador perfecto o cuerpo negro es el que emite la máxima cantidad de
energía radiante desde su supeIficie a una razón proporcional a su temperatura ab-
soluta elevada a la cuarta potencia, es decir,
(1.7)
Esta ecuación se conoce como ley de Stefan-Boltzmann, donde (Y es una constan-
te que adquiere un valor igual a 5.67 x 10-8 W/m2K4 en el SI y que recibe el nombre
de constante de Stefan-Boltzmann. De la ecuación 1.7 se deduce que la superfi-
cie de todo cuerpo negro emite radiación si se encuentra a una temperatura diferen-
te del cero absoluto, independientemente de las condiciones de los alrededores.
Por otra parte, un cuerpo real no satisface las características de un cuerpo ne-
gro, ya que emite una menor cantidad de radiación. ASÍ, el flujo de calor por uni-
dad de área que emite una superficie real está dado por la expresión
(1.8)
donde E es una propiedad de la superficie y se denomina emisividad; numérica-
mente es igual al cociente de la emisión de radiación del cuerpo en estudio con
respecto a la de uno negro. Esta propiedad superficial adquiere valores entre cero
y la unidad,-y constituye una medida para evaluar cuán efectivamente emite radia-
ción un cuerpo real con respecto a uno negro.
El calor por radiación neto intercambiado por un cuerpo negro a una tempera-
tura absoluta T¡, como se muestra en el esquema de la figura 1.6, hacia una envol-
vente a una temperatura T2 que lo rodea por completo y que se comporta también
como cuerpo negro puede evaluarse con la expresión
q = (YA¡(Ti - Ti) (1.9)
Por otra parte, la radiación emitida por un cuerpo real a una temperatura absoluta
TI hacia una envolvente de área A2 » AI Ya temperatura Tb puede calcularse aho-
ra con la expresión
(1.1 O)
http://carlos2524.jimdo.com/
12
.1
.'
;i
l. Introducción
Figura 1.6. Intercambio de calor por radiación entre dos cuerpos negros.
Esta ecuación se conoce como ley de Prevost.
Si se consideran ahora dos cuerpos reales a temperaturas absolutas TI yT2,
respectivamente, como se muestra en la figura 1.7, el flujo neto de energía radian-
te entre ellos puede calcularse con
(1.11)
donde F es una función que no sólo depende de las características superficiales de
ambos cuerpos, sino también del arreglo geométrico que guardan entre sí. En otras
palabras, la función F depende de las emisividades de ambos cuerpos y de la frac-
ción de energía radiante emitida por el cuerpo 1 que intercepta el cuerpo 2.
1.4. Transferencia simultánea de calor
Hasta ahora hemos visto en forma independiente los tres principales mecanismos
de transferencia de calor; no obstante, en la mayoría de las aplicaciones de interés
para los ingenieros se presentan en forma simultánea, aunque también puede su-
ceder que uno o más de ellos sean prácticamente insignificantes con relación a los
demás. A continuación se describen distintas situaciones que muestran lo anterior.
Considérese el intercambiador de calor de doble tubo que se observa en la fi-
gura 1.8. En este caso el calor se transfiere por convección del fluido caliente a la
Figura 1.7. Transferencia de calor por radiación entre dos cuerpos.
http://carlos2524.jimdo.com/
1.4. Transferencia simultánea de calor 13
Ejemplo 1.2.
IFluido caliente
Ir
Fluido frío
Figura 1.8. Esquema de un intercambiador de calor de doble tubo.
superficie interior del tubo; luego pasa por conducción a través de su pared y por
último se transfiere por convección de la pared del tubo al fluido frío.
En el cilindro de un motor de combustión interna como el del esquema de la
figura 1.9, el calor se transfiere de forma simultánea por radiación y convección
de los gases de combustión al cilindro, atraviesa sus paredes por conducción y al
final llega al agua de enfriamiento por convección.
Si por último pensamos en un convector para la calefacción donde el fluido
caliente es vapor húmedo, la transferencia de calor desde el convector al ambien-
te ocurre, en esencia, por convección libre.
o
--Figura 1.9. Esquema de un cilindro de un motor de combustión interna.
Considérese un recipiente aislado térmicamente que contiene una pequeña can-
tidad de agua. Si la superficie libre de líquido queda expuesta al aire libre du-
rante la noche (fig. E.1.2.) Y la temperatura ambiente es de 40 oC, calcule la
temperatura de equilibrio que alcanza el agua en el recipiente. Supóngase que
el coeficiente de transferencia de calor en la superficie del agua es de 5 W/m2
K,
que la temperatura efectiva del firmamento es del rango de OK Yque tanto el
agua como el firmamento se comportan como cuerpos negros.
http://carlos2524.jimdo.com/
14
Ejemplo 1.3.
l. Introducción
Solución
Mediante un balance de energía, el calor por convección que se transfiere del aire
ambiente al agua debe ser igual en magnitud al calor por radiación emitido por
ésta hacia el firmamento en condiciones de equilibrio. Es decir,
Sustituyendo valores,
h(T=- ~gua ) =0"(~:ua - Tr:!m )
Agua
Figura E.l.2.
5(313 - ~gua) =5.67 X 10-
8
~:ua
1565 - 5~gua =5.67 X 10-
8
~:ua
Al resolver la expresión se obtiene
~gua =260 K =-13 oC
Si bien esta solución sólo representa una primera aproximación al problema, los
resultados anteriores indican que es posible congelar agua en condiciones de
tiempo cálido si se expone al firmamento despejado.
Calcule el flujo neto de calor por unidad de área y por radiación entre dos pla-
cas paralelas e infinitamente grandes, con un espacio muy pequeño entre ellas.
Ambas se comportan corno cuerpos negros y se mantienen a 1000 K Y500 K,
respectivamente.
Solución
Según la ecuación 1.9,
q" =0"(Ti - Ti) =5.67 X 10-8
(10004
- 500
4
)
q" = 53 156 W/m2
http://carlos2524.jimdo.com/
1.5. Resumen 15
1.5. Resumen
El fenómeno de transferencia de calor por conducción es un proceso de propaga-
ción de energía en un medio por difusión o comunicación molecular directa como
consecuencia de un gradiente de temperatura.
La ley de Fourier establece que el flujo de calor por unidad de área es propor-
cional al gradiente de temperatura, es decir,
q" =-k dT
dX
La transferencia de calor por convección es un proceso de transpOlte de energía
que resulta del movimiento de un fluido.
La ley de Newton del enfriamiento establece que el flujo de calor por unidad
de área es proporcional a la diferencia total de temperaturas entre la de la superfi-
cie del sistema y la del fluido, esto es,
Todos los cuerpos emiten radiación en forma de energía electromagnética con dife-
rentes longitudes de onda de acuerdo con su temperatura y sus características super-
ficiales. Un emisor de radiación perfecto, o cuerpo negro, es el que emite energía
radiante de su superficie a una razón proporcional a su temperatura absoluta ele-
vada a la cualta potencia, o sea,
q" =ar4
Esta relación se conoce como ley de Stefan-Boltvnann, donde (J es la constante de
Stefan-Boltzmann, la cual adquiere un valor de 5.67 x 10-8 W/m2K4 en el SI.
Problemas
1. Considérese una pared de espesor L cuyas superficies se mantienen a tempe-
raturas TI y Tb respectivamente. Si el material de la pared tiene una conduc-
tividad térmica k constante y el área perpendicular al flujo de calor es A, calcu-
le el flujo de calor mediante la integración directa de la ley de Fourier.
2. Cuando la transferencia de calor se lleva a cabo en más de una dirección, la
ley de Fourier puede escribirse como
q" =-k'ílT
http://carlos2524.jimdo.com/
16 l . Introducción
Con los vectores unitarios i, j Yk, escriba la ley de Fourier en coordenadas
cartesianas.
11 k(aT. aT. aTk)Respuesta: q =- -I+-J+-
ax ay ax
3. Imagine una esfera de 1 cm de diámetro a una temperatura de 1000 K Yence-
rrada en otra esfera de 10 cm de diámetro a una temperatura de 400 K. Calcu-
le el flujo neto de calor por radiación que va de la esfera pequeña a la grande.
Supóngase que ambas esferas se comportan como cuerpos negros.
Respuesta: 17.36 W
4. Un tubo desnudo que transporta,.vapor húmedo a una presión absoluta de
10 bar se encuentra en una habitación cuya temperatura ambiente es de 20 oc.
Si el coeficiente de transferencia de calor entre el tubo y el ambiente es de
10 W/m2
K, calcule las pérdidas de calor por metro de longitud. El diámetro
exterior del tubo es igual a 10 cm.
Respuesta: 502.37 W/m
5. Considérese un cuerpo negro de masa m, calor específico e y área A a una tem-
peratura uniforme To, que se deja caer en un recipiente muy grande cuyas pa-
redes se encuentran a una temperatura de O K. Si el recipiente está al vacío,
determine la temperatura del cuerpo como función del tiempo. Establezca cla-
ramente las suposiciones necesarias.
Respuesta: T = Tome 3
(
3 )1/3
me +30'ATot
6. El coeficiente de transferencia de calor en convección libre depende, entre
otras propiedades, del coeficiente de expansión volumétrica del fluido, defi-
nido como
Demuestre que el coeficiente de expansión volumétrica de un gas ideal es di-
rectamente proporcional al recíproco de la temperatura.
7. ¿Por qué los metales cambian de color mientras cambia su temperatura?
8. Piense en una placa de espesor L cuyas superficies están sujetas a las tempera-
turas T¡ y T2, respectivamente. Si la conductividad térmica del material varía
http://carlos2524.jimdo.com/
Problemas 17
con la temperatura de acuerdo con la relación k =küO + aT), donde kü Ya son
constantes, determine el flujo de calor por unidad de área a través de la placa.
9. Un cono truncado de aluminio mide 2 cm de diámetro en su parte más peque-
ña, 3 cm en su parte más ancha y 10 cm de altura. Si la superficie lateral se
encuentra aislada, la temperatura en el diámetro menor es igual a 300 oC y la
del mayor a 100 oc. Calcule el calor que se transfiere por conducción a tra-
vés del cono. Supóngase que la conductividad térmica del aluminio es igual a
215 W/mK.
10. Indique los principales mecanismos de transferencia de calor en una aleta de
enfriamiento como las empleadas en un motor de combustión interna.
11. Imagine un tubo de cobre desnudo de 70 mm de diámetro exterior que trans-
porta vapor. Su superficie se encuentra a 200 oC y tiene una emisividad igual a
0.8. El aire y las paredes del CUalto en donde se encuentra el tubo están a 25 oc.
Se estima que el coeftciente de transferencia de calor por convección natural
es igual a 15 W/m2K. Calcule el calor disipado por unidad de longitud.
12. Un flujo de aire circula por la superficie de una pared. Para el instante que se
muestra abajo (fig. P.l.12) indique las respuestas:
a) ¿Es T ambiente <, > o =T2? Explique su respuesta.
b) ¿Qué condición de frontera emplearía para la transferencia de calor en
x = O?
h
Tambienle
L
I )1 X
IO
Figura P.l.12.
13. Considérese una esfera de 1 cm de diámetro que se mantiene a 60 oc. Se en-
cuentra en un cuarto cuyas paredes se hallan a 35 oc. El aire que rodea la esfe-
ra está a 40 oC y el coeficiente de transferencia de calor es igual a 11 W/m2oC.
Calcule las pérdidas de calor que experimenta la esfera si su emisividad es
igual a 0.85.
http://carlos2524.jimdo.com/
18 1. Introducción
14. El techo horizontal de una casa está cubierto con un asfalto cuya emisividad
es igual a 0.94. En una noche de cielo nublado puede decirse que la tempera-
tura efectiva del firmamento es igual a -10 oC y la del aire ambiente a 5 oc. El
coeficiente de transferencia de calor entre el techo y el aire ambiente es igual
a 4 W/m20
C. Detennine la temperatura de la superficie del techo en condicio-
nes de estado estable. Supóngase que la superficie del techo que da hacia el
interior de la casa se encuentra perfectamente aislada.
15. Imagine una placa negra muy delgada de 20 x 20 cm de área sobre la que se
hace pasar aire a una temperatura de OoC y una velocidad de 2 mis, lo cual da
por resultado un coeficiente de transferencia de calor de 12 W/m20
C. La pla-
ca está aislada por uno de sus dos lados y se halla en un cuarto cuyas paredes
se mantienen a 30 oC. Supóngase que la emisividad de la placa es igual a 1.0;
calcule su temperatura.
16. El elemento térmico en un calefactor eléctrico consiste en una tira metálica de
un espesor muy delgado, de 6 mm de ancho y 3 m de largo. La emisividad del
material es igual a 1.0 y opera a una temperatura de 800 K. El coeficiente de
transferencia de calor alrededor de la tira puede estimarse en 10 W/m20
C. Si
la temperatura del ambiente y los alrededores es de 25 oC, calcule el calor di-
sipado por el elemento ténnico.
17. Clasifique los materiales siguientes de acuerdo con su capacidad para condu-
cir el calor: aluminio, cobre, acero inoxidable, poliestireno, acero al carbón,
ladrillo común.
18. Considérese un horno hemisférico de 5 m de diámetro (fig. P.1.18). El domo
se comporta como cuerpo negro, mientras que la base tiene una emisividad
igual a 0.7. La base y el domo se encuentran a 400 y 1000 K, respectivamen-
te. Determine el flujo neto de calor por radiación entre ambos elementos.
II+E- - 5 m--~)I
Figura P.I.1S.
19. A juzgar por las unidades de W/moC, ¿podría definirse la conductividad tér-
mica de un material como el flujo de calor a través del material, por unidad de
espesor y por unidad de diferencia de temperaturas? Justifique plenamente su
respuesta.
20. Imagine dos paredes de una casa habitación idénticas en todo, excepto que una
es de madera (k =0.12 W/mK) y tiene un espesor de 10 cm, en tanto que la
http://carlos2524.jimdo.com/
Problemas 19
otra es de ladrillo (k =0.72 W/mK) y tiene un espesor de 25 cm. ¿Mediante
cuál pared perderá más calor la casa?
21. Piense en una pared que opera en estado estable y sin generación de calor en
su interior. En la figura P.1.21 se muestra la distribución de temperatura como
función de la distancia. Indique si la conductividad térmica del material es
constante, si aumenta o disminuye con la temperatura. Explique su respuesta.
lE- L -~
Figura P.l .21.
22. Algunas secciones de una tubena que transporta combustóleo están soportadas
por barras de acero (k =61 W/m°C) de 0.005 m2 de sección transversal (fig.
P.1.22). En general, la distribución de temperatura a lo largo de las barras es de
la forma:
T(x) =100 - 150x + lOx2
donde T está en grados Celsius y x en metros. Calcule el calor que pierde la
tubena a través de cada barra.
Respuesta: 45.75 W
Tubería
x
Suelo =====-======~
Figura P.1.22.
http://carlos2524.jimdo.com/
1:
I !
j !
f i
I
l '
20 l. Introducción
23. Imagine un calefactor de gas. Indique los mecanismos por los que disipa calor.
24. Se utiliza un termómetro de mercurio para medir la temperatura del aire en un
recipiente metálico muy grande. Se registra una temperatura de 20 oC (fig.
P.1.24). Se sabe que las paredes del recipiente se encuentran a 5 oC, el coefi-
ciente de transferencia de calor entre el termómetro y el aire es de 8.3 W/m2oC
y la emisividad del termómetro es igual a 0.9. Calcule la temperatura efectiva
del aire en el recipiente.
Respuesta: Tambiente = 28.6 oC
Tambren!e
T. -5 0C 11
~aredes - UTI = 20 oC
Figura P.l.24.
25. Una superficie de 0.5 m2, con emisividad de 0.8 y a una temperatura de 150 oC,
se coloca en una cámara al vacío muy grande, cuyas paredes se encuentran a
25 oc. Calcule el calor neto entre la superficie y las paredes de la cámara.
26. Un gabinete de aluminio anodizado se enfría mediante convección natural y
radiación. El área de la superficie del gabinete mide 0.368 m2, la temperatura
del aire y alrededores que lo rodean es de 25 oC y el coeficiente de transferen-
cia de calor por convección se estima en 6.8 W/m2K. La temperatura en la su-
perficie del gabinete es igual a 125 oc.
a) Obtenga el flujo de calor disipado por el gabinete suponiendo que se com-
pOlta como cuerpo negro.
b) Si el gabinete se enfría forzando aire con un coeficiente de transferencia de
calor por convección igual a 150 W/m2K, calcule la temperatura de la su-
perficie si la disipación de energía se mantiene constante. ¿Es importante la
radiación en este último caso?
27. Un lado de una lámina muy delgada se expone al Sol y el otro está aislado tér-
micamente. La lámina absorbe la energía solar a razón de 500 W/m2. El aire
ambiente que la rodea se encuentra a 27 oC, mientras que la temperatura efec-
tiva del firmamento es de 7 oc. El coeficiente de transferencia de calor por con-
vección es igual a 20 W/m2°C, y la emisividad de la superficie expuesta al Sol
es de 0.9. Calcule la temperatura de equilibrio de la lámina.
28. El operador de máquinas en un taller se queja de que el sistema de calefacción
no mantiene la temperatura del aire a un valor mínimo de 20 oC, como debiera.
http://carlos2524.jimdo.com/
Problemas
"
,~
21
Para fundamentar su queja, demuestra que un termómetro de mercurio muy
preciso suspendido en el aire ambiente registra sólo 17 oc. Cuando coloca el
termómetro contra las paredes registra 5 oc. El techo y las paredes del taller
son de lámina acanalada. Se sabe además que la emisividad del termómetro es
igual a 0.8.
¿Está en 10 conecto el operador? Justifique su respuesta estableciendo con
claridad sus suposiciones.
29. Imagine la pared de un horno construida con ladrillo refractario (k = 1.2
W/mK) de 20 cm de espesor. La superficie exterior del horno se encuentra a
300 oC y tiene una emisividad de 0.9. El coeficiente de transferencia de calor
por convección natural es igual a 8 W/m2K. La temperatura del aire ambien-
te, así como la de los alrededores, es igual a 25 oc. Calcule la temperatura de
la superficie interior.
Respuesta: T =1516.4 oC
30. Ciertas pruebas experimentales en el álabe de una turbina de gas indican que
éste toma 95 kW/m2
de calor cuando su superficie está a 800 oC, la tempera-
tura del aire que 10 rodea es de 1150 oC y la velocidad es de 160 mis. La super-
ficie del álabe se mantiene a temperatura constante durante los experimentos
mediante enfriamiento interno. Calcule el flujo de calor que tomará al álabe si
su temperatura se reduce a 700 oC, y no se alteran en 10 absoluto las condicio-
nes del aire que se hace pasar a través de él. Supóngase que las propiedades del
aire también permanecen constantes.
Respuesta: q" = 122.14 kW
31. Una bana cilíndrica de 3 cm de diámetro contiene un calentador eléctrico de
resistencia.Al pasar agua sobre el calentador a una temperatura de 25 OC Yuna
velocidad de 1 mis, disipa 6.3 kW/m. En estas condiciones la temperatura en
su superficie es de 90 oc. Cuando se hace circular aire a una temperatura de
25 OC Yuna velocidad de 10 mis, el calentador sólo disipa 570 W/m. Calcule
y compare los coeficientes de transferencia de calor en ambas situaciones.
32. Se desea enfriar el agua de refrigeración de un motor de combustión interna
de 150 kW de potencia al freno de 90 a 80 oC en un radiador que está por eva-
luarse. El flujo de masa de agua que circula por el motor es de 3.6 kg/s. El ra-
diador que se propone colocar al motor para enfriarlo tiene un área total de
transferencia de calor igual a 0.8 m2. Puede suponerse que la temperatura pro-
medio del aire ambiente que se haría circular con el abanico a través del ra-
diador se encuentra a 40 oC, y el calor específico del agua es de 4186 J/kg0c.
Indique si es posible o no enfriar el agua del motor con el radiador propuesto.
http://carlos2524.jimdo.com/
22
..........
· "l .
l. Introducción
Bibliografía
Incropera, F. P. YD. P. DeWitt, Tntroduction to Heat Transfer, 3a. ed., John Wiley, 1996.
Ozisik, M. N., Basic Heat Transfer, McGraw-Hill, Nueva York, 1977.
Rohsenow, W. M. y J. P. Hartnett, Handbook ofHeat Transfer, McGraw-Hill, Nueva York,
1973.
http://carlos2524.jimdo.com/
2. Conducción unidimensional
e es ad estable
La senda de la virtud es
muy estrecha y el camino
del vicio, ancho y espacioso.
CERVANTES
La conducción unidimensional en estado estable encuentra múltiples aplicaciones
en sistemas de interés para el ingeniero: paredes de hornos, aislamiento de ductos
para transportar vapor, aislamiento de conductores eléctricos, aletas de enfria-
miento, etcétera. En ciertas aplicaciones, los efectos de la transferencia de calor en
más de una dirección son tan pequeños que pueden despreciarse sin sacrificar la
exactitud de los resultados.
En este capítulo se describen algunas de esas aplicaciones; por supuesto, no se
pretende cubrir de manera exhaustiva todas las aplicaciones de la conducción unidi-
mensional en estado estable. Nuestro propósito sólo consiste en ilustrar el método o
la técnica de análisis para resolver los diferentes problemas que se le presentan al in-
geniero.
2.1. Placa
Considérese una placa plana de espesor L cuya conductividad térmica k es cons-
tante. Supóngase que sus dos superficies se mantienen a temperaturas TI y T2, res-
pectivamente, como se muestra en la figura 2.1.
Si se analiza un volumen de control de espesor Llx dentro del material, la pri-
mera ley de la termodinámica establece que el calor que entra en el sistema por
conducción es igual al que sale de él. Analíticamente,
q"A Ix- q"A Ix+ tu =O (2.1 )
Al notar que el área A perpendicular al flujo de calor es constante en la placa, la
expresión anterior puede dividirse entre ALlx, esto es,
"1 "1q x+tu - q x =O
Llx
(2.2)
23
http://carlos2524.jimdo.com/
24 2. Conducción wlidimensional en estado estable
TI
q"Alx q"Alx+dX
o L x
Figura 2.1. Placa plana y volumen de control.
En el límite, cuando & -7 Ose obtiene, por el teorema del valor medio,
d "
.-!L =O
dx
(2.3)
Al integrar esta expresión con respecto a x se obtiene
q" =el (2.4)
donde el es una constante de integración. Esta expresión ratifica analíticamente
que el flujo de calor por unidad de área en la placa es constante. Sustituyendo la
ley de Fourier en la ecuación 2.4 se tiene
o
dT =_ el
dx k
(2.5)
Sise supone que la conductividad térmica del material es constante, una integra-
ción de la ecuación anteIior da como resultado
eT= __l x+e2
k
(2.6)
por lo que se concluye que el perfil de temperatura a través de la placa es lineal. Lo
anteIior es cierto siempre que --como se supuso con anteIiOlidad- la conductivi-
http://carlos2524.jimdo.com/
2.1. Placa 25
dad térmica del material sea constante. Las constantes de integración Cl y C2 pueden
evaluarse mediante dos condiciones de frontera que correspondan a la situación físi-
ca del problema y que pueden determinarse recurriendo a las temperaturas en ambas
superficies de la placa, es decir,
T= TI en x = O
y
T= T2 en x =L
Sustituyendo estas condiciones de frontera en la distribución de temperatura (ecua-
ción 2.6) se obtiene
y
Por consiguiente,
(2.7)
El esquema de la figura 2.2 muestra la variación de la temperatura en la placa co-
mo función de la distancia. Cabe observar de nuevo que esta distribución es lineal
sólo cuando la conductividad térmica del material es constante.
T
T,
~ L-__________~____
o L x
Figura 2.2. Distribución de temperatura en una placa con conductividad térmica constante.
http://carlos2524.jimdo.com/
26 2. Conducción unidimensional en estado estable
A menudo conviene normalizar o adimensionar los resultados de la transfe-
rencia de calor para que sean generales e independientes de las dimensiones físi-
cas del sistema. La normalización reduce el número de parámetros, por lo que la
gráfica e interpretación de éstos es aún más sencilla. En ciertas circunstancias, una
mera normalización podrá sugerir las aproximaciones necesarias para simplificar
un problema concreto. La ecuación 2.7 puede normalizarse definiendo una tempe-
ratura y una distancia adimensionales como
y
T* = T- Ti
T¡ -T2
* xx =-
L
Al introducir estas variables adimensionales en la distribución de temperatura de
la ecuación 2.7 se tiene
T* =1 - x* (2.8)
obteniéndose así una línea única cuya pendiente es de 135° para todas las placas.
Una vez que se calcula la distribución de temperatura en la placa, el flujo de
calor que se transfiere a través de ella puede evaluarse con facilidad, una vez más,
mediante la ley de Fourier. Ya que ésta es constante,
Por tanto,
dT
q=-kA-=AC¡
dx
(2.9)
Esta ecuación indica que el flujo de calor es proporcional al área, a la conductivi-
dad térmica del material y a la diferencia de temperaturas. Por otra parte, el flujo
de calor es inversamente proporcional al espesor de la placaJ
La forma de la ecuación 2.9 sugiere una analogía eléctrica con la ley de Ohm
de circuitos eléctricos: si el flujo de calor se visualiza como una corriente y la di-
'" Si la conductividad térmica del material varía con la temperatura de acuerdo con una relación de la forma
k = "00 + an, donde "o y a son constantes, el flujo de calor a través de la placa puede calcularse con la ecua-
ción 2.9, siempre que la conductividad térmica se calcule a la temperatura promedio (TI + T2)/2. La demos-
tración se deja al lector como ejercicio.
http://carlos2524.jimdo.com/
2.1. Placa 27
ferencia de temperaturas como una diferencia de potenciales eléctricos, el equiva-
lente de la resistencia eléctrica es una resistencia térmica definida como
R¡=~
kA
(2. 10)
El uso de esta ecuación permite evaluar sin mayor problema el flujo de calor en
paredes de distintos materiales en contacto íntimo, como se ilustra en la figura 2.3
con sólo dos.
En estas condiciones,
(2.11)
La expresión 2.11 indica que el flujo de calor a través de la pared compuesta por
dos materiales es igual a la diferencia total de temperaturas entre la suma de las dos
resistencias térmicas en serie.
La analogía eléctrica antes descrita también puede emplearse con eficacia pa-
ra resolver problemas más complejos relacionados con resistencias en serie y en
paralelo. En la figura 2.4 se muestra un problema típico y su correspondiente cir-
cuito térmico. Cabe notar, sin embargo, que las conductividades térmicas de los
materiales en paralelo no deben ser sustancialmente distintas, de lo contrario ha-
bría una transferencia de calor bidimensional.
Hasta ahora se ha supuesto que se conocen las temperaturas en las superficies
exteriores de la pared. No obstante, por lo general se encuentran en medios líqui-
dos o gaseosos a diferentes temperaturas, y la transferencia de calor con los fluidos
Ti
LA LB
Figura 2.30Pared compuesta por dos materiales y su correspondiente circuito térmico.
http://carlos2524.jimdo.com/
28
1"
B
-T1
A O
e
2. Conducción unidimensional en estado estable
La
ka Aa
Tl--,//,-Il ... T
2
~Lf~:~
kAAA Le koAo
kcAc
Figura 2.4. Pared compuesta por distlntos materiales.
se lleva a cabo por convección. El uso de la resistencia térmica puede extenderse
también a la ley de Newton de enfriamiento. Al analizar esta ley se deduce que la
resistencia térmica para convección, o resistencia de película, está dada por la ex-
presión
R =_1
I hA
(2.1 2)
Si se considera ahora la misma pared construida con dos materiales, pero en con-
tacto con dos fluidos como se muestra en el esquema de la figura 2.5, la transfe-
rencia de calor puede evaluarse con la expresión 2.13.
(2.13)
A La
Figura 2.5. Pared compuesta por dos materiales expuesta a convección por ambos lados.
http://carlos2524.jimdo.com/
2.1. Placa
Ejemplo 2.1.
29
En esta expresión se observan las diferentes resistencias térmicas implicadas. En ca-
so de que uno de los fluidos sea, digamos, agua y el otro aire, la resistencia de pe-
lícula más grande se encuentra en el lado del aire. En estas circunstancias, la
transferencia de calor puede incrementarse o la resistencia disminuirse mediante
aletas de enfriamiento o superficies extendidas en el lado del aire a fin de aumen-
tar el área.
Otro caso que puede interesar a los ingenieros es cuando la pared que se anali-
zó está constituida por un material aislante. Entonces se define el valor R del aislan-
te como la resistencia térmica del material por unidad de área, es decir, R =L/k,
donde L es el espesor y k la conductividad térmica. Obsérvese que al duplicar el
espesor L también se duplica el valor R del aislante. En Estados Unidos de Améri-
ca los valores de R se expresan sin unidades; por ejemplo, R-20, R-30. Estos valores
se obtienen dividiendo el espesor del material dado en pies entre su conductividad
térmica en BTU/h pieop, de tal forma que las urüdades de R están en h pie2op/
BTU.Así, 6 pulgadas de aislante de fibra de vidrio (k =0.025 BTUIh pie°F) tienen un
valor igual a R-20, esto es, R =0.5/0.026 =20 h pie2°PIBTU (en el SI 1 m2°C/W =
5.678 h pie2°PIBTU).
Este concepto de resistencia por unidad de área R también se emplea cuando
la pared se compone de materiales heterogéneos, como los bloques de concreto.
De este modo se dice que un bloque de concreto con dos cavidades tiene una re-
sistencia térmica por unidad de área R igual a 0.37 m2°C/W. La resistencia R =l/h
a la convección para una pared expuesta a un viento de 24 km/h es igual a 0.03
m2°C/W. Algunos valores de la resistencia térmica R se indican en J997 ASHRAE
Fundamentals Handbook (American Society of Heating, Refrigerating and Air-
Conditioning Engineers, Inc., 1977).
Imagine una pared constituida por los elementos siguientes:
Concepto
Resistencia exterior a la convección (viento a 24 km/h)
Bloque de concreto de 20 cm de espesor
90 mm de aislante de fibra mineral
13 mm de yeso
Resistencia interior a la convección (aire estático)
0.03
0.37
2.3
0.08
0.12
El aire ambiente que rodea la pared se encuentra a 40 oC en el exterior y 22 en
el interior. Si la pared mide 5 m de largo por 2.5 m de altura, calcule el calor
transferido.
http://carlos2524.jimdo.com/
,
l '
.,
I
,
,.
30
Ejemplo 2.2.
2. Conducción unidimensional en estado estable
Solución
Sumando todas las resistencias térITÚcas,
40 - 22
"
q = 0.03 + 0.37 + 2.3 + 0.08 + 0.12
q" = 6.21 W/m2
En consecuencia,
q =(12.5)(6.21) =77.6 W
Considérese una pared de cobre (k =375 W/mK) de 1 cm de espesor de la que
una de sus superficies está expuesta a vapor de agua condensándose (h = 10 000
W/m2
K) a una temperatura de 200 oc. La otra superficie está en contacto con
aire ambiente (h =5 W/m2K) a una temperatúra de 25 oc.
a) Calcule el calor por unidad de área transferido a través de la placa.
b) Determine las temperaturas en ambas superficies de la pared.
Solución
a) Según la ecuación 2.13,
200 - 25 175
=1 0.20
874.45 W/m2
q"
1 0.01
--- +--+
10000 375 5
b) Puesto que el calor transferido por convección del vapor a la placa es igual al
calor por conducción que pasa a través de ella y, al ITÚsmo tiempo, igual
al calor por convección de la placa al aire,
874.45 =10000(200 - TI)
TI = 199.91 oC
y
874.45 =5(T2 - 25)
T2 =199.89 oC
http://carlos2524.jimdo.com/
2.1. Placa
Ejemplo 2.3.
31
Obsérvese que la mayor caída de temperatura ocurre a través de la interfase co-
bre-aire. Esto es, -'
Considérese la pared de un horno de estufa formada pordos placas delgadas de
acero, con aislante de fibra de vidrio (k =0.035 W/m°C) en el interior de ellas.
La temperatura máxima de operación del horno puede suponerse en 250 oC, mien-
tras la temperatura ambiente en la cocina puede variar entre 20 y 35 oc. Calcule
el espesor de aislante que deben tener las paredes para eyitaJ:" que la temperatu-
ra en la superficie exterior exceda 60 oc. El coeficief!.te de transferencia de ca-
lor para convección en ambas superficies puede suponerse igual a 10 W/m20
C.
Solución
Como la conductividad térmica del acero es mucho mayor que la de la fibra de
vidrio, el efecto de las láminas en las paredes puede despreciarse sin perder
exactitud en los cálculos. El calor disipado hacia el ambiente puede evaluarse
con la expresión
q" =h2(T2 - T2=)
q" = 10(60 - 35)
q" =250W/m2
Este flujo de calor debe ser igual al transferido por convección del aire en el
horno hacia la pared y al que se transfiere por conducción a través de ella. Por
tanto,
de donde
L = 0.035( 250 - 60 -~) = 0.023 m = 2.31 cm
250 10
En ciertas circunstancias, la superficie de una pared no sólo disipa calor por con-
vección hacia el aire ambiente que la rodea, sino también a los alrededores. En ta-
http://carlos2524.jimdo.com/
32
Ejemplo 2.4.
2. Conducción unidimensional en estado estable
les condiciones, el calor por unidad de área que disipa una pared puede calcularse
fácilmente con la expresión conocida como ecuación de Langmuir:
"=0.548E[(~)4 -(~)4l+1.957(T.-T. )5/4 !196.85V+68.9 (2. 14)
q 55.55 55.55 s = ~ 68.9
donde q" es el calor por unidad de área en W/m2, Ts la temperatura en la superfi-
cie de la pared, en K; Ta la temperatura de los alrededores, en K; Too la temperatu-
ra del aire ambiente que rodea la pared, en K, y V la velocidad del aire en mis,
que está en movimiento en la vecindad de la superficie.
Obsérvese que el primer término del miembro derecho de la expresión con-
templa la radiación, en tanto que el segundo contiene las aportaciones de la convec-
ción natural y forzada. El término de radiación no es más que CJE(Ts
4 - Ta4). Si la
velocidad Ves igual a cero, de la ecuación de Langmuir se precisa que, para una
pared, h = 1.958(Ts - Too )1/4.
Considérese una pared vertical de 3 m de altura por 10 de largo con un espesor
de 0.20 m (fig. E.2.4). La conductividad térmica del refractario es de 1.1
W/mK. Una de las superficies de la pared, la exterior, se encuentra a 300 oC y
tiene una emisividad igual a 0.8. Esa superficie está expuesta al aire ambiente
y alrededores a 27 oC. Calcule la temperatura de la otra superficie de la pared
-la interior.
T3m
300 oC
1 27 oC
20 cm
vFigura E.2.4.
http://carlos2524.jimdo.com/
2.2. Cilindro hueco 33
Solución
Con la ecuación de Langmuir se tiene
"=(0.548)(0.8)[( 573 )4 _( 300 )4]+1.957(300-27)5/4
q 55.55 55.55
q" = 4590.17 + 2171.67 = 6761.84 W/m2
Por tanto,
T . = 300 (6761.84)(0.20) =1529 43 °e
interIor + 0.1 .
2.2. Cilindro hueco
Imaginemos ahora un cilindro hueco de radio exterior R2, radio interior R¡ y un
material cuya conductividad térrrtica k es constante, como se muestra en la figura
2.6. Supóngase que la superficie interior se mantiene a una temperatura T¡, mien-
tras que la exterior se mantiene a una temperatura T2 y que el flujo de calor es con-
ducido en la dirección radial solamente, esto es, L> > R¡ o R2.
Mediante un balance de energía en el volumen de control mostrado se obtiene
q"2nr&1 r - q"2nr&1 r+ I'1r =O
Al dividir entre 2nl1r& y hacer que I1r tienda a Ose obtiene, por el teorema
del valor medio,
~(rq") =O
dr
Integrando esta expresión con respecto al radio,
rq" = e¡
(2.15)
(2.16)
donde el es una constante de integración. Al aplicar la ley de Fourier de conduc-
ción de calor se obtiene
(2.17)
http://carlos2524.jimdo.com/
34 2. Conducción unidimensional en estado estable
I
I
!
I
IR,
r
L ~
1
I l1z
T,
T2 M q"2n:rl1zIr+ M
+--->r
Figura 2.6. Cilindro hueco.
Integrando de nuevo esta expresión
C
T=-_1Inr+C2
k
(2.18)
Las constantes de integración C1 y C2 pueden determinarse mediante condiciones
de frontera apropiadas. En este caso,
T=T¡ en r=R¡
y
T= T2 en r =R2
Sustituyendo estas condiciones de frontera en la ecuación 2.18 se obtienen las
constantes de integración C1 y C2• Esto es,
y
http://carlos2524.jimdo.com/
2.2. Cilindro hueco 35
Por consiguiente,
T =T2
- Ji - T2 In ~
In R2 R2
(2. 19)
R¡
En la figura 2.7 se muestra de manera esquemática la distribución de la tempera-
tura en el material del cilindro. Obsérvese que, en contraste con el perfil lineal de
una placa, el de la temperatura en un cilindro es logarítmico aun cuando la con-
ductividad térmica es constante en ambos casos.
Ahora puede calcularse el flujo de calor mediante la ley de Fourier. Debido a
que el flujo es constante en cualquier sección del cilindro,
dT
q =-k(2rcrL) -
dr
q =-k(2rcrL{- ~~)
(2.20)
Nótese que la ecuación 2.20 también tiene la forma de la ley de Ohm. Por consi-
guiente, en este caso la resistencia térmica a la conducción puede expresarse como:
(2.21)
Figura 2.7. Distribución de temperatura en un cilindro hueco.
http://carlos2524.jimdo.com/
36
Ejemplo 2.5.
2. Conducción unidimensional en estado estable
El análisis de cilindros constnüdos con distintos materiales en contacto Íntimo y
cilindros con condiciones de frontera convectivas, o ambos casos, puede hacerse
con facilidad mediante un circuito térmico. Para ilustrarlo, imagine un tubo cu-
bierto con un aislante y con convección, tanto por el interior como por el exterior.
En la figura 2.8 se muestra un esquema de esta situación. El flujo de calor en ta-
les circunstancias queda determinado mediante la relación
(2.22)
donde kr es la conductividad térmica del tubo y ka la del aislante.
Un tubo de cobre BWG 16 (k =379 W/m°C) transporta vapor húmedo a 100 oC
y tiene un diámetro exterior de 5.08 cm, mientras que el diámetro interior es de
4.75 cm. El tubo se encuentra en un cuarto cuya temperatura ambiente es de 25 oc.
Para disminuir las pérdidas de calor en 60%, se desea aislar el tubo con fibra de
vidrio (k =0.04 W/m°C). Calcule el espesor de aislante que se requiere, supo-
niendo que los coeficientes de transferencia de calor interior y exterior son
iguales a 5600 y 5 W/m2°C, respectivamente.
I
¡
¡ h,
i
i, R,
~
¡
¡ R2
!T
Ra
I ,-
j T,
L
! T2
i TJ<,o
Figura 2.8. Cilindro aislado con convección en sus superficies.
http://carlos2524.jimdo.com/
2.3. Radio crítico 37
Solución
Primero se calculará el calor disipado por unidad de longitud cuando el tubo se
encuentra desnudo. Según la ecuación 2.22,
100-25
q'
1 ln(5.08/4.75) 1
- - -- - - + + - - ---
n(0.0475)(5600) 2n(379) n(0.0508)(5)
75 75
q'= :--
1.20 x 10-3
+ 2.82 X 10-5
+ 1.25 1.25
q' =60 W/m
Nótese que las caídas de temperatura en la interfase vapor-tubo de cobre y en
el material del tubo mismo son insignificantes. Por tanto, se supondrá que la
temperatura en la superficie exterior del tubo es igual a 100 oc. Si las pérdidas
de calor se reducen en 60%,
q' =0.4(60) =24 W/m
Teniendo en cuenta únicamente las resistencias térmicas del aislante y de la pe-
lícula exterior,
24 = 100-25
ln(Da /5.08) 1
-'---'------'- +----:---~-
2n(0.04) n(Da /100)(5)
Resolviendo la expresión anterior,
Da =9.4 cm
En consecuencia, el espesor de aislante requerido es 2.2 cm
2.3. Radio crítico
En apariencia, agregar material aislante a un cilindro o tubo siempre reduce las
pérdidas de calor que experimenta. Sin embargo, al analizar de manera detallada
la ecuación 2.22 se observa que el efecto del material aislante sobre la transferen-
cia de calor en el cilindro es doble. Dicho de otro modo, añadir material aislante
de baja conductividad térmica a un cilindro incrementa la resistencia a la conduc-
ción, pero también el área convectiva de transferencia de calor, con lo cual se re-
http://carlos2524.jimdo.com/
38
Ejemplo 2.6.
2. Conducción unidimensional en estado estable
duce la resistencia exterior de la película. Con este doble efecto en mente, a con-
tinuación se analizan las consecuencias sobre la transferencia de calor al variar el
radio exterior del aislante.
Si se supone que la temperatura en la superficie exterior del cilindro desnudo
es en esencia igual a la temperatura del fluido en el interior, o que h1 y kl tienen
valores relativamente altos,
(2.23)
Diferenciando esta expresión con respecto a Ra e igualando a cero se obtiene
_ _ ka
Ra - Rcrítico - ~ (2.24)
donde Rcrítico se denomina radio crítico de aislamiento. La expresión anterior in-
dica que en Ra =Rcrftico el flujo de calor es máximo o la resistencia térmica al flu-
jo de calor es mínima.
La diferencia Rcrítico - R 2 recibe el nombre de espesor crítico de aislamiento,
ya que el flujo de calor se incrementa al añadir material aislante cuando R2 es me-
nor que Rcrítico' En la figura 2.9 se muestra en forma esquemática la variación de
las resistencias de conducción y convección en un cilindro.
Para un aislante típico (k "" 0.03 W/m°C) en condiciones de convección natu-
ral (h "" 1OW/m20
C) se obtiene que Rcrítico "" 0.003 m = 3 mm. A primera vista es-
te resultado podría indicar que el radio crítico de aislamiento no tiene relevancia
en las aplicaciones ingenieriles por su valor tan pequeño -para los valores aquí
asignados de ka y h3' Sin embargo, este resultado es muy importante en el análisis
y diseño de conductores eléctricos, pues la disipación de calor aumenta al añadir
un aislante a un alambre que transporta cierta corriente eléctrica. Por otra parte, si
el radio crítico de aislamiento, Rcrítico, es de menor magnitud que R 2, cualquier
cantidad de aislante disminuirá las pérdidas de calor. Este hecho es de suma rele-
vancia en tuberías que transportan agua caliente o helada y donde se desea dismi-
nuir la transferencia de calor desde o hacia la tubería en un cilindro.
Considérese una resistencia eléctrica de grafito de 1 W, 2 Mn, 2 mm de diáme-
tro y 3 cm de longitud. Se desea aislar eléctricamente la resistencia con micanita
(k =0.1 W/mK). Se supone que 40% del calor generado se disipa por convec-
ción al medio ambiente, cuya temperatura es de 40 oC, y el resto se conduce por
las terminales de la resistencia hacia otros componentes del circuito.
http://carlos2524.jimdo.com/
2.3. Radio crítico
Ejemplo 2.7.
Resistencia
térmica Resistencia totalI
Espesorcrítico
de aislamiento
Resistencia de
convección
Figura 2.9. Variación de las resistencias de conducción y convección en un tubo.
39
Calcule el espesor de aislante eléctrico necesario para tener una disipación de
calor máxima, así como la temperatura en el interior del aislante.
Solución
Con la ecuación 2.24,
Rcrítico =ka =0.1 =0.0067 m =6.7 mm
~ 15
En consecuencia, el espesor de aislante es igual 6.7 - 1 =5.7 mm. Por otra parte,
-40+( In6.70 + 1 )
2n(0.1)(0.03) 2n(0.0067)(0.03)(15)
=40 + 0.4 (100.91 + 52.79)
Por otra parte, si la resistencia no se aislara,
q
O
0.4
T. =T. + =4 + =181.47 oC
2 2~ 2nR2L~ 2n(0.001)(0.03)(15)
Un alambre de cobre (k = 401 W/m°C) de 2 mm de diámetro y 10 m de longitud
está forrado con una cubierta de plástico (k =0.15 W/m°C) de 1 mm de espe-
sor. Algunas mediciones eléctricas indican que una corriente eléctrica directa
http://carlos2524.jimdo.com/
40 2. Conducción unidimensional en estado estable
de lOA causa una caída de voltaje igual a 8 V. Todo el conductor está expues-
to al aire ambiente cuya temperatura es de 30 oC a través de un coeficiente de
transferencia de calor igual a 18 W/m2
K.
a) Determine la temperatura de la interfase entre el alambre y el plástico.
b) Si se duplica el espesor de la cubierta de plástico, indique si la temperatu-
ra en la interfase aumenta, disminuye o pelmanece constante.
Solución
a) El calor que disipa el conductor puede calcularse con la expresión
q =VI =(8)(10) =80 W
Por otra parte,
T2 -30
80=--I-n(~4-/2~)~-----1----
---'---'--,--'--+ -----,-----
2n(0.15)(10) 18n(0.004)(19)
Por tanto, T2 = 71.25 oC
b) El radio crítico de aislamiento es
T2 - 30 _ T2 - 30
0.0l35 +0.44 0.52
Rcrítico = 0.15 = 0.00833 m = 8.33 mm
18
En consecuencia, al duplicar el espesor de la cubierta de plástico disminuye la
temperatura.
2.4. Esfera
El análisis de esferas es de gran trascendencia por las aplicaciones que éstas tienen
en distintos procesos, como el caso de recipientes esféricos para almacenar flui-
dos a bajas temperaturas. Considérese una esfera hueca de radio interior R1, radio
exterior R2 y cuya conductividad télmica es constante. Supóngase que las tempe-
raturas en sus superficies interior y exterior son TI y T2, respectivamente.
Después de seleccionar un cascarón esférico de espesor I1r dentro del material
y hacer un balance de energía se obtiene
q"(4nr
2
)1 - q"(4nr
2
)1 =O
r r+Ór
(2.25)
http://carlos2524.jimdo.com/
2.4. Esfera 41
Al dividir entre 4n~r y hacer que ~r tienda a cero se obtiene, por el teorema del
valor medio,
Integrando esta expresión con respecto al radio se tiene que
o
"_ elq-z
r
(2.26)
donde el es una constante de integración. Si introducimos la ley de Fourier de
conducción de calor,
dT el
=dr - kr2
Al integrar de nuevo con respecto al radio tenemos
eT=_l +e2
kr
(2.27)
(2.28)
Las constantes de integración el y e2pueden obtenerse a través de las condicio-
nes de frontera siguientes:
T= TI en r =Rl
y
Si sustituimos estas condiciones en la ecuación 2.28,
y
http://carlos2524.jimdo.com/
42 2. Conducción unidimensional en estado estable
Por tanto,
T =T
2
_ R¡ (T¡ - 12)(1_R2 )
R2 - R¡ r
(2.29)
El flujo de calor transferido a través del cascarón puede calcularse con la ley de
Fourier. Como es constante,
q = -k(4nr2) dT = -k(4nr2 )(_ C~)
dr kr
(2.30)
Si comparamos esta ecuación con la ley de Ohm vemos que la resistencia térmica
a la conducción está dada por la expresión
R = R2 -R¡
I 4nkR¡R2
(2.31)
Obsérvese que en el límite, cuando R2 tiende a infinito, la ecuación 2.30 se trans-
forma en
Con esta expresión puede calcularse el calor por conducción que disipa o absorbe
una pequeña partícula esférica o gota de líquido dentro de un fluido estático. Así,
si comparamos esta expresión con la ley de Newton de enfriamiento
se obtiene que, para estas condiciones en particular,
o
donde D =2R¡.
hD =2.0
k
El análisis de una esfera construida con distintos materiales en contacto direc-
to y con resistencias de película puede hacerse con facilidad mediante un circuito
http://carlos2524.jimdo.com/
2.4. Esfera
Ejemplo 2.8.
43
ténnico. En la figura 2.10 se muestra un esquema que ilustra el caso de una esfe-
ra cubierta con material aislante y dos resistencias de convección. En tales cir-
cunstancias,
(2.32)
A semejanza del radio crítico que se calculó para el cilindro, el radio crítico en una
esfera resulta ser el doble, es decir,
(2.33)
La superficie interior de una bomba calorimétrica en forma de esfera está ex-
puesta a un flujo de calor q"s resultante de una reacción química exoténnica.
Los radios interior y exterior del calorímetro son R¡ y R2> respectivamente. El
coeficiente exterior de transferencia de calor es h, la conductividad ténnica del
material es k y la temperatura ambiente es TOO'
a) Determine la temperatura en la superficie interior del calorímetro.
b) Calcule la temperatura en la superficie exterior. ¿Es posible disminuir esa
temperatura sin alterar q"s' R¡, R2, k o Too?
Figura 2.10. Esfera cubierta con material aislante.
http://carlos2524.jimdo.com/
44 2. Conducción unidimensional en estado estable
Solución
a) Mediante un balance de energía en el material del calorímetro se obtiene
que, según la ecuación 2.28,
Ahora las constantes e¡ y e2 pueden determinarse con las condiciones de fron-
tera apropiadas para el problema. En este caso,
y
-k dT =q" en r =R¡
dr s
Sustituyendo estas condiciones de frontera en la distribución de temperatura se
obtiene
y
Por tanto,
e "R2¡ =qs ¡
e = q;'Ri (~-l)+T2 kR hR 00
2 2
T=Too +~+~ ---1"R2
"R2
( k )kr kR2 hR2
(a)
La temperatura en la superficie interior puede calcularse ahora sustituyendo r =R¡
en la expresión anterior, es decir,
T. =T + q;'R¡ + q;'R~ (~-1)
¡ 00 k kR hR2 2
b) La temperatura en la superficie exterior puede calcularse sustituyendo r =R2
en la ecuación (a), esto es,
T =T + q;'(!l)22 00 h R
2
http://carlos2524.jimdo.com/
2.5. Placa con generación unifonne de calor 45
La expresión anterior ratifica que el calor liberado por la reacción exotérmica
debe disiparse por convección hacia los alrededores, esto es,
De la expresión para la temperatura en la superficie exterior se observa que és-
ta puede disminuirse incrementando el coeficiente de transferencia de calor h.
2.5. Placa con generación uniforme de calor
Hay una gran variedad de problemas en los que existe generación de calor: calen-
tadores de resistencia, conductores eléctricos, ánodos, cátodos, elementos com-
bustibles en reactores nucleares, etcétera.
Imagine ahora una placa de espesor 2L en la que OCUlTe una generación uni-
forme y constante de calor por unidad de volumen q''', W/m3, como se muestra en
la figura 2.11. Supóngase que la placa se halla expuesta por ambos lados a un flui-
do cuya temperatura es T= y el coeficiente de transferencia de calor por ambos lados
es h.
Para determinar la distribución de la temperatura en la placa, considérese un
volumen de control de dimensiones L1xL1y& dentro del material. Un mero balance
de energía indica que
(2.34)
Al dividir esta expresión entre L1xL1y& y hacer que L1x tienda a cero se obtiene, por
el teorema del valor medio,
d "
~=q'"
dx
(2.35)
Integrando esta expresión con respecto a la distancia x,
q" =q'''x + el
donde el es una constante de integración. Si introducimos la ley de Fourier de
conducción de calor,
dT 111 e_~ __l
dx k k
(2.36)
http://carlos2524.jimdo.com/
46 2. Conducción unidimensional en estado estable
h
Too
x
Figura 2.11. Placa con generación de calor.
Al integrar de nuevo, y suponiendo que la conductividad ténnica del material es
constante,
(2.37)
Las constantes de integración el y e2 pueden evaluarse con dos condiciones de
frontera. Dada la simetría del problema, el flujo de calor es igual a cero en el pla-
no central de la placa, esto es,
dT =0
dx
en x= O
De manera análoga, el calor transfelido por conducción es igual al de convección
en la interfase sólido-fluido, esto es,
dT
-k dx =h(T-Too ) en x=L
Con estas dos condiciones de frontera se obtiene
y
el =0
"'L "'L2
e =T +-q- +-q-
2 00 h 2k
http://carlos2524.jimdo.com/
2.5. Placa con generación unifonne de calor 47
Ejemplo 2.9.
En consecuencia,
T= T +_q_+CL__ 1- ~"'L "'/3 [ ( )2]~ h 2k L
(2.38)
La expresión anterior permite calcular la temperatura en cualquier posición x de la
placa. Por tanto, la temperatura en las superficies de ésta puede calcularse con fa-
cilidad al sustituir x =L en la expresión anterior. Así,
q"'L
~up =T~ +- h- (2.39)
Obsérvese que la ecuación indica que todo el calor generado se disipa por convec-
ción hacia el fluido.
Como la temperatura máxima ocurre en el centro de la placa, puede calcu-
larse sustituyendo x = Oen la ecuación 2.38, es decir,
_ q"'/3
Tmáx - ~up +2k (2.40)
La distribución de la temperatura dada por la ecuación 2.38 puede normalizarse si
se define una temperatura y una distancia adimensionales como
y
* T- ~up
T = ----;,.....,-"-
q'" /3/2k
x
x =-
L
Con estas variables el perfil de temperatura queda expresado como
T* =1-x*2
(2.41 )
Una placa de espesor L separa dos fluidos cuyas temperaturas son Tl~ y T2~,
respectivamente. Se desea eliminar por completo las pérdidas de calor del flui-
do que tiene mayor temperatura, es decir, Tl~, mediante una generación de ca-
lor q'" en la placa. Determine la generación de calor necesaria.
Solución
Aun cuando las pérdidas de calor pueden disminuirse agregando aislante térmi-
co a una o a las dos superficies de la placa, no pueden eliminarse en su totali-
http://carlos2524.jimdo.com/
48 2. Conducci6n unidimensional en estado estable
dad. Por otra parte, como se muestra en la figura E.2.9, las pérdidas de calor
pueden eliminarse en absoluto mediante una generación de calor apropiada; por
ejemplo, una coniente eléctrica. De acuerdo con la ecuación 2.38, la cual supo-
ne que el flujo de calor es igual a cero en x =0,
_ _ q"'L q"'L2
Tmáx - 'T¡oo - T200 +- - +- -
h 2K
Por tanto,
q'" Ca)
En caso de emplear una corriente eléctrica,
.2
R'I! l e
q = -
LA
donde Re se refiere a la resistencia eléctrica. Así,
ff'". q
l= - -
Re
y q'" puede sustituirse con la ecuación Ca).
T, _ ----r~
L
h
Figura E.2.9.
http://carlos2524.jimdo.com/
2.6. Cilindro con generación uniforme de calor 49
2.6. Cilindro con generación uniforme de calor
Considérese ahora un cilindro sólido de radio R, con una generación uniforme de
calor q/", como se muestra en la figura 2.12. Supóngase que la conductividad tér-
mica del material es constante y que la longitud del cilindro es muy grande con
respecto a su radio, de manera que la transferencia de calor se lleva a cabo sólo en
la dirección radial. Un balance de energía en un volumen de control en forma de
arandela de espesor !1r y altura Llz indica que
q"2nrLlz Ir - q"2nrLlz Ir + 6..r + q"/2nr!1rLlz =O (2.42)
Al dividir la ecuación entre 2n!1rLlz y hacer que !1r tienda a cero se obtiene
~(rq/l) =q'"r
dr
Integrando esta expresión con respecto al radio,
/1 q"'r el
q = - +-
2 r
(2.43)
(2.44)
donde el es una constante de integración. Puesto que el flujo de calor debe ser una
cantidad finita en todo el cilindro, incluido r = O, de la ecuación 2.44 se despren-
de que el debe ser igual a cero. Así,
'"/1 q r
q = -
2
Si sustituimos la ley de Fourier en la expresión anterior se obtiene
dT =_q"'r
dr 2k
Al integrar de nuevo esta expresión,
q'"r2
T=---+e2
4k
(2.44a)
(2.45)
(2.46)
La constante de integración e2 puede evaluarse a partir de un balance de energía
en la superficie, es decir,
http://carlos2524.jimdo.com/
50 2. Conducción unidimensional en estado estable
T~
R
~r
Figura 2.12. Cilindro sólido con generación unifonne de calor.
Con esta expresión se obtiene
111R 111R2
e =T. +-q- +-q-2 00 2h 4k
Por tanto,
T=T. +- - +- - 1- -q"'R q1llR2[ (r)2]00 2h 4k R
(2.47)
Del mismo modo,
T =T. +-q-- 1- !..-IIIR2[ ( )2]sup 4k R
(2.47a)
donde Tsup es la temperatura en la superficie del cilindro. Esta distribución de la
temperatura puede normalizarse al definir las variables
" T - :Z;up
T =-----;~-
qlll R2/2k
y
* r
r =R
http://carlos2524.jimdo.com/
2.6. Cilindro con generación uniforme de calor 51
Así, la ecuación 2.47a se transforma en
,. ,
(2.48)
Nótese que la expresión anterior es en esencia igual a la distribución adimensio-
nal de temperatura para una placa con generación de calor, excepto por el coefi-
ciente (1/2) en la ecuación 2.48. En la figura 2.13 se muestra un esquema de la dis-
tribución adimensional de la temperatura en una placa plana y en un cilindro con
generación uniforme de calor.
Determine una expresión para calcular la diferencia entre la temperatura máxi-
ma y la temperatura ambiente como función de la corriente eléctrica en un con-
ductor de cobre calibre 14 (1.626 mm de diámetro). Supóngase que la resistivi-
dad eléctrica del cobre es de 1.73 x 10-8 nm, la conductividad térmica de
380 W/mK y el coeficiente de transferencia de calor igual a 10 W/m20
C.
Solución
Según la ecuación 2.47,
pero
donde Pe es la resistividad eléctrica, nm, y Re la resistencia eléctrica, n.
T'
1.0 Placa
0.5
Cilindro
o-;------------~--
1.0 x*, r'"
o
Figura 2.13. Distribución adimensional de la temperatura en una placa plana y en un ci-
lindro con generación uniforme de calor.
http://carlos2524.jimdo.com/
S2
Ejemplo 2.11.
2. Conducción unidimensional en estado estable
Con estas expresiones se obtiene
i
2
Pe ( 2k)Tmáx - T~ = !1T = 2 2 1+-
4n- R k hR
Sustituyendo valores
!1T =0.163 i2
En la figura E.2.1O se presenta en forma cualitativa la variación de !1T como
función de i.
tlT
36.68 oC r---~
15 A
Figura E.2.10.
Supóngase que el conductor desnudo del ejemplo anterior se aísla con hule (k =
0.15 W/m°C).
a) Calcule el espesor cótico de aislamiento.
b) Para las mismas condiciones ambientales, y suponiendo que se emplean
2 mm de aislante, determine una nueva expresión para calcular la diferen-
cia entre la temperatura máxima y la temperatura ambiente como función
de la corriente eléctrica.
Solución
a) Según la ecuación 2.24,
ka 0.15 00Rcrírico = - = - - = . 15m = 15mm
h:3 10
http://carlos2524.jimdo.com/
2.6. Cilindro en generación uniforme de calor 53
b) Por otra parte,
donde
·2
'T' T l Pe
12 = máx - 2 2
4n R2 k
y Ra se refiere al radio exterior del conductor aislado, R2 es el radio exterior del
conductor desnudo y h) el coeficiente de transferencia de calor.
Ordenando la expresión anterior,
Sustituyendo valores se obtiene
!1T= 0.058 P
Obsérvese que el incremento de temperatura es menor que cuando el conductor
se encontraba desnudo. En este caso, Ra < R crítico'
!::J.T
13.05 oC 1-----7
15 A
Figura E.2.ll.
http://carlos2524.jimdo.com/
54 2. Conducción unidimensional en estado estable
2.7. Superficies extendidas
El uso de superficies extendidas es de especial importancia en aplicaciones donde
se desea incrementar el flujo de calor y no se dipone del área suficiente, o porque
el coeficiente de transferencia de calor es relativamente bajo. Para ilustrar esto,
considérese la superficie vertical de un dispositivo electrónico que mide 0.1 m por
0.1 m, el cual se encuentra a 50 oC y se localiza en aire ambiente a 25 oc. Supón-
gase que el coeficiente de transferencia de calor es igual a 10 W/m20
C. La mera
aplicación de la ley de Newton del enfriamiento indica que esta superficie puede
disipar por convección
q =hA~T= (10)(0.1 X 0.1)(50 - 25) = 2.5 W
¿Qué podría hacerse para incrementar la transferencia de calor por un factor de 10,
es decir, a 25 W? Hay varias posibilidades para incrementar el flujo de calor disi-
pado por convección: aumentar la diferencia de temperaturas entre la superficie y
el fluido; incrementar el coeficiente de transferencia de calor, o aumentar el área.
Quizá ninguna de estas tres opciones sea factible. Esto es, la temperatura de la su-
perficie no puede incrementarse por las condiciones de operación del dispositivo
electrónico; el coeficiente de transferencia de calor tal vez podría incrementarse
mediante un abanico pero no es práctico, y la superficie no puede cambiarse de ta-
maño (0.1 x 0.1 m) por condiciones de diseño. Sin embargo, utilizar superficies
extendidas o aletas de enfriamiento como la que se muestra en la figura 2.14 pue-
de hacer que el área de transferencia de calor y, en consecuencia, el calor disipa-
do se incrementen de manera significativa. Estas superficies pueden ser parte in-
tegral del material de la base o pueden adherirse a ella.
En la figura 2.14 se muestra el esquema de una superficie extendida de sección
transversal rectangular constante, la cual está adherida a otra superficie cuya tem-
peratura es To. En esta aleta de enfriamiento horizontal el aire debe circular por las
..
x
Figura 2.14. Supetficie extendida de sección transversal rectangular constante.
http://carlos2524.jimdo.com/
2.7. Superficies extendidas 55
superficies superior e inferior. Por otra parte, si la aplicación disipa calor por con-
vección natural, el aire debe también circular por las dos superficies de área L por
W, por lo que la superficie extendida que se ilustra en la figura 2.14 debe girarse
90 grados.
Las superficies extendidas tienen varias aplicaciones. Cabe mencionar su uso
en los radiadores de automóvil, en el enfriamiento de equipo eléctrico o electróni-
co, en motores de combustión interna enfriados por aire, en intercambiadores de
calor líquido a gas, etcétera.
Antes de discutir cualquier geometría concreta, se desarrollará una ecuación
general que permita establecer la distribución de la temperatura en una superficie
extendida.
2.7.1. Ecuación general para una superficie extendida
Se tiene una superficie extendida cuya sección transversal es variable, como se
muestra en la figura 2.15. Supóngase que el espesor de la aleta es muy pequeño,
de manera que el gradiente de temperatura en la dirección transversal no es signi-
ficativo, así que la conducción sólo es relevante en la dirección x. Digamos ade-
más que la conductividad térmica del material y el coeficiente de transferencia de
calor son constantes.
Mediante un balance de energía en el sistema de la figura 2.15 tenemos que
q"AI x - q"AI x+ Ax - hPtu(T - T~) =O (2.49)
donde A(x) es el área transversal al flujo de calor por conducción y P(x) el perí-
metro de la superficie extendida por donde se disipa calor por convección.
Dividiendo la expresión anterior entre tu y por el teorema del valor medio,
cuando tu tiende a cero, se obtiene
- ~(q"A)-hP(T-T~)=O
o
q" : + Ad:;' +hP(T - T~) =O (2.50)
Si introducimos la ley de Fourier de conducción de calor y suponemos que la con-
ductividad térmica es constante,
dT dA d2
T
-k---kA-+hP(T-T )=0
d.x dx dx2 ~
http://carlos2524.jimdo.com/
56 2. Conducción unidimensional en estado estable
Figura 2.15. Superficie extendida de sección transversal variable.
Reacomodando la expresión,
(2.51)
La ecuación anterior es una expresión general para determinar la distribución de la
temperatura en una superficie extendida en la que no hay generación interna de
calor ni radiación. En esta expresión tanto el área A como el perímetro P suelen
ser funciones de la variable independiente x. Las condiciones de frontera necesa-
rias para evaluar de una manera única el perfil de temperatura dependen de las con-
diciones físicas del problema. Normalmente deben especificarse los valores de las
condiciones de frontera en dos puntos, a menos que se conozcan la temperatura y
su gradiente.
2.7.2. Superficies extendidas de sección transversal
constante
Imagine una superficie extendida como la de la figura 2.14. En estas circunstan-
cias y definiendo la diferencia de temperaturas () =T - Too, la ecuación 2.51 se sim-
plifica a
(2.52)
La solución general de la ecuación diferencial anterior es de la forma
() =Cl cosh mx + C2 senh mx (2.53)
http://carlos2524.jimdo.com/
2.7. Superficies extendidas 57
donde, por conveniencia,
En el caso de una superficie extendida de sección transversal rectangular de di-
mensiones W por t como la que se muestra en la figura 2.14 y t « W, el paráme-
tro m2 adquiere un valor aproximado de 2h/kt. De forma similar, cuando la sección
transversal sea circular de radio R, el parámetro m2 adquiere un valor de 2h/kR.
Puesto que la temperatura en la base de la superficie extendida es igual a la
temperatura Tode la superficie a la que está adherida -suponiendo desde luego
que la resistencia de contacto es igual a cero- , una de las condiciones de fronte-
ra puede escribirse como
T =To o e=eo en x =O (2.54)
La otra condición de frontera puede establecerse suponiendo que las pérdidas de
calor por la superficie libre de la aleta o superficie extendida son despreciables, o
que el extremo libre se encuentra aislado, esto es,
dT =0 o de =0
dx dx
en x =L (2.55)
Al sustituir las condiciones de frontera 2.54 y 2.55 en la solución general 2.53
tenemos
y
C2 =-ea tanh mL
En consecuencia,
e =eocosh mx - eotanh mL senh mx
Reacomodando la expresión,
e coshm(L -x)
eo coshmL
(2.56)
http://carlos2524.jimdo.com/
58 2. Conducción unidimensional en estado estable
Si recurrimos a las variables originales,
T-Too _ coshm(L-x) _ cosh[mL(l-x/ L)]
coshmL coshmL
(2.57)
En la figura 2.16 se muestra la variación de la temperatura adimensional
(T - Too)/(To- Too) a través de la superficie extendida como función de la distancia
adimensional x/L para diferentes valores del parámetro mL.
Obsérvese que la temperatura en el extremo libre de la superficie extendida
difiere de la temperatura ambiente y se aproxima a ella para valores muy grandes
de mL, esto es, cuando h o L son relativamente grandes o cuando k o t (o R) son
relativamente pequeños. Nótese que la ecuación 2.57 también es válida para una
superficie extendida de longitud 2L, empotrada entre dos superficies cuyas tempe-
raturas son iguales aTo.
El flujo de calor disipado a través de la superficie extendida puede calcularse
después que se ha determinado la distribución de la temperatura. Como el calor
entra en la base de la aleta por conducción para luego disiparse por convección,
dTI rL
q = -kA- = JI hP(T - Too )dx
dx x=o o
(2.58)
Al emplear el concepto de derivada,
dTI- =-meTo - Too) tanhmL
dx x=o
- - - - - - - - - - - - - _1- _
O 1 x/L
Figura 2.16. Variación de temperatura a través de una superficie extendida de sección
transversal constante.
http://carlos2524.jimdo.com/
2.7. Superficies extendidas 59
Si utilizamos la ecuación 2.58 y reordenamos,
q = -JhPkA(To - T=) tanhmL (2.59)
En ciertas circunstancias el calor que disipa el extremo libre de la aleta o superfi-
cie extendida no es insignificante y, en consecuencia, no todo el calor conducido
a través de la base se disipa por la superficie convectiva comprendida entre x = O
Yx =L. En esas circunstancias la ecuación 2.59 puede modificarse ligeramente pa-
ra que tome en cuenta las posibles pérdidas de calor por el extremo libre, agregan-
do a la longitud física L un incremento de longitud M = t/2. Es decir, con una lon-
gitud conegida Le = L + t/2 en la ecuación 2.59. Por tanto,
(2.60)
Sin embargo, cabe señalar que la desviación en el flujo de calor calculado con la
ecuación 2.60 en vez de la 2.59 es menor de 7.6%, siempre que el parámetro ht/k
adquiera un valor menor a 0.5.
Por otra parte, dada un área de perfil Ap =Lt en una aleta de sección transver- /
sal rectangular, la dimensión óptima del espesor t puede determinarse como se
muestra a continuación. En términos del área de perfil Ap, el calor disipado puede
establecerse mediante la ecuación 2.59 como
q = -J2hkt(To- T=)tanh(Ap~t-3/2J
Derivando esta expresión con respecto al espesor t e igualando a cero se obtiene
3~sech2~ = tanh~
donde ~ = Ap~t-3
/
2
. Puesto que
se tiene que
2 tanh~ =senh2~
sech2~
1
~ =-senh2~
6
Al resolver esta última relación se obtiene
http://carlos2524.jimdo.com/
"
I
"
l '
,
.'
."
''''I ¡
<!
"I
60
Ejemplo 2.12.
2. Conducción unidimensional en estado estable
Por consiguiente, el espesor óptimo t de la superficie extendida de área de perfil
Ap es
en consecuencia,
~2hA2t=0.79P T
L =1.262~kAp21t
(2.61)
(2.62)
Imagínese una superficie extendida de sección transversal rectangular con las
dimensiones siguientes: altura, 3.5 cm; profundidad, 3.0 cm, y espesor, 0.2 cm.
Si la aleta es de aluminio (k =205 W/m°C), el coeficiente promedio de trans-
ferencia de calor es igual a 600 W/m2K, la temperatura en la base es de 135 oC
y la del aire ambiente de 40 oC, calcule el calor disipado por la aleta.
Solución
Según la ecuación 2.59,
q =.)hPkA (Tú - Too )tanh mL
donde
P =2W =(2)(0.03) =0.06 m
A = Wt = (0.03)(0.002) = 6 x 10-5 m2
m = [2hk't1
= (2)(600) =54.lOm-1
f kt' (205)(0.002)
L =0.035 m
Sustituyendo valores se obtiene
q =~(600)(0.06)(205)(6 x 10-5
)(135 - 40)tanh[(54.10)(0.035)]
q =60.41 W
Obsérvese que el área de la base que ocupa la superficie extendida (2 mm x
30 mm) sólo disiparía (600)(60 x 10-6)(135 - 40) =3.42 W si no se tuviera
la aleta.
http://carlos2524.jimdo.com/
2. 7. Superficies exterufidas 61
Figura 2.17. Aleta circular.
2.7.3. Aletas circulares
Considérese ahora una aleta circular como la que se muestra en la figura 2.17,
donde el espesor t de la aleta es relativamente pequeño, de manera que la transfe-
rencia de calor por conducción se produce sólo en la dirección radial. Mediante la
ecuación 2.51 y definiendo la diferencia de temperaturas e=T - Too se obtiene
(2.63)
donde
A =2nrt
y
P =(2)(2nr) =4nr
Sustituyendo estas expresiones para el área A(r) y el perímetro P(r) en la ecuación
2.63,
o
donde
2h
kt
(2.64)
http://carlos2524.jimdo.com/
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted
Transferencia de calor, segunda edición [manrique] decrypted

More Related Content

What's hot

Problemas propuestos de transferencia de calor
Problemas propuestos de transferencia de calorProblemas propuestos de transferencia de calor
Problemas propuestos de transferencia de calorNeyser Carranza Guevara
 
Conducción superficies extendidas y generació
Conducción superficies extendidas y generacióConducción superficies extendidas y generació
Conducción superficies extendidas y generacióbrenesartaviamaria
 
Problemas resueltos-de-reactores-quimico
Problemas resueltos-de-reactores-quimicoProblemas resueltos-de-reactores-quimico
Problemas resueltos-de-reactores-quimicoJesús Rodrigues
 
Transferencia de calor desde superficies extendidas
Transferencia de calor desde superficies extendidasTransferencia de calor desde superficies extendidas
Transferencia de calor desde superficies extendidasMECATRÓNICA
 
M fluidos problemas
M fluidos problemasM fluidos problemas
M fluidos problemasmabeni
 
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPASTRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPASEdisson Paguatian
 
Manual del ingeniero químico Perry [tomos 1-6]
Manual del ingeniero químico   Perry [tomos 1-6]Manual del ingeniero químico   Perry [tomos 1-6]
Manual del ingeniero químico Perry [tomos 1-6]Jose Rocha
 
Criterios para la seleccion de equipos de cristalizacion
Criterios para la seleccion de equipos de cristalizacionCriterios para la seleccion de equipos de cristalizacion
Criterios para la seleccion de equipos de cristalizacionLilian Drt'Rz
 
Cálculo de el condensador en un intercambiador de calor
Cálculo de el condensador en un intercambiador de calorCálculo de el condensador en un intercambiador de calor
Cálculo de el condensador en un intercambiador de calorE.T.I.R EUGENIO MENDOZA
 
Aletas de transferencia de calor
Aletas de transferencia de calorAletas de transferencia de calor
Aletas de transferencia de calorJuanpFalcon
 
Intercambiadores de Calor
Intercambiadores de Calor Intercambiadores de Calor
Intercambiadores de Calor Andres Cullay
 
Problemario termodinamica 2012_tapia
Problemario termodinamica 2012_tapiaProblemario termodinamica 2012_tapia
Problemario termodinamica 2012_tapiaJesus Vera Gonzalez
 
Ciclo de brayton termoii-2013
Ciclo  de brayton termoii-2013Ciclo  de brayton termoii-2013
Ciclo de brayton termoii-2013josedavid04
 
Ejercicios de aplicación de humidificación torres de enfriamiento
Ejercicios de aplicación de humidificación   torres de enfriamientoEjercicios de aplicación de humidificación   torres de enfriamiento
Ejercicios de aplicación de humidificación torres de enfriamientoSistemadeEstudiosMed
 
Análisis Termodinámico de un Compresor
Análisis Termodinámico de un Compresor Análisis Termodinámico de un Compresor
Análisis Termodinámico de un Compresor Jorge Cruz
 

What's hot (20)

Problemas propuestos de transferencia de calor
Problemas propuestos de transferencia de calorProblemas propuestos de transferencia de calor
Problemas propuestos de transferencia de calor
 
Conducción superficies extendidas y generació
Conducción superficies extendidas y generacióConducción superficies extendidas y generació
Conducción superficies extendidas y generació
 
Problemas propuestos y_resueltos_tc
Problemas propuestos y_resueltos_tcProblemas propuestos y_resueltos_tc
Problemas propuestos y_resueltos_tc
 
Problemas resueltos-de-reactores-quimico
Problemas resueltos-de-reactores-quimicoProblemas resueltos-de-reactores-quimico
Problemas resueltos-de-reactores-quimico
 
Ebullicion y Condensacion
Ebullicion y CondensacionEbullicion y Condensacion
Ebullicion y Condensacion
 
Transferencia de calor desde superficies extendidas
Transferencia de calor desde superficies extendidasTransferencia de calor desde superficies extendidas
Transferencia de calor desde superficies extendidas
 
M fluidos problemas
M fluidos problemasM fluidos problemas
M fluidos problemas
 
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPASTRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
 
Manual del ingeniero químico Perry [tomos 1-6]
Manual del ingeniero químico   Perry [tomos 1-6]Manual del ingeniero químico   Perry [tomos 1-6]
Manual del ingeniero químico Perry [tomos 1-6]
 
Criterios para la seleccion de equipos de cristalizacion
Criterios para la seleccion de equipos de cristalizacionCriterios para la seleccion de equipos de cristalizacion
Criterios para la seleccion de equipos de cristalizacion
 
Cálculo de el condensador en un intercambiador de calor
Cálculo de el condensador en un intercambiador de calorCálculo de el condensador en un intercambiador de calor
Cálculo de el condensador en un intercambiador de calor
 
Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calor
 
Aletas de transferencia de calor
Aletas de transferencia de calorAletas de transferencia de calor
Aletas de transferencia de calor
 
Intercambiadores de Calor
Intercambiadores de Calor Intercambiadores de Calor
Intercambiadores de Calor
 
Ejercicio 1 (entropía), mayo 2017)
Ejercicio 1 (entropía), mayo 2017)Ejercicio 1 (entropía), mayo 2017)
Ejercicio 1 (entropía), mayo 2017)
 
Problemario termodinamica 2012_tapia
Problemario termodinamica 2012_tapiaProblemario termodinamica 2012_tapia
Problemario termodinamica 2012_tapia
 
Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calor
 
Ciclo de brayton termoii-2013
Ciclo  de brayton termoii-2013Ciclo  de brayton termoii-2013
Ciclo de brayton termoii-2013
 
Ejercicios de aplicación de humidificación torres de enfriamiento
Ejercicios de aplicación de humidificación   torres de enfriamientoEjercicios de aplicación de humidificación   torres de enfriamiento
Ejercicios de aplicación de humidificación torres de enfriamiento
 
Análisis Termodinámico de un Compresor
Análisis Termodinámico de un Compresor Análisis Termodinámico de un Compresor
Análisis Termodinámico de un Compresor
 

Similar to Transferencia de calor, segunda edición [manrique] decrypted

Similar to Transferencia de calor, segunda edición [manrique] decrypted (20)

trasnferencia de calor
trasnferencia de calor trasnferencia de calor
trasnferencia de calor
 
Transferencia de Calor - J. Holman (sectordeapuntes.blogspot.com).pdf
Transferencia de Calor - J. Holman (sectordeapuntes.blogspot.com).pdfTransferencia de Calor - J. Holman (sectordeapuntes.blogspot.com).pdf
Transferencia de Calor - J. Holman (sectordeapuntes.blogspot.com).pdf
 
Callen thermodynamics and an introduction to thermostatistics, 2 ed.
Callen   thermodynamics and an introduction to thermostatistics, 2 ed.Callen   thermodynamics and an introduction to thermostatistics, 2 ed.
Callen thermodynamics and an introduction to thermostatistics, 2 ed.
 
Amd apuntes-fluidos
Amd apuntes-fluidosAmd apuntes-fluidos
Amd apuntes-fluidos
 
Apuntes mecanica de fluidos
Apuntes mecanica de fluidosApuntes mecanica de fluidos
Apuntes mecanica de fluidos
 
Amd apuntes-fluidos
Amd apuntes-fluidosAmd apuntes-fluidos
Amd apuntes-fluidos
 
Amd apuntes-fluidos
Amd apuntes-fluidosAmd apuntes-fluidos
Amd apuntes-fluidos
 
apuntes-fluidos
apuntes-fluidosapuntes-fluidos
apuntes-fluidos
 
Amd apuntes-fluidos
Amd apuntes-fluidosAmd apuntes-fluidos
Amd apuntes-fluidos
 
Apuntes fluidos
Apuntes fluidosApuntes fluidos
Apuntes fluidos
 
Amd apuntes-fluidos
Amd apuntes-fluidosAmd apuntes-fluidos
Amd apuntes-fluidos
 
Amd apuntes-fluidos
Amd apuntes-fluidosAmd apuntes-fluidos
Amd apuntes-fluidos
 
Mecanica de fluidos
Mecanica de fluidosMecanica de fluidos
Mecanica de fluidos
 
Teoria del enlace
Teoria del enlaceTeoria del enlace
Teoria del enlace
 
Mecánica de fracturas
Mecánica de fracturasMecánica de fracturas
Mecánica de fracturas
 
Mecanica fractura
Mecanica fracturaMecanica fractura
Mecanica fractura
 
Volantesde inercia
Volantesde inerciaVolantesde inercia
Volantesde inercia
 
METODOS M. DE LA FÍSICA. OSCAR REULA.pdf
METODOS M. DE LA FÍSICA. OSCAR REULA.pdfMETODOS M. DE LA FÍSICA. OSCAR REULA.pdf
METODOS M. DE LA FÍSICA. OSCAR REULA.pdf
 
Tabiqueria
TabiqueriaTabiqueria
Tabiqueria
 
Mecanica de-fluidos
Mecanica de-fluidosMecanica de-fluidos
Mecanica de-fluidos
 

Recently uploaded

libro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajelibro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajeKattyMoran3
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Carol Andrea Eraso Guerrero
 
Amor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAmor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAlejandrino Halire Ccahuana
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxNataliaGonzalez619348
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAJesus Gonzalez Losada
 
programa PLAN ANUAL TUTORIA 3° SEC-2024.docx
programa PLAN ANUAL TUTORIA 3° SEC-2024.docxprograma PLAN ANUAL TUTORIA 3° SEC-2024.docx
programa PLAN ANUAL TUTORIA 3° SEC-2024.docxCram Monzon
 
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2Eliseo Delgado
 
historieta materia de ecologías producto
historieta materia de ecologías productohistorieta materia de ecologías producto
historieta materia de ecologías productommartinezmarquez30
 
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).hebegris04
 
Salvando mi mundo , mi comunidad , y mi entorno
Salvando mi mundo , mi comunidad  , y mi entornoSalvando mi mundo , mi comunidad  , y mi entorno
Salvando mi mundo , mi comunidad , y mi entornoday561sol
 
Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.monthuerta17
 
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJODIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJOLeninCariMogrovejo
 
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdfPRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdfGabrieldeJesusLopezG
 
Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Gonella
 
Buenas Practicas de Manufactura para Industria Farmaceutica
Buenas Practicas de Manufactura para Industria FarmaceuticaBuenas Practicas de Manufactura para Industria Farmaceutica
Buenas Practicas de Manufactura para Industria FarmaceuticaMarco Camacho
 
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdfPROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdfMaritza438836
 
NUEVO PLAN Y PROGRAMAS DE ESTUDIO 2022.pdf
NUEVO PLAN Y PROGRAMAS DE ESTUDIO  2022.pdfNUEVO PLAN Y PROGRAMAS DE ESTUDIO  2022.pdf
NUEVO PLAN Y PROGRAMAS DE ESTUDIO 2022.pdfEDNAMONICARUIZNIETO
 

Recently uploaded (20)

libro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajelibro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguaje
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
 
Amor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAmor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdf
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICA
 
programa PLAN ANUAL TUTORIA 3° SEC-2024.docx
programa PLAN ANUAL TUTORIA 3° SEC-2024.docxprograma PLAN ANUAL TUTORIA 3° SEC-2024.docx
programa PLAN ANUAL TUTORIA 3° SEC-2024.docx
 
Unidad 2 | Teorías de la Comunicación | MCDIU
Unidad 2 | Teorías de la Comunicación | MCDIUUnidad 2 | Teorías de la Comunicación | MCDIU
Unidad 2 | Teorías de la Comunicación | MCDIU
 
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
 
historieta materia de ecologías producto
historieta materia de ecologías productohistorieta materia de ecologías producto
historieta materia de ecologías producto
 
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
 
¿Amor o egoísmo? Esa es la cuestión.pptx
¿Amor o egoísmo? Esa es la cuestión.pptx¿Amor o egoísmo? Esa es la cuestión.pptx
¿Amor o egoísmo? Esa es la cuestión.pptx
 
Salvando mi mundo , mi comunidad , y mi entorno
Salvando mi mundo , mi comunidad  , y mi entornoSalvando mi mundo , mi comunidad  , y mi entorno
Salvando mi mundo , mi comunidad , y mi entorno
 
Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.
 
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJODIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
 
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdfPRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
 
Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2
 
Buenas Practicas de Manufactura para Industria Farmaceutica
Buenas Practicas de Manufactura para Industria FarmaceuticaBuenas Practicas de Manufactura para Industria Farmaceutica
Buenas Practicas de Manufactura para Industria Farmaceutica
 
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdfPROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
 
NUEVO PLAN Y PROGRAMAS DE ESTUDIO 2022.pdf
NUEVO PLAN Y PROGRAMAS DE ESTUDIO  2022.pdfNUEVO PLAN Y PROGRAMAS DE ESTUDIO  2022.pdf
NUEVO PLAN Y PROGRAMAS DE ESTUDIO 2022.pdf
 

Transferencia de calor, segunda edición [manrique] decrypted

  • 3. Transferencia de calor T f "]6 '] )13 ,"¿(JO 2, . ( http://carlos2524.jimdo.com/
  • 5. d Transferencia de calor Segunda edición José Ángel Manrique Valadez OXFORD UNIVE R SI TY P R ESS TP 368 M8 2002 JOSE ANGEL MANRIQUE VALADEZ 1111111 1111111111 11111 11111 11111 11111111111111111111 l1li 1111 0233002790 TRANSFERENCIA DE CALOR. f1. Alfaomega http://carlos2524.jimdo.com/
  • 6. l' It 1: OXFORD UNIVERSITY PRESS Antonio Caso 142, San Rafael, Delegación Cuauhtémoc, c.P. 06470, México, D.F. Tel.: 5592 4277, Fax: 5705 3738, e-mail: oxford@oupmex.com.mx Oxford University Press es un departamento de la Universidad de Oxford. Promueve el objetivo de la Universidad relativo a la excelencia en la investigación, erudición y educación mediante publicaciones en todo el mundo en Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melboume Mexico City Nairobi New Delhi Shanghai Taip.ei Toronto Con oficinas en Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal .Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Oxford es una marca registrada de Oxford University Press en el Reino Unido y Olros paises. Publicado en México por Oxford University Press México, S.A. de c.v. División: Universitaria Área: Ingeniería Sponsor editor: Jorge Alberto Ruiz González Edición: Ester Alizeri Femández Sergio Gerardo López Hemández Producción: Jorge A. Martínez Jiménez TRANSFERENCIA DE CALOR Todos ios derechos reservados © 2002, respecto a la segunda edición por Oxford University Press México, S.A. de c.v. Ninguna parte de esta publicación puede reproducirse, almacenarse en un sistema de recuperación o transmitirse, en ninguna forma ni por ningún medio, sin la autorización previa y por escrito de Oxford University Press México, S,A. de C.v. Las consultas relativas a la reproducción deben enviarse al Departamento de Derechos de Autor de Oxford University Press México, S,A. de C.v., al domicilio que se señala en la parte superior de esta página. Miembro de la Cámara Nacional de la Industria Editorial Mexicana, registro número 723. ISBN 970-613-671-1 A/faomega Grupo Editor es distribuidor exclusivo para todos los países de habla hispana de es/a coedición realizada entre Oxford University Press México, S.A. de C. V y A/faomega Grupo Edito,; S.A . de C. V ISBN 970-15-1161-1 Alfaomega Grupo Editor, S,A. de c.v. Pitágoras 1139, Col. Del Valle, 03100, México, D.F. Impreso en México P.;mera reimpresión: octubre de 2005 Esta obra se lemlinó de imprimir en OClubre de 2005 en Jmpresos 2000, S. A. de C. v., Callejón de San Amonio Núm, 69, Col. Tránsito, México, D.F., sobre papel Bond Editor Alta Opacidad de 75 g. Elliraje fue de 2 000 ejemplares. f http://carlos2524.jimdo.com/
  • 7. índice de contenido Prólogo ................................................. ix 1. Introducción 1 1.1. Conducción .... ......... ........ .. .. .. .. .... ... ... . 2 1.2. Convección ... . ... ...... ...... ....... ........ .. ... . 7 1.3. Radiación .. . .. .... ..... .... ..... .. ... .... .. . ... .. .. 10 1.4. Transferencia simultánea de calor. ... ...... ........... . .. 12 1.5. Resumen . .. ....... .. .............. ... ......... .. .. 15 Problemas ......................................... 15 Bibliografía ........................................ 22 2. Conducción unidimensional en estado estable. . . . . . . . . . . . . . . . . 23 2.1. Placa .................... ... ..... ..... ... . . . .... .. 23 2.2. Cilindro hueco .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3. Radio crítico . . . .... ......... .. .......... .... ....... 37 2.4. Esfera .... . .... .. ......... .... . .... ............... 40 2.5. Placa con generación uniforme de calor. . . . . . . . . . . . . . . . . . . 45 2.6. Cilindro CaD generación uniforme de calor . . . . . . . . . . . . . . . . . 49 2.7. Superficies extendidas . .. . .. ... ... ... ........ . ........ 54 2.7.1. Ecuación general para una superficie extendida ... . . . .. 55 2.7.2. Superficies extendidas de sección transversal constante .. 56 2.7.3. Aletas circulares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.7.4. Aletas rectangulares de perfil triangular . . . . . . . . . . . . . . 65 2.7.5. Eficiencia de las aletas. . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Problemas ..................... .. ...... .... .... . ... 69 Bibliografía ........ .. ....... . . ................ .. ... 77 3. Conducción de calor en estado estable, varias dimensiones. . . . . . 79 3.1 . Método analítico .. ............... .... ........... . ... 79 3.2. Diferencias finitas ............ ... . .. .. ............... 86 http://carlos2524.jimdo.com/
  • 8. vi Índice de contenido 3.3. Método de relajación . ... .. ..... . .......... . .......... 90 3.4. Condiciones de frontera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.5. Formulación en diferencias finitas para problemas unidimensionales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3.6. Método gráfico. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.7. Método analógico. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Problemas . . .............. .. ...... :..... . .......... 105 Bibliografía ... .. . . ........ ... ........... ... ....... . 114 4. Conducción de calor en estado transitorio ................... 115 4.1. Análisis de parámetros concentrados . ...... .. .... . ....... 115 4.2. Placa infinita .. .. ........ . .. . ....................... 126 4.3. Cilindro infinito y esfera ... . .. .. ........ .. . .. ....... . . 139 4.4. Sólido semiinfinito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4.5. Conducción transitoria en más de una dimensión . . . . . . . . . . . . 150 4.6. Diferencias finitas. Método explícito ...... . ..... . . . ...... 157 4.7. Método gráfico de Schmidt . . .. . ............. . ......... 163 Problemas .................. . ...................... 164 . Bibliografía .. . . . ............. . . . .... .. .. ... ....... . 169 5. Fundamentos de convección forzada. . . . . . . . . . . . . . . . . . . . . . . . 171 5.1. Transferencia de calor en una placa plana con convección forzada en régimen laminar ................. . ........ 171 5.2. Analogía entre la transferencia de calor y la fricción . ........ 187 S3. Transferencia de calor en una placa con convección .forzada en régimen turbulento. . . . . . . . . . . . . . . . . . . . . . . . . 189 5.4 . Transferencia de calor en un ducto circular con régimen laminar donde la densidad de calor es constante. ...... . . . ....... 193 5.5 Fórmulas empíricas para convección forzada en tubos ...... . . 200 5.6 Fórmulas empíricas para convección forzada sobre tubos. . . . . . 203 Problemas .. ... .... . . ... .. . ... . ..... ... .... . . ... . . . 205 Bibliografía . . . .. .. .. ..... .. .... .. .. . ............ ... 206 6. Convección natural. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.1 Parámetros adimensionales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.2. Fórmulas para la transferencia de calor por convección natural en una placa vertical. ...... . ... .. ............ . ..... . 213 6.3. Fórmulas para convección natural en otras geometrías. ...... . 214 Problemas ..... .. ............ . ........ .. .. . ....... . 217 Bibliografía. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 http://carlos2524.jimdo.com/
  • 9. Índice de contenido VÜ 7. Transferencia de calor con cambio de fase ................... 219 7.1. Condensación...... ....... .......... .. ... .. ... . . .... 219 7.2. Condensación en fonna de película sobre cilindros hOlizontales 225 7.3. Ebullición .. .... ......... .... ............... ... .... 225 Problemas ..... ..... ............ ... ..... .. ......... 230 Bibliografía . . . .. .. . . ... .. .......................... 230 8. Intercambiadores de calor. . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . 231 8.1. La diferencia media logarítmica de temperaturas ............ 232 8.2. El método efectividad-número de unidades de transferencia. . . . 242 8.3. Diseño o selección de un intercambiador de calor ........... 250 Problemas ......... ... ............. .. ......... .. ... 251 Bibliografía ........................................ 252 9. Principios de radiación. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 9.1. Radiación de un cuerpo negro ... .... ... . ........ .. .. . .. 253 9.2. Intensidad de la radiación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 9.3. Emitancia y absortancia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 9.4. Reflactancia y transmitancia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 9.5. El factor de fonna para radiación. ........... . .... ... .... 270 9.6. Intercambio de calor por radiación entre cuerpos negros ..... . 277 9.7. Intercambio de radiación entre cuerpos grises .. .. . .. ... . .. . 280 9.8. Radiación solar .......... .. ......... .. .. . ..... . .... . 284 Problemas . .... ................. . ...... ......... .. . 285 Bibliografía ... ... ... .... ... . ...... . .. .......... . ... 286 Apéndice Tabla A.l . Propiedades de algunos fluidos en estado saturado . . . . . . 287 Tabla A 2. Propiedades de gases a presión atmosférica . .......... 290 Tabla A3. Propiedades de algunos metales. . . . . . . . . . . . . . . . . . . . 293 Tabla A.4. Propiedades de los no metales ..................... 296 Tabla A.5. Vapor de agua saturado ... .... ..... ... ........ .. . 297 Tabla A6. Vapor de agua saturado ........... .. .. .... ....... 298 Tabla A7. Vapor de agua sobrecalentado ..................... 299 Figura Al. Conductividad térmica del agua . . . . . . . . . . . . . . . . . . . . 303 Figura A2. Número de Prandtl del agua . . . . . . . . . . . . . . . . . . . . . . . 304 Índice analítico ...................................... . .... 305 http://carlos2524.jimdo.com/
  • 11. .,..' .... Prólogo Las técnicas para la solución de problemas de transferencia de calor han experi- mentado un desarrollo sorprendente durante los últimos años y por ello su conocimiento es imprescindible en la actuación profesional del ingeniero. En este texto se presentan en forma elemental los principios básicos de trans- ferencia de calor, los cuales se complementan con numerosos ejercicios resueltos que adoptan el Sistema Internacional de unidades en toda la obra. Cada capítulo termina con una sección de problemas a fin de que el estudiante pueda comprobar los conocimientos adquiridos. Los principales temas de la materia pueden estudiarse en un curso semestral con duración de tres sesiones de una hora por semana. Los temas cubiertos en la obra están destinados a estudiantes de ingeniería de licenciatura y de posgrado du- rante los primeros semestres. Desde luego, es recomendable que posean ciertos conocimientos sobre termodinámica, mecánica de fluidos y ecuaciones diferencia- les ordinarias y parciales para entender mejor la materia. El autor ha tenido el privilegio de enseñar el material de este texto a sus estu- diantes de ingeniería del Instituto Tecnológico y de Estudios Superiores de Monterrey durante varios años, y su paciencia, sugerencias y comentarios han contribuido de manera especial y significativa a la presentación del material, por lo que espera que la obra refleje sus inquietudes y estimule aún más su interés por la disciplina. Muchas personas han sido muy generosas con sus comentarios, sugerencias y estímulo, por lo que el autor desea hacer patente su agradecimiento a todas ellas. También quiere dejar constancia de su agradecimiento a Karla Lucía Salinas, quien con todo esmero participó en la realización del manuscrito de la obra. Finalmente, también desea reconocer la importante cooperación y apoyo recibidos de los editores de Oxford University Press. José A. Manrique http://carlos2524.jimdo.com/
  • 15. 1. Introducción Participar en la construcción y mejoramiento de la Patria: he ahí la tarea más noble de un ciudadano. CARLOS PRIETO La alimentación, la salud y la generación de potencia han sido una preocupación vital de la humanidad a lo largo de la historia. El progreso en estas áreas ha lleva- do al desarrollo conjunto de la transferencia de calor como una ciencia, por lo que su estudio es de capital importancia para el ingeniero. Esta disciplina de transporte tiene aplicaciones de suma relevancia en casi cualquier campo de la ingeniería. Así, se utiliza prácticamente en todos los proce- sos de la industria del vidrio; interviene en el diseño de los hornos, los regenera- dores de calor, el enfriamiento de los moldes, el templado de los cristales, el flo- tado de los vidrios, etc. En el área del acondicionamiento del aire ambiental es imprescindible para evaluar con precisión las cargas térmicas de enfriamiento y calefacción que tiene un edificio. También forma parte del diseño de ciertos com- ponentes de un sistema de refrigeración, como el evaporador, el condensador y las líneas de transmisión de agua helada, entre otros. En el ámbito de los combustibles fósiles se requiere un análisis de la transfe- rencia de calor en presencia de reacciones químicas para mejorar la eficiencia de la combustión en hornos y calderas. La investigación de la energía solar en los últimos años ha aportado conoci- mientos muy promisorios para el acondicionamiento del aire para edificios me- diante sistemas de absorción. Cabe mencionar que en varios países el aire acondi- cionado precisa una fracción significativa de la producción primaria de energía, por lo que el uso de la energía solar en este campo podría tener repercusiones sig- nificativas. El diseño de esos sistemas supone un amplio conocimiento de la trans- ferencia de calor. Casi todos los alimentos en el curso de su preservación y preparación requie- ren tratamientos en los que la transferencia de calor juega también un papel impor- tante. Debido a las condiciones adversas en algunas regiones agrícolas del mundo se pierden considerables cantidades de grano por falta de secado inmediato después de la cosecha; por ello, el uso de la energía solar u otros mecanismos de secado 1 http://carlos2524.jimdo.com/
  • 16. 2 1. Introducción apropiados podrían ser ventajosos. El congelamiento, la deshidratación y la coc- ción de alimentos exigen asimismo un conocimiento cabal de esta materia. En el diseño actual de edificios se requiere cada vez más un análisis de la transferencia de calor a fin de promover el ahorro de energía. A medida que surgen ideas novedosas y cada vez más refinadas en la tecnolo- gía moderna, la teoría de la transferencia de calor debe resolver problemas nuevos y cada vez más complejos. Así, desempeña igualmente un papel de gran relevancia en el enfriamiento de equipo eléctrico y electrónico; por ejemplo, en motores y ge- neradores eléctricos, transformadores, transistores y conductores, entre otros. Con la termodinámica se predice el intercambio de calor en un sistema al rea- lizar un proceso, pero no puede preverse el tipo de mecanismo por el cual se lle- va a cabo tal transferencia. Así, al aplicar la primera y la segunda leyes de la ter- modinámica en un intercambiador de calor se obtiene información relacionada con el flujo de calor que debe transferirse del fluido caliente al frío. No obstante, la ter- modinámica no suministra datos con respecto al diámetro, longitud, material o arreglo geométrico de los tubos que deben emplearse. Estas características de di- seño se obtienen mediante un análisis detallado de la transferencia de calor. De manera análoga, el estudio termodinámico de un motor de combustión in- terna brinda información relativa a sus requisitos de enfriamiento. Sin embargo, la transferencia de calor contempla la posibilidad de enfriarlo con aire o con agua, así como las dimensiones físicas que deben tener los conductos por donde circula el agua en caso de emplearla como refrigerante, o bien, las dimensiones de las ale- tas de enfriamiento para lograr la refrigeración con aire. De lo anterior se desprende que la termodinámica y la transferencia de calor son dos ciencias afines que se complementan. La primera predice los requisitos de trans- ferencia de calor de un sistema; la segunda, cómo se lleva a cabo tal transferencia. A fin de que el lector tenga un panorama general de las distintas formas bási- cas de transferencia de calor, en este capítulo se describen en forma sucinta y cua- litativa sus tres mecanismos básicos: • conducción o convección • radiación En los capítulos siguientes nos ocuparemos detenidamente de cada uno de estos me- canismos. 1.1. Conducción El fenómeno de transferencia de calor por conducción constituye un proceso de propagación de energía en un medio sólido, líquido o gaseoso mediante la comu- nicación molecular directa cuando existe un gradiente de temperatura. http://carlos2524.jimdo.com/
  • 17. 1.1. Conducción 3 En el caso de líquidos y gases, tal transferencia es importante siempre que se tomen las precauciones debidas para eliminar las corrientes naturales del flujo que pueden presentarse como consecuencia de las diferencias de densidad que presen- tan ambos fluidos. De aquí que la transferencia de calor por conducción sea de particular importancia en sólidos sujetos a una variación de temperaturas. Al haber un gradiente de temperatura en el medio, la segunda ley de la termo- dinámica establece que la transferencia de calor se lleva a cabo de la región de ma- yor temperatura a la de menor, como s~ muestra en la figura 1.1. En tales circunstancias, se dice que el flujo de calor por unidad de área es pro- porcional al gradiente de temperatura. Es decir, q" =-k dT dX (1.1) donde q" denota el flujo de calor por unidad de área o densidad de calor en la di- rección x, y k es la conductividad térmica del material. Sus unidades son W/mK (watt por metro kelvin) en el Sistema Internacional (SI) de unidades. También se emplean de manera indistinta las unidades W/m°C. A la ecuación 1.1 se le agrega un signo negativo para que cumpla la segunda ley de la termodinámica, es decir, que el calor debe fluir de mayor a menor temperatura. Esta ecuación se conoce como la ley de Fourier y --cabe destacar- define la conductividad térmica k. Aun cuan- do esta propiedad de transporte varía con la temperatura, en numerosas aplicacio- nes puede suponerse constante. En la tabla 1.1 se presentan algunos valores de la conductividad térmica, y en la figura 1.2, la variación con respecto a la tempera- tura de la conductividad térmica de algunos sólidos, líquidos y gases. T Perfil de temperatura x Figura 1.1. Temperatura como función de la distancia. * Cuando la transferencia de calor se Ueve a cabo en más de una dirección, la ley de Fourier puede escribirse como q"=-k"ílT donde q" es el vector correspondiente a la densidad de calor y "ílT el gradiente de temperatura con dirección opuesta. http://carlos2524.jimdo.com/
  • 18. 4 l. Introducción Tabla 1.1. Conductividad térmica de algunos materiales o sustancias a 300 K. Material k, W/moC Poliestireno rígido 0.027 Fibra de vidrio 0.036 Aire 0.0263 Agua 0.613 Ladrillo común 0.72 Refractario 1.0 Acero AISI 302 15.1 Acero AISI 1010 63.9 Aluminio puro 237 Cobre puro 401 Fuente: F. P. Incropera y D. P. DeWitt, Introduction lO Heal Transfer, 3a. ed., Jolm Wiley, 1996. Cuando los materiales tienen una alta conductividad térmica se denominan con- ductores; los que la tienen baja se llaman aislantes. Cabe agregar que las conduc- tividades térmica y eléctrica de los metales puros están relacionadas entre sí. Sin embargo, a temperaturas muy bajas los metales se toman superconductores de la electricidad, pero no del calor. En los datos de la tabla 1.1 puede observarse que los aislantes tienen una conductividad térmica entre 0.03 y 0.04 W/moC; en tanto, la del cobre es del orden de 400 W/moC. En esa tabla también se aprecia que el aire tiene una conductividad térmica muy baja, como la de los aislantes. No obs- tante, es difícil tener conducción solamente por él, ya que hay gradientes de den- sidad y, por tanto, movimiento en presencia de un campo gravitacional cuando el aire está expuesto a una diferencia de temperaturas. Para que se comporte como un verdadero aislante debe encontrarse estático aun en presencia de un gradiente de temperaturas. Hay algunas aplicaciones de aislantes donde el aire prácticamen- te está estático y se comporta como aislante; por ejemplo, el aire atrapado en un aislante de fibra de vidrio o en las pequeñas burbujas del material plástico que se utiliza para los empaques. Con la ecuación 1.1 puede determinarse la transferencia de calor por conduc- ción en un sistema siempre que se conozcan la conductividad térmica y el gradien- te de temperatura. En la circunstancia de que el flujo de calor sea constante puede determinarse mediante una integración directa de la ley de Fourier. Así, si se con- sidera una pared de espesor L cuyas superficies están expuestas a dos temperatu- ras constantes TI y Tb como se muestra en la figura 1.3, y se supone además que la conductividad térmica k es constante, http://carlos2524.jimdo.com/
  • 19. 1.1. COMucción 1000 500 200 100 50 20 1- 10 ID '6. 5 <E ::J f- en oí 2u 'E :ffi 1J ro 1J .:; ti 0.5 :::J 1J e O Ü 0.2 0.1 r 0.05 0.02 0.01 0.005 0.002 Temperatura, cC o 100 200 300 400 500 600 I I I I I I I 1000 Plata Cobre Oro Magnesio Aluminio Cinc 100 SOd,! líquido ' "Estaño Hierro (puro) Plomo Hierro fOrjad, (C < 0.5%) Acero Inoxidable tioo 430 O ~ Mercurio 1 -- U02 (denso) ZrOz (denso) 1 Agua (lIqUida) Ladrillo de alto contenido de alúmina a 3000 cF . ' 2800 cF Ladrillo de alto contenido de alumlna a Asbesto (26 Ib)Pie2)I Querosina o petróleo 0.1 Aceite lubricante SAE 10 I . ra ~~ ,.- de rOca ,g~ - ~ --_ ~-I3g~ Aire (gas) ~ -- rgon (gas)- ~--~ -¡:- ~ - - rreb(C::-'::;;;:' 9"1 O 200 400 Vapor (H20 vapor) 600 Temperatura, cF 800 0.01 1000 1200 s ~ E ~ oí u 'E ~ 1J ro 1J .:; n:::J 1J e O Ü Figura 1.2. Conductividad térmica de algunos materiales. (Fuente: M. N. Ozisik, Basic Heat Transfer, McGraw-Hill, Nueva York, 1977.) http://carlos2524.jimdo.com/
  • 20. 6 " ¡I Ejemplo 1.1. l. Introducción k = constante T, A L Figura 1.3. Pared de espesor L con conducción de calor en estado estable. En la tabla 1.2 se muestran algunos factores de conversión para la conductividad térmica expresada en otras unidades. Tabla 1.2. Factores de conversión para la conductividad térmica k. 1 cal/s cmoC 1 BTU/h 1 BTU/h 1 W/cmK pieoF pie2°F/pu1g 1 cal/s cmoC 241.9 2903 4.186 1 BTU/h pieoF 4.134 x 10-3 1 12 0.0173 1 BTU/h pie2°F/pu1g 3.445 x 10-4 0.08333 1 1.442 x 10-3 1 W/cmK 0.2389 57.793 693.5 1 Fuente: W. M. Rohsenow y J. P. Hartnett, Handbook ofHeat Transfer, McGraw-Hill, Nueva York, 1973. Considérese una pared plana con una conductividad térmica k constante. En la figura E.1.1 se observa la distribución de temperatura en cierto instante. Indi- que si la pared opera en condiciones de estado estable, si está enfriándose o ca- lentándose. -L- k = constante Temperatura como función de la distancia Figura E.l.1. http://carlos2524.jimdo.com/
  • 21. 1.2. Convección 7 Solución Con base en el diagrama, el calor que entra en la superficie del lado izquierdo es -kAfJTj fJxt=o el calor que sale por la superficie del lado derecho es -kAfJTj fJxt=L Con el análisis de los gradientes de temperatura en x =°y en x = L se observa que entra más calor que el que sale. Si recurrimos ahora a la primera ley de la termodinámica, qneto' = dU/dT > 0, por lo que se deduce que la pared está ca- lentándose. 1.2. Convección El fenómeno de transferencia de calor por convección es un proceso de transpor- te de energía que se lleva a cabo como consecuencia del movimiento de un fluido (líquido o gas) en la vecindad de una superficie, y está íntimamente relacionado con su movimiento. Para explicar esto, considérese una placa cuya superficie se mantiene a una temperatura Ts (fig. 1.4) Yque disipa el calor hacia un fluido cuya temperatura es T=. La experiencia indica que el siste1na disipa más calor cuando se le hace pasar aire proveniente de un ventilador que cuando sólo está expues- to al aire ambiente; de ello se desprende que la velocidad del fluido tiene un efec- to importante sobre la transferencia de calor a lo largo de la superficie. De mane- ra similar, la experiencia indica que el flujo de calor e~ diferente si la placa se enfría en agua o en aceite en vez de aire. De aquí que las propiedades del fluido deben tener también una influencia importante en la transferencia de calor. Puesto que la velocidad relativa del fluido con respecto a la placa es, en gene- ral, igual a cero en la interfase sólido-fluido (y =0),* el calor se transfiere total- mente por conducción sólo en este plano del fluido. Sin embargo, <tun cuando el" . calor disipado por la placa puede calcularse con la ecuación 1.1, el gradiente de -- temperatura en el fluido depende de las características, a menudo compléjas1 del flujo de éste. Por tanto, es más conveniente estimar el flujo de calor disipado por el sistema en términos de la diferencia total de temperaturas entre su superficie y el fluido. Es decir, (1.2) • Esta suposición es válida excepto para gases muy diluidos, donde la trayectoria media libre de las moléculas es comparable con las dimensiones del sistema (flujo deslizante) o mucho mayor (flujo Knudsen). http://carlos2524.jimdo.com/
  • 22. 8 K L Perfil de velocidad Figura 1.4. Placa expuesta a enfriamiento convectivo. ~erl;lde temperatura I )1 l. Introducción donde h es el coeficiente local de transferencia de calor o coeficiente de película. Sus unidades en el SI son W/m2 K (watt por metro cuadrado kelvin). También se emplean de manera indistinta las unidades W/m2°C. La ecuación 1.2 se conoce co- mo la ley de Newton de enfriamiento. Cabe precisar que esta expresión, más que una ley fenomenológica, define el coeficiente local de transferencia de calor 11. Como su nombre lo indica, varía a lo largo de toda la superficie. En la figura 1.5 se muestra la variación del coeficiente local de transferencia de calor a lo largo del eje x. I( h Perfil de velocidad ~Perl"de~mperatura I L --------------~)I hl----------~~------------------- x Figura 1.5. Variación del coeficiente local de transferencia de calor a lo largo de la coordenada x. http://carlos2524.jimdo.com/
  • 23. 1.2. Convección 9 Más importante que el coeficiente local es el coeficiente promedio -ambos- de transferencia de calor, o simplemente coeficiente de transferencia de calor. Si se com- binan las ecuaciones 1.1 y 1.2, tal coeficiente puede determinarse con la expresión r_k aT ) dx _ o ay -o h = y - (r, - Too ) (1 .3) Así, con esta definición nueva, (l A) donde A es el área de transferencia de calor por convección. El fenómeno de transferencia de calor por convección suele clasificarse en dos categorías:. convección forzada y convección libre o natural. En la primera se ha- ce pasar el fluido por el sistema mediante la acción de algún agente externo, diga- mos un ventilador, una bomba o agentes meteorológicos. Por su pru;te, en el segun- do caso el movimiento del fluido es resultado de los gradientes en densidad que experimenta éste, al estar en contacto con una superficie a mayor temperatura y en presencia de un campo gravitacional (o centrífugo). Un caso típico de convección forzada es el radiador en el sistema de enfda- miento del motor de un automóvil u otro intercambiador de calor. De igual mane- ra, ejemplos clásicos de convección libre son el calentamiento de agua en un reci- piente antes de sufrir ebullición o el enfriamiento de equipo eléctrico (algunos transformadores, transistores, etcétera). El coeficiente de transferencia de calor en algunas geometrías sencillas puede determinarse con la ecuación 1.3, la cual presupone que se conoce el perfil de la temperatura en el fluido, que puede obtenerse analíticamente mediante la aplica- ción de las ecuaciones de cambio, esto es, continuidad, movimiento y energía. En el caso de geometrías más complejas, el coeficiente de transferencia de calor pue- de evaluarse mediante correlaciones empídcas o recurriendo a la expedmentación. El coeficiente de transferencia de calor (de aquí en adelante se le designará con la letra h, a menos que se especifique lo contrario) para la convección forza- da depende de vados parámetros; por ejemplo, h =h(L, k, uoo, 11, p, cp' ...) (l .5) y, para el caso de convección natural, h =h[L, k, p, g, f3 (Ts - Too), 11, cp' ... ] (1.6) donde L es una dimensión característica del sistema; por ejemplo, L es la longitud en la placa de la figura lA, k la conductividad térmica del fluido, Uoo la velocidad http://carlos2524.jimdo.com/
  • 24. 10 ~.,¡ l. Introducción con la que se aproxima el fluido al sistema, J.L la viscosidad del fluido, p la densidad del fluido, cp el calor específico a presión constante del fluido, f3 el coeficiente de expansión volumétrica del fluido y g la aceleración de la gravedad u otra acelera- ción externa. Todas estas variables pueden reducirse a dos grandes parámetros: la geometría del sistema y las propiedades físicas y características del flujo de fluido. De lo anterior se desprende que incluso cuando la apariencia de la ecuación 1.4 es muy sencilla, el proceso de transferencia de calor por convección es muy complejo. En la tabla 1.3 se muestran algunos valores del orden de magnitud del coeficiente de transferencia de calor h, y en la 1.4 algunos factores de conversión para las unidades empleadas con más frecuencia. Tabla 1.3. Valores típicos del coeficiente de transferencia de calor h. Proceso h, W/m2 K Convección libre Gases 2-25 Líquidos 50-1000 Convección forzada Gases 25-250 Líquidos 50-20000 Convección con cambio de fase Ebullición o condensación 2500-100 000 Fuenle: F. P. IncTopera y D. P. DeWitt, lntroduction lo Heat Transfer, 3a. ed., John Wiley, 1996. Tabla 1.4. Factores de conversión para el coeficiente de transferencia de calor h. caUs cm20C 1 BTU/h pie2°F 1 kcaUh m20C 1 W/cm2 K 1 caUs cm2°C 7376 36000 4.186 1 BTU/h pie2°F 1.356 x 10-4 1 4.8826 5.6785 x 10-4 1 kcaUh m2°C 2.778 x 10-5 0.20489 1 1.163 x 10-4 1 W/cm2K 0.2391 1761 8600 1 Fuente: W. M. Rohsenow y J. P. Hartnett, Handbook of Heal Transfer, McGraw-Hill, Nueva York, 1973. 1.3. Radiación Tanto los mecanismos de transferencia de calor por conducción como por convec- ción requieren un medio para propagar la energía. Sin embargo, el calor puede http://carlos2524.jimdo.com/
  • 25. 1.3. Radiación 11 también propagarse en el vaCÍo absoluto mediante radiación. A una temperatura dada todos los cuerpos emiten radiación en diferentes longitudes de onda, pero la magnitud de ésta depende de la temperatura absoluta y de las características su- perficiales de dichos cuerpos. Por otra parte, sólo se considera radicación térmica la que se ubica en el ran- . go de longitudes de onda entre 0.1 y 100 micrones, aproximadamente. Dentro de ese intervalo del espectro electromagnético se ubican el rango ultravioleta, el in- frarrojo y el visible. Este último comprende nada más entre 0.38 y 0.78 micrones. Un radiador perfecto o cuerpo negro es el que emite la máxima cantidad de energía radiante desde su supeIficie a una razón proporcional a su temperatura ab- soluta elevada a la cuarta potencia, es decir, (1.7) Esta ecuación se conoce como ley de Stefan-Boltzmann, donde (Y es una constan- te que adquiere un valor igual a 5.67 x 10-8 W/m2K4 en el SI y que recibe el nombre de constante de Stefan-Boltzmann. De la ecuación 1.7 se deduce que la superfi- cie de todo cuerpo negro emite radiación si se encuentra a una temperatura diferen- te del cero absoluto, independientemente de las condiciones de los alrededores. Por otra parte, un cuerpo real no satisface las características de un cuerpo ne- gro, ya que emite una menor cantidad de radiación. ASÍ, el flujo de calor por uni- dad de área que emite una superficie real está dado por la expresión (1.8) donde E es una propiedad de la superficie y se denomina emisividad; numérica- mente es igual al cociente de la emisión de radiación del cuerpo en estudio con respecto a la de uno negro. Esta propiedad superficial adquiere valores entre cero y la unidad,-y constituye una medida para evaluar cuán efectivamente emite radia- ción un cuerpo real con respecto a uno negro. El calor por radiación neto intercambiado por un cuerpo negro a una tempera- tura absoluta T¡, como se muestra en el esquema de la figura 1.6, hacia una envol- vente a una temperatura T2 que lo rodea por completo y que se comporta también como cuerpo negro puede evaluarse con la expresión q = (YA¡(Ti - Ti) (1.9) Por otra parte, la radiación emitida por un cuerpo real a una temperatura absoluta TI hacia una envolvente de área A2 » AI Ya temperatura Tb puede calcularse aho- ra con la expresión (1.1 O) http://carlos2524.jimdo.com/
  • 26. 12 .1 .' ;i l. Introducción Figura 1.6. Intercambio de calor por radiación entre dos cuerpos negros. Esta ecuación se conoce como ley de Prevost. Si se consideran ahora dos cuerpos reales a temperaturas absolutas TI yT2, respectivamente, como se muestra en la figura 1.7, el flujo neto de energía radian- te entre ellos puede calcularse con (1.11) donde F es una función que no sólo depende de las características superficiales de ambos cuerpos, sino también del arreglo geométrico que guardan entre sí. En otras palabras, la función F depende de las emisividades de ambos cuerpos y de la frac- ción de energía radiante emitida por el cuerpo 1 que intercepta el cuerpo 2. 1.4. Transferencia simultánea de calor Hasta ahora hemos visto en forma independiente los tres principales mecanismos de transferencia de calor; no obstante, en la mayoría de las aplicaciones de interés para los ingenieros se presentan en forma simultánea, aunque también puede su- ceder que uno o más de ellos sean prácticamente insignificantes con relación a los demás. A continuación se describen distintas situaciones que muestran lo anterior. Considérese el intercambiador de calor de doble tubo que se observa en la fi- gura 1.8. En este caso el calor se transfiere por convección del fluido caliente a la Figura 1.7. Transferencia de calor por radiación entre dos cuerpos. http://carlos2524.jimdo.com/
  • 27. 1.4. Transferencia simultánea de calor 13 Ejemplo 1.2. IFluido caliente Ir Fluido frío Figura 1.8. Esquema de un intercambiador de calor de doble tubo. superficie interior del tubo; luego pasa por conducción a través de su pared y por último se transfiere por convección de la pared del tubo al fluido frío. En el cilindro de un motor de combustión interna como el del esquema de la figura 1.9, el calor se transfiere de forma simultánea por radiación y convección de los gases de combustión al cilindro, atraviesa sus paredes por conducción y al final llega al agua de enfriamiento por convección. Si por último pensamos en un convector para la calefacción donde el fluido caliente es vapor húmedo, la transferencia de calor desde el convector al ambien- te ocurre, en esencia, por convección libre. o --Figura 1.9. Esquema de un cilindro de un motor de combustión interna. Considérese un recipiente aislado térmicamente que contiene una pequeña can- tidad de agua. Si la superficie libre de líquido queda expuesta al aire libre du- rante la noche (fig. E.1.2.) Y la temperatura ambiente es de 40 oC, calcule la temperatura de equilibrio que alcanza el agua en el recipiente. Supóngase que el coeficiente de transferencia de calor en la superficie del agua es de 5 W/m2 K, que la temperatura efectiva del firmamento es del rango de OK Yque tanto el agua como el firmamento se comportan como cuerpos negros. http://carlos2524.jimdo.com/
  • 28. 14 Ejemplo 1.3. l. Introducción Solución Mediante un balance de energía, el calor por convección que se transfiere del aire ambiente al agua debe ser igual en magnitud al calor por radiación emitido por ésta hacia el firmamento en condiciones de equilibrio. Es decir, Sustituyendo valores, h(T=- ~gua ) =0"(~:ua - Tr:!m ) Agua Figura E.l.2. 5(313 - ~gua) =5.67 X 10- 8 ~:ua 1565 - 5~gua =5.67 X 10- 8 ~:ua Al resolver la expresión se obtiene ~gua =260 K =-13 oC Si bien esta solución sólo representa una primera aproximación al problema, los resultados anteriores indican que es posible congelar agua en condiciones de tiempo cálido si se expone al firmamento despejado. Calcule el flujo neto de calor por unidad de área y por radiación entre dos pla- cas paralelas e infinitamente grandes, con un espacio muy pequeño entre ellas. Ambas se comportan corno cuerpos negros y se mantienen a 1000 K Y500 K, respectivamente. Solución Según la ecuación 1.9, q" =0"(Ti - Ti) =5.67 X 10-8 (10004 - 500 4 ) q" = 53 156 W/m2 http://carlos2524.jimdo.com/
  • 29. 1.5. Resumen 15 1.5. Resumen El fenómeno de transferencia de calor por conducción es un proceso de propaga- ción de energía en un medio por difusión o comunicación molecular directa como consecuencia de un gradiente de temperatura. La ley de Fourier establece que el flujo de calor por unidad de área es propor- cional al gradiente de temperatura, es decir, q" =-k dT dX La transferencia de calor por convección es un proceso de transpOlte de energía que resulta del movimiento de un fluido. La ley de Newton del enfriamiento establece que el flujo de calor por unidad de área es proporcional a la diferencia total de temperaturas entre la de la superfi- cie del sistema y la del fluido, esto es, Todos los cuerpos emiten radiación en forma de energía electromagnética con dife- rentes longitudes de onda de acuerdo con su temperatura y sus características super- ficiales. Un emisor de radiación perfecto, o cuerpo negro, es el que emite energía radiante de su superficie a una razón proporcional a su temperatura absoluta ele- vada a la cualta potencia, o sea, q" =ar4 Esta relación se conoce como ley de Stefan-Boltvnann, donde (J es la constante de Stefan-Boltzmann, la cual adquiere un valor de 5.67 x 10-8 W/m2K4 en el SI. Problemas 1. Considérese una pared de espesor L cuyas superficies se mantienen a tempe- raturas TI y Tb respectivamente. Si el material de la pared tiene una conduc- tividad térmica k constante y el área perpendicular al flujo de calor es A, calcu- le el flujo de calor mediante la integración directa de la ley de Fourier. 2. Cuando la transferencia de calor se lleva a cabo en más de una dirección, la ley de Fourier puede escribirse como q" =-k'ílT http://carlos2524.jimdo.com/
  • 30. 16 l . Introducción Con los vectores unitarios i, j Yk, escriba la ley de Fourier en coordenadas cartesianas. 11 k(aT. aT. aTk)Respuesta: q =- -I+-J+- ax ay ax 3. Imagine una esfera de 1 cm de diámetro a una temperatura de 1000 K Yence- rrada en otra esfera de 10 cm de diámetro a una temperatura de 400 K. Calcu- le el flujo neto de calor por radiación que va de la esfera pequeña a la grande. Supóngase que ambas esferas se comportan como cuerpos negros. Respuesta: 17.36 W 4. Un tubo desnudo que transporta,.vapor húmedo a una presión absoluta de 10 bar se encuentra en una habitación cuya temperatura ambiente es de 20 oc. Si el coeficiente de transferencia de calor entre el tubo y el ambiente es de 10 W/m2 K, calcule las pérdidas de calor por metro de longitud. El diámetro exterior del tubo es igual a 10 cm. Respuesta: 502.37 W/m 5. Considérese un cuerpo negro de masa m, calor específico e y área A a una tem- peratura uniforme To, que se deja caer en un recipiente muy grande cuyas pa- redes se encuentran a una temperatura de O K. Si el recipiente está al vacío, determine la temperatura del cuerpo como función del tiempo. Establezca cla- ramente las suposiciones necesarias. Respuesta: T = Tome 3 ( 3 )1/3 me +30'ATot 6. El coeficiente de transferencia de calor en convección libre depende, entre otras propiedades, del coeficiente de expansión volumétrica del fluido, defi- nido como Demuestre que el coeficiente de expansión volumétrica de un gas ideal es di- rectamente proporcional al recíproco de la temperatura. 7. ¿Por qué los metales cambian de color mientras cambia su temperatura? 8. Piense en una placa de espesor L cuyas superficies están sujetas a las tempera- turas T¡ y T2, respectivamente. Si la conductividad térmica del material varía http://carlos2524.jimdo.com/
  • 31. Problemas 17 con la temperatura de acuerdo con la relación k =küO + aT), donde kü Ya son constantes, determine el flujo de calor por unidad de área a través de la placa. 9. Un cono truncado de aluminio mide 2 cm de diámetro en su parte más peque- ña, 3 cm en su parte más ancha y 10 cm de altura. Si la superficie lateral se encuentra aislada, la temperatura en el diámetro menor es igual a 300 oC y la del mayor a 100 oc. Calcule el calor que se transfiere por conducción a tra- vés del cono. Supóngase que la conductividad térmica del aluminio es igual a 215 W/mK. 10. Indique los principales mecanismos de transferencia de calor en una aleta de enfriamiento como las empleadas en un motor de combustión interna. 11. Imagine un tubo de cobre desnudo de 70 mm de diámetro exterior que trans- porta vapor. Su superficie se encuentra a 200 oC y tiene una emisividad igual a 0.8. El aire y las paredes del CUalto en donde se encuentra el tubo están a 25 oc. Se estima que el coeftciente de transferencia de calor por convección natural es igual a 15 W/m2K. Calcule el calor disipado por unidad de longitud. 12. Un flujo de aire circula por la superficie de una pared. Para el instante que se muestra abajo (fig. P.l.12) indique las respuestas: a) ¿Es T ambiente <, > o =T2? Explique su respuesta. b) ¿Qué condición de frontera emplearía para la transferencia de calor en x = O? h Tambienle L I )1 X IO Figura P.l.12. 13. Considérese una esfera de 1 cm de diámetro que se mantiene a 60 oc. Se en- cuentra en un cuarto cuyas paredes se hallan a 35 oc. El aire que rodea la esfe- ra está a 40 oC y el coeficiente de transferencia de calor es igual a 11 W/m2oC. Calcule las pérdidas de calor que experimenta la esfera si su emisividad es igual a 0.85. http://carlos2524.jimdo.com/
  • 32. 18 1. Introducción 14. El techo horizontal de una casa está cubierto con un asfalto cuya emisividad es igual a 0.94. En una noche de cielo nublado puede decirse que la tempera- tura efectiva del firmamento es igual a -10 oC y la del aire ambiente a 5 oc. El coeficiente de transferencia de calor entre el techo y el aire ambiente es igual a 4 W/m20 C. Detennine la temperatura de la superficie del techo en condicio- nes de estado estable. Supóngase que la superficie del techo que da hacia el interior de la casa se encuentra perfectamente aislada. 15. Imagine una placa negra muy delgada de 20 x 20 cm de área sobre la que se hace pasar aire a una temperatura de OoC y una velocidad de 2 mis, lo cual da por resultado un coeficiente de transferencia de calor de 12 W/m20 C. La pla- ca está aislada por uno de sus dos lados y se halla en un cuarto cuyas paredes se mantienen a 30 oC. Supóngase que la emisividad de la placa es igual a 1.0; calcule su temperatura. 16. El elemento térmico en un calefactor eléctrico consiste en una tira metálica de un espesor muy delgado, de 6 mm de ancho y 3 m de largo. La emisividad del material es igual a 1.0 y opera a una temperatura de 800 K. El coeficiente de transferencia de calor alrededor de la tira puede estimarse en 10 W/m20 C. Si la temperatura del ambiente y los alrededores es de 25 oC, calcule el calor di- sipado por el elemento ténnico. 17. Clasifique los materiales siguientes de acuerdo con su capacidad para condu- cir el calor: aluminio, cobre, acero inoxidable, poliestireno, acero al carbón, ladrillo común. 18. Considérese un horno hemisférico de 5 m de diámetro (fig. P.1.18). El domo se comporta como cuerpo negro, mientras que la base tiene una emisividad igual a 0.7. La base y el domo se encuentran a 400 y 1000 K, respectivamen- te. Determine el flujo neto de calor por radiación entre ambos elementos. II+E- - 5 m--~)I Figura P.I.1S. 19. A juzgar por las unidades de W/moC, ¿podría definirse la conductividad tér- mica de un material como el flujo de calor a través del material, por unidad de espesor y por unidad de diferencia de temperaturas? Justifique plenamente su respuesta. 20. Imagine dos paredes de una casa habitación idénticas en todo, excepto que una es de madera (k =0.12 W/mK) y tiene un espesor de 10 cm, en tanto que la http://carlos2524.jimdo.com/
  • 33. Problemas 19 otra es de ladrillo (k =0.72 W/mK) y tiene un espesor de 25 cm. ¿Mediante cuál pared perderá más calor la casa? 21. Piense en una pared que opera en estado estable y sin generación de calor en su interior. En la figura P.1.21 se muestra la distribución de temperatura como función de la distancia. Indique si la conductividad térmica del material es constante, si aumenta o disminuye con la temperatura. Explique su respuesta. lE- L -~ Figura P.l .21. 22. Algunas secciones de una tubena que transporta combustóleo están soportadas por barras de acero (k =61 W/m°C) de 0.005 m2 de sección transversal (fig. P.1.22). En general, la distribución de temperatura a lo largo de las barras es de la forma: T(x) =100 - 150x + lOx2 donde T está en grados Celsius y x en metros. Calcule el calor que pierde la tubena a través de cada barra. Respuesta: 45.75 W Tubería x Suelo =====-======~ Figura P.1.22. http://carlos2524.jimdo.com/
  • 34. 1: I ! j ! f i I l ' 20 l. Introducción 23. Imagine un calefactor de gas. Indique los mecanismos por los que disipa calor. 24. Se utiliza un termómetro de mercurio para medir la temperatura del aire en un recipiente metálico muy grande. Se registra una temperatura de 20 oC (fig. P.1.24). Se sabe que las paredes del recipiente se encuentran a 5 oC, el coefi- ciente de transferencia de calor entre el termómetro y el aire es de 8.3 W/m2oC y la emisividad del termómetro es igual a 0.9. Calcule la temperatura efectiva del aire en el recipiente. Respuesta: Tambiente = 28.6 oC Tambren!e T. -5 0C 11 ~aredes - UTI = 20 oC Figura P.l.24. 25. Una superficie de 0.5 m2, con emisividad de 0.8 y a una temperatura de 150 oC, se coloca en una cámara al vacío muy grande, cuyas paredes se encuentran a 25 oc. Calcule el calor neto entre la superficie y las paredes de la cámara. 26. Un gabinete de aluminio anodizado se enfría mediante convección natural y radiación. El área de la superficie del gabinete mide 0.368 m2, la temperatura del aire y alrededores que lo rodean es de 25 oC y el coeficiente de transferen- cia de calor por convección se estima en 6.8 W/m2K. La temperatura en la su- perficie del gabinete es igual a 125 oc. a) Obtenga el flujo de calor disipado por el gabinete suponiendo que se com- pOlta como cuerpo negro. b) Si el gabinete se enfría forzando aire con un coeficiente de transferencia de calor por convección igual a 150 W/m2K, calcule la temperatura de la su- perficie si la disipación de energía se mantiene constante. ¿Es importante la radiación en este último caso? 27. Un lado de una lámina muy delgada se expone al Sol y el otro está aislado tér- micamente. La lámina absorbe la energía solar a razón de 500 W/m2. El aire ambiente que la rodea se encuentra a 27 oC, mientras que la temperatura efec- tiva del firmamento es de 7 oc. El coeficiente de transferencia de calor por con- vección es igual a 20 W/m2°C, y la emisividad de la superficie expuesta al Sol es de 0.9. Calcule la temperatura de equilibrio de la lámina. 28. El operador de máquinas en un taller se queja de que el sistema de calefacción no mantiene la temperatura del aire a un valor mínimo de 20 oC, como debiera. http://carlos2524.jimdo.com/
  • 35. Problemas " ,~ 21 Para fundamentar su queja, demuestra que un termómetro de mercurio muy preciso suspendido en el aire ambiente registra sólo 17 oc. Cuando coloca el termómetro contra las paredes registra 5 oc. El techo y las paredes del taller son de lámina acanalada. Se sabe además que la emisividad del termómetro es igual a 0.8. ¿Está en 10 conecto el operador? Justifique su respuesta estableciendo con claridad sus suposiciones. 29. Imagine la pared de un horno construida con ladrillo refractario (k = 1.2 W/mK) de 20 cm de espesor. La superficie exterior del horno se encuentra a 300 oC y tiene una emisividad de 0.9. El coeficiente de transferencia de calor por convección natural es igual a 8 W/m2K. La temperatura del aire ambien- te, así como la de los alrededores, es igual a 25 oc. Calcule la temperatura de la superficie interior. Respuesta: T =1516.4 oC 30. Ciertas pruebas experimentales en el álabe de una turbina de gas indican que éste toma 95 kW/m2 de calor cuando su superficie está a 800 oC, la tempera- tura del aire que 10 rodea es de 1150 oC y la velocidad es de 160 mis. La super- ficie del álabe se mantiene a temperatura constante durante los experimentos mediante enfriamiento interno. Calcule el flujo de calor que tomará al álabe si su temperatura se reduce a 700 oC, y no se alteran en 10 absoluto las condicio- nes del aire que se hace pasar a través de él. Supóngase que las propiedades del aire también permanecen constantes. Respuesta: q" = 122.14 kW 31. Una bana cilíndrica de 3 cm de diámetro contiene un calentador eléctrico de resistencia.Al pasar agua sobre el calentador a una temperatura de 25 OC Yuna velocidad de 1 mis, disipa 6.3 kW/m. En estas condiciones la temperatura en su superficie es de 90 oc. Cuando se hace circular aire a una temperatura de 25 OC Yuna velocidad de 10 mis, el calentador sólo disipa 570 W/m. Calcule y compare los coeficientes de transferencia de calor en ambas situaciones. 32. Se desea enfriar el agua de refrigeración de un motor de combustión interna de 150 kW de potencia al freno de 90 a 80 oC en un radiador que está por eva- luarse. El flujo de masa de agua que circula por el motor es de 3.6 kg/s. El ra- diador que se propone colocar al motor para enfriarlo tiene un área total de transferencia de calor igual a 0.8 m2. Puede suponerse que la temperatura pro- medio del aire ambiente que se haría circular con el abanico a través del ra- diador se encuentra a 40 oC, y el calor específico del agua es de 4186 J/kg0c. Indique si es posible o no enfriar el agua del motor con el radiador propuesto. http://carlos2524.jimdo.com/
  • 36. 22 .......... · "l . l. Introducción Bibliografía Incropera, F. P. YD. P. DeWitt, Tntroduction to Heat Transfer, 3a. ed., John Wiley, 1996. Ozisik, M. N., Basic Heat Transfer, McGraw-Hill, Nueva York, 1977. Rohsenow, W. M. y J. P. Hartnett, Handbook ofHeat Transfer, McGraw-Hill, Nueva York, 1973. http://carlos2524.jimdo.com/
  • 37. 2. Conducción unidimensional e es ad estable La senda de la virtud es muy estrecha y el camino del vicio, ancho y espacioso. CERVANTES La conducción unidimensional en estado estable encuentra múltiples aplicaciones en sistemas de interés para el ingeniero: paredes de hornos, aislamiento de ductos para transportar vapor, aislamiento de conductores eléctricos, aletas de enfria- miento, etcétera. En ciertas aplicaciones, los efectos de la transferencia de calor en más de una dirección son tan pequeños que pueden despreciarse sin sacrificar la exactitud de los resultados. En este capítulo se describen algunas de esas aplicaciones; por supuesto, no se pretende cubrir de manera exhaustiva todas las aplicaciones de la conducción unidi- mensional en estado estable. Nuestro propósito sólo consiste en ilustrar el método o la técnica de análisis para resolver los diferentes problemas que se le presentan al in- geniero. 2.1. Placa Considérese una placa plana de espesor L cuya conductividad térmica k es cons- tante. Supóngase que sus dos superficies se mantienen a temperaturas TI y T2, res- pectivamente, como se muestra en la figura 2.1. Si se analiza un volumen de control de espesor Llx dentro del material, la pri- mera ley de la termodinámica establece que el calor que entra en el sistema por conducción es igual al que sale de él. Analíticamente, q"A Ix- q"A Ix+ tu =O (2.1 ) Al notar que el área A perpendicular al flujo de calor es constante en la placa, la expresión anterior puede dividirse entre ALlx, esto es, "1 "1q x+tu - q x =O Llx (2.2) 23 http://carlos2524.jimdo.com/
  • 38. 24 2. Conducción wlidimensional en estado estable TI q"Alx q"Alx+dX o L x Figura 2.1. Placa plana y volumen de control. En el límite, cuando & -7 Ose obtiene, por el teorema del valor medio, d " .-!L =O dx (2.3) Al integrar esta expresión con respecto a x se obtiene q" =el (2.4) donde el es una constante de integración. Esta expresión ratifica analíticamente que el flujo de calor por unidad de área en la placa es constante. Sustituyendo la ley de Fourier en la ecuación 2.4 se tiene o dT =_ el dx k (2.5) Sise supone que la conductividad térmica del material es constante, una integra- ción de la ecuación anteIior da como resultado eT= __l x+e2 k (2.6) por lo que se concluye que el perfil de temperatura a través de la placa es lineal. Lo anteIior es cierto siempre que --como se supuso con anteIiOlidad- la conductivi- http://carlos2524.jimdo.com/
  • 39. 2.1. Placa 25 dad térmica del material sea constante. Las constantes de integración Cl y C2 pueden evaluarse mediante dos condiciones de frontera que correspondan a la situación físi- ca del problema y que pueden determinarse recurriendo a las temperaturas en ambas superficies de la placa, es decir, T= TI en x = O y T= T2 en x =L Sustituyendo estas condiciones de frontera en la distribución de temperatura (ecua- ción 2.6) se obtiene y Por consiguiente, (2.7) El esquema de la figura 2.2 muestra la variación de la temperatura en la placa co- mo función de la distancia. Cabe observar de nuevo que esta distribución es lineal sólo cuando la conductividad térmica del material es constante. T T, ~ L-__________~____ o L x Figura 2.2. Distribución de temperatura en una placa con conductividad térmica constante. http://carlos2524.jimdo.com/
  • 40. 26 2. Conducción unidimensional en estado estable A menudo conviene normalizar o adimensionar los resultados de la transfe- rencia de calor para que sean generales e independientes de las dimensiones físi- cas del sistema. La normalización reduce el número de parámetros, por lo que la gráfica e interpretación de éstos es aún más sencilla. En ciertas circunstancias, una mera normalización podrá sugerir las aproximaciones necesarias para simplificar un problema concreto. La ecuación 2.7 puede normalizarse definiendo una tempe- ratura y una distancia adimensionales como y T* = T- Ti T¡ -T2 * xx =- L Al introducir estas variables adimensionales en la distribución de temperatura de la ecuación 2.7 se tiene T* =1 - x* (2.8) obteniéndose así una línea única cuya pendiente es de 135° para todas las placas. Una vez que se calcula la distribución de temperatura en la placa, el flujo de calor que se transfiere a través de ella puede evaluarse con facilidad, una vez más, mediante la ley de Fourier. Ya que ésta es constante, Por tanto, dT q=-kA-=AC¡ dx (2.9) Esta ecuación indica que el flujo de calor es proporcional al área, a la conductivi- dad térmica del material y a la diferencia de temperaturas. Por otra parte, el flujo de calor es inversamente proporcional al espesor de la placaJ La forma de la ecuación 2.9 sugiere una analogía eléctrica con la ley de Ohm de circuitos eléctricos: si el flujo de calor se visualiza como una corriente y la di- '" Si la conductividad térmica del material varía con la temperatura de acuerdo con una relación de la forma k = "00 + an, donde "o y a son constantes, el flujo de calor a través de la placa puede calcularse con la ecua- ción 2.9, siempre que la conductividad térmica se calcule a la temperatura promedio (TI + T2)/2. La demos- tración se deja al lector como ejercicio. http://carlos2524.jimdo.com/
  • 41. 2.1. Placa 27 ferencia de temperaturas como una diferencia de potenciales eléctricos, el equiva- lente de la resistencia eléctrica es una resistencia térmica definida como R¡=~ kA (2. 10) El uso de esta ecuación permite evaluar sin mayor problema el flujo de calor en paredes de distintos materiales en contacto íntimo, como se ilustra en la figura 2.3 con sólo dos. En estas condiciones, (2.11) La expresión 2.11 indica que el flujo de calor a través de la pared compuesta por dos materiales es igual a la diferencia total de temperaturas entre la suma de las dos resistencias térmicas en serie. La analogía eléctrica antes descrita también puede emplearse con eficacia pa- ra resolver problemas más complejos relacionados con resistencias en serie y en paralelo. En la figura 2.4 se muestra un problema típico y su correspondiente cir- cuito térmico. Cabe notar, sin embargo, que las conductividades térmicas de los materiales en paralelo no deben ser sustancialmente distintas, de lo contrario ha- bría una transferencia de calor bidimensional. Hasta ahora se ha supuesto que se conocen las temperaturas en las superficies exteriores de la pared. No obstante, por lo general se encuentran en medios líqui- dos o gaseosos a diferentes temperaturas, y la transferencia de calor con los fluidos Ti LA LB Figura 2.30Pared compuesta por dos materiales y su correspondiente circuito térmico. http://carlos2524.jimdo.com/
  • 42. 28 1" B -T1 A O e 2. Conducción unidimensional en estado estable La ka Aa Tl--,//,-Il ... T 2 ~Lf~:~ kAAA Le koAo kcAc Figura 2.4. Pared compuesta por distlntos materiales. se lleva a cabo por convección. El uso de la resistencia térmica puede extenderse también a la ley de Newton de enfriamiento. Al analizar esta ley se deduce que la resistencia térmica para convección, o resistencia de película, está dada por la ex- presión R =_1 I hA (2.1 2) Si se considera ahora la misma pared construida con dos materiales, pero en con- tacto con dos fluidos como se muestra en el esquema de la figura 2.5, la transfe- rencia de calor puede evaluarse con la expresión 2.13. (2.13) A La Figura 2.5. Pared compuesta por dos materiales expuesta a convección por ambos lados. http://carlos2524.jimdo.com/
  • 43. 2.1. Placa Ejemplo 2.1. 29 En esta expresión se observan las diferentes resistencias térmicas implicadas. En ca- so de que uno de los fluidos sea, digamos, agua y el otro aire, la resistencia de pe- lícula más grande se encuentra en el lado del aire. En estas circunstancias, la transferencia de calor puede incrementarse o la resistencia disminuirse mediante aletas de enfriamiento o superficies extendidas en el lado del aire a fin de aumen- tar el área. Otro caso que puede interesar a los ingenieros es cuando la pared que se anali- zó está constituida por un material aislante. Entonces se define el valor R del aislan- te como la resistencia térmica del material por unidad de área, es decir, R =L/k, donde L es el espesor y k la conductividad térmica. Obsérvese que al duplicar el espesor L también se duplica el valor R del aislante. En Estados Unidos de Améri- ca los valores de R se expresan sin unidades; por ejemplo, R-20, R-30. Estos valores se obtienen dividiendo el espesor del material dado en pies entre su conductividad térmica en BTU/h pieop, de tal forma que las urüdades de R están en h pie2op/ BTU.Así, 6 pulgadas de aislante de fibra de vidrio (k =0.025 BTUIh pie°F) tienen un valor igual a R-20, esto es, R =0.5/0.026 =20 h pie2°PIBTU (en el SI 1 m2°C/W = 5.678 h pie2°PIBTU). Este concepto de resistencia por unidad de área R también se emplea cuando la pared se compone de materiales heterogéneos, como los bloques de concreto. De este modo se dice que un bloque de concreto con dos cavidades tiene una re- sistencia térmica por unidad de área R igual a 0.37 m2°C/W. La resistencia R =l/h a la convección para una pared expuesta a un viento de 24 km/h es igual a 0.03 m2°C/W. Algunos valores de la resistencia térmica R se indican en J997 ASHRAE Fundamentals Handbook (American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc., 1977). Imagine una pared constituida por los elementos siguientes: Concepto Resistencia exterior a la convección (viento a 24 km/h) Bloque de concreto de 20 cm de espesor 90 mm de aislante de fibra mineral 13 mm de yeso Resistencia interior a la convección (aire estático) 0.03 0.37 2.3 0.08 0.12 El aire ambiente que rodea la pared se encuentra a 40 oC en el exterior y 22 en el interior. Si la pared mide 5 m de largo por 2.5 m de altura, calcule el calor transferido. http://carlos2524.jimdo.com/
  • 44. , l ' ., I , ,. 30 Ejemplo 2.2. 2. Conducción unidimensional en estado estable Solución Sumando todas las resistencias térITÚcas, 40 - 22 " q = 0.03 + 0.37 + 2.3 + 0.08 + 0.12 q" = 6.21 W/m2 En consecuencia, q =(12.5)(6.21) =77.6 W Considérese una pared de cobre (k =375 W/mK) de 1 cm de espesor de la que una de sus superficies está expuesta a vapor de agua condensándose (h = 10 000 W/m2 K) a una temperatura de 200 oc. La otra superficie está en contacto con aire ambiente (h =5 W/m2K) a una temperatúra de 25 oc. a) Calcule el calor por unidad de área transferido a través de la placa. b) Determine las temperaturas en ambas superficies de la pared. Solución a) Según la ecuación 2.13, 200 - 25 175 =1 0.20 874.45 W/m2 q" 1 0.01 --- +--+ 10000 375 5 b) Puesto que el calor transferido por convección del vapor a la placa es igual al calor por conducción que pasa a través de ella y, al ITÚsmo tiempo, igual al calor por convección de la placa al aire, 874.45 =10000(200 - TI) TI = 199.91 oC y 874.45 =5(T2 - 25) T2 =199.89 oC http://carlos2524.jimdo.com/
  • 45. 2.1. Placa Ejemplo 2.3. 31 Obsérvese que la mayor caída de temperatura ocurre a través de la interfase co- bre-aire. Esto es, -' Considérese la pared de un horno de estufa formada pordos placas delgadas de acero, con aislante de fibra de vidrio (k =0.035 W/m°C) en el interior de ellas. La temperatura máxima de operación del horno puede suponerse en 250 oC, mien- tras la temperatura ambiente en la cocina puede variar entre 20 y 35 oc. Calcule el espesor de aislante que deben tener las paredes para eyitaJ:" que la temperatu- ra en la superficie exterior exceda 60 oc. El coeficief!.te de transferencia de ca- lor para convección en ambas superficies puede suponerse igual a 10 W/m20 C. Solución Como la conductividad térmica del acero es mucho mayor que la de la fibra de vidrio, el efecto de las láminas en las paredes puede despreciarse sin perder exactitud en los cálculos. El calor disipado hacia el ambiente puede evaluarse con la expresión q" =h2(T2 - T2=) q" = 10(60 - 35) q" =250W/m2 Este flujo de calor debe ser igual al transferido por convección del aire en el horno hacia la pared y al que se transfiere por conducción a través de ella. Por tanto, de donde L = 0.035( 250 - 60 -~) = 0.023 m = 2.31 cm 250 10 En ciertas circunstancias, la superficie de una pared no sólo disipa calor por con- vección hacia el aire ambiente que la rodea, sino también a los alrededores. En ta- http://carlos2524.jimdo.com/
  • 46. 32 Ejemplo 2.4. 2. Conducción unidimensional en estado estable les condiciones, el calor por unidad de área que disipa una pared puede calcularse fácilmente con la expresión conocida como ecuación de Langmuir: "=0.548E[(~)4 -(~)4l+1.957(T.-T. )5/4 !196.85V+68.9 (2. 14) q 55.55 55.55 s = ~ 68.9 donde q" es el calor por unidad de área en W/m2, Ts la temperatura en la superfi- cie de la pared, en K; Ta la temperatura de los alrededores, en K; Too la temperatu- ra del aire ambiente que rodea la pared, en K, y V la velocidad del aire en mis, que está en movimiento en la vecindad de la superficie. Obsérvese que el primer término del miembro derecho de la expresión con- templa la radiación, en tanto que el segundo contiene las aportaciones de la convec- ción natural y forzada. El término de radiación no es más que CJE(Ts 4 - Ta4). Si la velocidad Ves igual a cero, de la ecuación de Langmuir se precisa que, para una pared, h = 1.958(Ts - Too )1/4. Considérese una pared vertical de 3 m de altura por 10 de largo con un espesor de 0.20 m (fig. E.2.4). La conductividad térmica del refractario es de 1.1 W/mK. Una de las superficies de la pared, la exterior, se encuentra a 300 oC y tiene una emisividad igual a 0.8. Esa superficie está expuesta al aire ambiente y alrededores a 27 oC. Calcule la temperatura de la otra superficie de la pared -la interior. T3m 300 oC 1 27 oC 20 cm vFigura E.2.4. http://carlos2524.jimdo.com/
  • 47. 2.2. Cilindro hueco 33 Solución Con la ecuación de Langmuir se tiene "=(0.548)(0.8)[( 573 )4 _( 300 )4]+1.957(300-27)5/4 q 55.55 55.55 q" = 4590.17 + 2171.67 = 6761.84 W/m2 Por tanto, T . = 300 (6761.84)(0.20) =1529 43 °e interIor + 0.1 . 2.2. Cilindro hueco Imaginemos ahora un cilindro hueco de radio exterior R2, radio interior R¡ y un material cuya conductividad térrrtica k es constante, como se muestra en la figura 2.6. Supóngase que la superficie interior se mantiene a una temperatura T¡, mien- tras que la exterior se mantiene a una temperatura T2 y que el flujo de calor es con- ducido en la dirección radial solamente, esto es, L> > R¡ o R2. Mediante un balance de energía en el volumen de control mostrado se obtiene q"2nr&1 r - q"2nr&1 r+ I'1r =O Al dividir entre 2nl1r& y hacer que I1r tienda a Ose obtiene, por el teorema del valor medio, ~(rq") =O dr Integrando esta expresión con respecto al radio, rq" = e¡ (2.15) (2.16) donde el es una constante de integración. Al aplicar la ley de Fourier de conduc- ción de calor se obtiene (2.17) http://carlos2524.jimdo.com/
  • 48. 34 2. Conducción unidimensional en estado estable I I ! I IR, r L ~ 1 I l1z T, T2 M q"2n:rl1zIr+ M +--->r Figura 2.6. Cilindro hueco. Integrando de nuevo esta expresión C T=-_1Inr+C2 k (2.18) Las constantes de integración C1 y C2 pueden determinarse mediante condiciones de frontera apropiadas. En este caso, T=T¡ en r=R¡ y T= T2 en r =R2 Sustituyendo estas condiciones de frontera en la ecuación 2.18 se obtienen las constantes de integración C1 y C2• Esto es, y http://carlos2524.jimdo.com/
  • 49. 2.2. Cilindro hueco 35 Por consiguiente, T =T2 - Ji - T2 In ~ In R2 R2 (2. 19) R¡ En la figura 2.7 se muestra de manera esquemática la distribución de la tempera- tura en el material del cilindro. Obsérvese que, en contraste con el perfil lineal de una placa, el de la temperatura en un cilindro es logarítmico aun cuando la con- ductividad térmica es constante en ambos casos. Ahora puede calcularse el flujo de calor mediante la ley de Fourier. Debido a que el flujo es constante en cualquier sección del cilindro, dT q =-k(2rcrL) - dr q =-k(2rcrL{- ~~) (2.20) Nótese que la ecuación 2.20 también tiene la forma de la ley de Ohm. Por consi- guiente, en este caso la resistencia térmica a la conducción puede expresarse como: (2.21) Figura 2.7. Distribución de temperatura en un cilindro hueco. http://carlos2524.jimdo.com/
  • 50. 36 Ejemplo 2.5. 2. Conducción unidimensional en estado estable El análisis de cilindros constnüdos con distintos materiales en contacto Íntimo y cilindros con condiciones de frontera convectivas, o ambos casos, puede hacerse con facilidad mediante un circuito térmico. Para ilustrarlo, imagine un tubo cu- bierto con un aislante y con convección, tanto por el interior como por el exterior. En la figura 2.8 se muestra un esquema de esta situación. El flujo de calor en ta- les circunstancias queda determinado mediante la relación (2.22) donde kr es la conductividad térmica del tubo y ka la del aislante. Un tubo de cobre BWG 16 (k =379 W/m°C) transporta vapor húmedo a 100 oC y tiene un diámetro exterior de 5.08 cm, mientras que el diámetro interior es de 4.75 cm. El tubo se encuentra en un cuarto cuya temperatura ambiente es de 25 oc. Para disminuir las pérdidas de calor en 60%, se desea aislar el tubo con fibra de vidrio (k =0.04 W/m°C). Calcule el espesor de aislante que se requiere, supo- niendo que los coeficientes de transferencia de calor interior y exterior son iguales a 5600 y 5 W/m2°C, respectivamente. I ¡ ¡ h, i i, R, ~ ¡ ¡ R2 !T Ra I ,- j T, L ! T2 i TJ<,o Figura 2.8. Cilindro aislado con convección en sus superficies. http://carlos2524.jimdo.com/
  • 51. 2.3. Radio crítico 37 Solución Primero se calculará el calor disipado por unidad de longitud cuando el tubo se encuentra desnudo. Según la ecuación 2.22, 100-25 q' 1 ln(5.08/4.75) 1 - - -- - - + + - - --- n(0.0475)(5600) 2n(379) n(0.0508)(5) 75 75 q'= :-- 1.20 x 10-3 + 2.82 X 10-5 + 1.25 1.25 q' =60 W/m Nótese que las caídas de temperatura en la interfase vapor-tubo de cobre y en el material del tubo mismo son insignificantes. Por tanto, se supondrá que la temperatura en la superficie exterior del tubo es igual a 100 oc. Si las pérdidas de calor se reducen en 60%, q' =0.4(60) =24 W/m Teniendo en cuenta únicamente las resistencias térmicas del aislante y de la pe- lícula exterior, 24 = 100-25 ln(Da /5.08) 1 -'---'------'- +----:---~- 2n(0.04) n(Da /100)(5) Resolviendo la expresión anterior, Da =9.4 cm En consecuencia, el espesor de aislante requerido es 2.2 cm 2.3. Radio crítico En apariencia, agregar material aislante a un cilindro o tubo siempre reduce las pérdidas de calor que experimenta. Sin embargo, al analizar de manera detallada la ecuación 2.22 se observa que el efecto del material aislante sobre la transferen- cia de calor en el cilindro es doble. Dicho de otro modo, añadir material aislante de baja conductividad térmica a un cilindro incrementa la resistencia a la conduc- ción, pero también el área convectiva de transferencia de calor, con lo cual se re- http://carlos2524.jimdo.com/
  • 52. 38 Ejemplo 2.6. 2. Conducción unidimensional en estado estable duce la resistencia exterior de la película. Con este doble efecto en mente, a con- tinuación se analizan las consecuencias sobre la transferencia de calor al variar el radio exterior del aislante. Si se supone que la temperatura en la superficie exterior del cilindro desnudo es en esencia igual a la temperatura del fluido en el interior, o que h1 y kl tienen valores relativamente altos, (2.23) Diferenciando esta expresión con respecto a Ra e igualando a cero se obtiene _ _ ka Ra - Rcrítico - ~ (2.24) donde Rcrítico se denomina radio crítico de aislamiento. La expresión anterior in- dica que en Ra =Rcrftico el flujo de calor es máximo o la resistencia térmica al flu- jo de calor es mínima. La diferencia Rcrítico - R 2 recibe el nombre de espesor crítico de aislamiento, ya que el flujo de calor se incrementa al añadir material aislante cuando R2 es me- nor que Rcrítico' En la figura 2.9 se muestra en forma esquemática la variación de las resistencias de conducción y convección en un cilindro. Para un aislante típico (k "" 0.03 W/m°C) en condiciones de convección natu- ral (h "" 1OW/m20 C) se obtiene que Rcrítico "" 0.003 m = 3 mm. A primera vista es- te resultado podría indicar que el radio crítico de aislamiento no tiene relevancia en las aplicaciones ingenieriles por su valor tan pequeño -para los valores aquí asignados de ka y h3' Sin embargo, este resultado es muy importante en el análisis y diseño de conductores eléctricos, pues la disipación de calor aumenta al añadir un aislante a un alambre que transporta cierta corriente eléctrica. Por otra parte, si el radio crítico de aislamiento, Rcrítico, es de menor magnitud que R 2, cualquier cantidad de aislante disminuirá las pérdidas de calor. Este hecho es de suma rele- vancia en tuberías que transportan agua caliente o helada y donde se desea dismi- nuir la transferencia de calor desde o hacia la tubería en un cilindro. Considérese una resistencia eléctrica de grafito de 1 W, 2 Mn, 2 mm de diáme- tro y 3 cm de longitud. Se desea aislar eléctricamente la resistencia con micanita (k =0.1 W/mK). Se supone que 40% del calor generado se disipa por convec- ción al medio ambiente, cuya temperatura es de 40 oC, y el resto se conduce por las terminales de la resistencia hacia otros componentes del circuito. http://carlos2524.jimdo.com/
  • 53. 2.3. Radio crítico Ejemplo 2.7. Resistencia térmica Resistencia totalI Espesorcrítico de aislamiento Resistencia de convección Figura 2.9. Variación de las resistencias de conducción y convección en un tubo. 39 Calcule el espesor de aislante eléctrico necesario para tener una disipación de calor máxima, así como la temperatura en el interior del aislante. Solución Con la ecuación 2.24, Rcrítico =ka =0.1 =0.0067 m =6.7 mm ~ 15 En consecuencia, el espesor de aislante es igual 6.7 - 1 =5.7 mm. Por otra parte, -40+( In6.70 + 1 ) 2n(0.1)(0.03) 2n(0.0067)(0.03)(15) =40 + 0.4 (100.91 + 52.79) Por otra parte, si la resistencia no se aislara, q O 0.4 T. =T. + =4 + =181.47 oC 2 2~ 2nR2L~ 2n(0.001)(0.03)(15) Un alambre de cobre (k = 401 W/m°C) de 2 mm de diámetro y 10 m de longitud está forrado con una cubierta de plástico (k =0.15 W/m°C) de 1 mm de espe- sor. Algunas mediciones eléctricas indican que una corriente eléctrica directa http://carlos2524.jimdo.com/
  • 54. 40 2. Conducción unidimensional en estado estable de lOA causa una caída de voltaje igual a 8 V. Todo el conductor está expues- to al aire ambiente cuya temperatura es de 30 oC a través de un coeficiente de transferencia de calor igual a 18 W/m2 K. a) Determine la temperatura de la interfase entre el alambre y el plástico. b) Si se duplica el espesor de la cubierta de plástico, indique si la temperatu- ra en la interfase aumenta, disminuye o pelmanece constante. Solución a) El calor que disipa el conductor puede calcularse con la expresión q =VI =(8)(10) =80 W Por otra parte, T2 -30 80=--I-n(~4-/2~)~-----1---- ---'---'--,--'--+ -----,----- 2n(0.15)(10) 18n(0.004)(19) Por tanto, T2 = 71.25 oC b) El radio crítico de aislamiento es T2 - 30 _ T2 - 30 0.0l35 +0.44 0.52 Rcrítico = 0.15 = 0.00833 m = 8.33 mm 18 En consecuencia, al duplicar el espesor de la cubierta de plástico disminuye la temperatura. 2.4. Esfera El análisis de esferas es de gran trascendencia por las aplicaciones que éstas tienen en distintos procesos, como el caso de recipientes esféricos para almacenar flui- dos a bajas temperaturas. Considérese una esfera hueca de radio interior R1, radio exterior R2 y cuya conductividad télmica es constante. Supóngase que las tempe- raturas en sus superficies interior y exterior son TI y T2, respectivamente. Después de seleccionar un cascarón esférico de espesor I1r dentro del material y hacer un balance de energía se obtiene q"(4nr 2 )1 - q"(4nr 2 )1 =O r r+Ór (2.25) http://carlos2524.jimdo.com/
  • 55. 2.4. Esfera 41 Al dividir entre 4n~r y hacer que ~r tienda a cero se obtiene, por el teorema del valor medio, Integrando esta expresión con respecto al radio se tiene que o "_ elq-z r (2.26) donde el es una constante de integración. Si introducimos la ley de Fourier de conducción de calor, dT el =dr - kr2 Al integrar de nuevo con respecto al radio tenemos eT=_l +e2 kr (2.27) (2.28) Las constantes de integración el y e2pueden obtenerse a través de las condicio- nes de frontera siguientes: T= TI en r =Rl y Si sustituimos estas condiciones en la ecuación 2.28, y http://carlos2524.jimdo.com/
  • 56. 42 2. Conducción unidimensional en estado estable Por tanto, T =T 2 _ R¡ (T¡ - 12)(1_R2 ) R2 - R¡ r (2.29) El flujo de calor transferido a través del cascarón puede calcularse con la ley de Fourier. Como es constante, q = -k(4nr2) dT = -k(4nr2 )(_ C~) dr kr (2.30) Si comparamos esta ecuación con la ley de Ohm vemos que la resistencia térmica a la conducción está dada por la expresión R = R2 -R¡ I 4nkR¡R2 (2.31) Obsérvese que en el límite, cuando R2 tiende a infinito, la ecuación 2.30 se trans- forma en Con esta expresión puede calcularse el calor por conducción que disipa o absorbe una pequeña partícula esférica o gota de líquido dentro de un fluido estático. Así, si comparamos esta expresión con la ley de Newton de enfriamiento se obtiene que, para estas condiciones en particular, o donde D =2R¡. hD =2.0 k El análisis de una esfera construida con distintos materiales en contacto direc- to y con resistencias de película puede hacerse con facilidad mediante un circuito http://carlos2524.jimdo.com/
  • 57. 2.4. Esfera Ejemplo 2.8. 43 ténnico. En la figura 2.10 se muestra un esquema que ilustra el caso de una esfe- ra cubierta con material aislante y dos resistencias de convección. En tales cir- cunstancias, (2.32) A semejanza del radio crítico que se calculó para el cilindro, el radio crítico en una esfera resulta ser el doble, es decir, (2.33) La superficie interior de una bomba calorimétrica en forma de esfera está ex- puesta a un flujo de calor q"s resultante de una reacción química exoténnica. Los radios interior y exterior del calorímetro son R¡ y R2> respectivamente. El coeficiente exterior de transferencia de calor es h, la conductividad ténnica del material es k y la temperatura ambiente es TOO' a) Determine la temperatura en la superficie interior del calorímetro. b) Calcule la temperatura en la superficie exterior. ¿Es posible disminuir esa temperatura sin alterar q"s' R¡, R2, k o Too? Figura 2.10. Esfera cubierta con material aislante. http://carlos2524.jimdo.com/
  • 58. 44 2. Conducción unidimensional en estado estable Solución a) Mediante un balance de energía en el material del calorímetro se obtiene que, según la ecuación 2.28, Ahora las constantes e¡ y e2 pueden determinarse con las condiciones de fron- tera apropiadas para el problema. En este caso, y -k dT =q" en r =R¡ dr s Sustituyendo estas condiciones de frontera en la distribución de temperatura se obtiene y Por tanto, e "R2¡ =qs ¡ e = q;'Ri (~-l)+T2 kR hR 00 2 2 T=Too +~+~ ---1"R2 "R2 ( k )kr kR2 hR2 (a) La temperatura en la superficie interior puede calcularse ahora sustituyendo r =R¡ en la expresión anterior, es decir, T. =T + q;'R¡ + q;'R~ (~-1) ¡ 00 k kR hR2 2 b) La temperatura en la superficie exterior puede calcularse sustituyendo r =R2 en la ecuación (a), esto es, T =T + q;'(!l)22 00 h R 2 http://carlos2524.jimdo.com/
  • 59. 2.5. Placa con generación unifonne de calor 45 La expresión anterior ratifica que el calor liberado por la reacción exotérmica debe disiparse por convección hacia los alrededores, esto es, De la expresión para la temperatura en la superficie exterior se observa que és- ta puede disminuirse incrementando el coeficiente de transferencia de calor h. 2.5. Placa con generación uniforme de calor Hay una gran variedad de problemas en los que existe generación de calor: calen- tadores de resistencia, conductores eléctricos, ánodos, cátodos, elementos com- bustibles en reactores nucleares, etcétera. Imagine ahora una placa de espesor 2L en la que OCUlTe una generación uni- forme y constante de calor por unidad de volumen q''', W/m3, como se muestra en la figura 2.11. Supóngase que la placa se halla expuesta por ambos lados a un flui- do cuya temperatura es T= y el coeficiente de transferencia de calor por ambos lados es h. Para determinar la distribución de la temperatura en la placa, considérese un volumen de control de dimensiones L1xL1y& dentro del material. Un mero balance de energía indica que (2.34) Al dividir esta expresión entre L1xL1y& y hacer que L1x tienda a cero se obtiene, por el teorema del valor medio, d " ~=q'" dx (2.35) Integrando esta expresión con respecto a la distancia x, q" =q'''x + el donde el es una constante de integración. Si introducimos la ley de Fourier de conducción de calor, dT 111 e_~ __l dx k k (2.36) http://carlos2524.jimdo.com/
  • 60. 46 2. Conducción unidimensional en estado estable h Too x Figura 2.11. Placa con generación de calor. Al integrar de nuevo, y suponiendo que la conductividad ténnica del material es constante, (2.37) Las constantes de integración el y e2 pueden evaluarse con dos condiciones de frontera. Dada la simetría del problema, el flujo de calor es igual a cero en el pla- no central de la placa, esto es, dT =0 dx en x= O De manera análoga, el calor transfelido por conducción es igual al de convección en la interfase sólido-fluido, esto es, dT -k dx =h(T-Too ) en x=L Con estas dos condiciones de frontera se obtiene y el =0 "'L "'L2 e =T +-q- +-q- 2 00 h 2k http://carlos2524.jimdo.com/
  • 61. 2.5. Placa con generación unifonne de calor 47 Ejemplo 2.9. En consecuencia, T= T +_q_+CL__ 1- ~"'L "'/3 [ ( )2]~ h 2k L (2.38) La expresión anterior permite calcular la temperatura en cualquier posición x de la placa. Por tanto, la temperatura en las superficies de ésta puede calcularse con fa- cilidad al sustituir x =L en la expresión anterior. Así, q"'L ~up =T~ +- h- (2.39) Obsérvese que la ecuación indica que todo el calor generado se disipa por convec- ción hacia el fluido. Como la temperatura máxima ocurre en el centro de la placa, puede calcu- larse sustituyendo x = Oen la ecuación 2.38, es decir, _ q"'/3 Tmáx - ~up +2k (2.40) La distribución de la temperatura dada por la ecuación 2.38 puede normalizarse si se define una temperatura y una distancia adimensionales como y * T- ~up T = ----;,.....,-"- q'" /3/2k x x =- L Con estas variables el perfil de temperatura queda expresado como T* =1-x*2 (2.41 ) Una placa de espesor L separa dos fluidos cuyas temperaturas son Tl~ y T2~, respectivamente. Se desea eliminar por completo las pérdidas de calor del flui- do que tiene mayor temperatura, es decir, Tl~, mediante una generación de ca- lor q'" en la placa. Determine la generación de calor necesaria. Solución Aun cuando las pérdidas de calor pueden disminuirse agregando aislante térmi- co a una o a las dos superficies de la placa, no pueden eliminarse en su totali- http://carlos2524.jimdo.com/
  • 62. 48 2. Conducci6n unidimensional en estado estable dad. Por otra parte, como se muestra en la figura E.2.9, las pérdidas de calor pueden eliminarse en absoluto mediante una generación de calor apropiada; por ejemplo, una coniente eléctrica. De acuerdo con la ecuación 2.38, la cual supo- ne que el flujo de calor es igual a cero en x =0, _ _ q"'L q"'L2 Tmáx - 'T¡oo - T200 +- - +- - h 2K Por tanto, q'" Ca) En caso de emplear una corriente eléctrica, .2 R'I! l e q = - LA donde Re se refiere a la resistencia eléctrica. Así, ff'". q l= - - Re y q'" puede sustituirse con la ecuación Ca). T, _ ----r~ L h Figura E.2.9. http://carlos2524.jimdo.com/
  • 63. 2.6. Cilindro con generación uniforme de calor 49 2.6. Cilindro con generación uniforme de calor Considérese ahora un cilindro sólido de radio R, con una generación uniforme de calor q/", como se muestra en la figura 2.12. Supóngase que la conductividad tér- mica del material es constante y que la longitud del cilindro es muy grande con respecto a su radio, de manera que la transferencia de calor se lleva a cabo sólo en la dirección radial. Un balance de energía en un volumen de control en forma de arandela de espesor !1r y altura Llz indica que q"2nrLlz Ir - q"2nrLlz Ir + 6..r + q"/2nr!1rLlz =O (2.42) Al dividir la ecuación entre 2n!1rLlz y hacer que !1r tienda a cero se obtiene ~(rq/l) =q'"r dr Integrando esta expresión con respecto al radio, /1 q"'r el q = - +- 2 r (2.43) (2.44) donde el es una constante de integración. Puesto que el flujo de calor debe ser una cantidad finita en todo el cilindro, incluido r = O, de la ecuación 2.44 se despren- de que el debe ser igual a cero. Así, '"/1 q r q = - 2 Si sustituimos la ley de Fourier en la expresión anterior se obtiene dT =_q"'r dr 2k Al integrar de nuevo esta expresión, q'"r2 T=---+e2 4k (2.44a) (2.45) (2.46) La constante de integración e2 puede evaluarse a partir de un balance de energía en la superficie, es decir, http://carlos2524.jimdo.com/
  • 64. 50 2. Conducción unidimensional en estado estable T~ R ~r Figura 2.12. Cilindro sólido con generación unifonne de calor. Con esta expresión se obtiene 111R 111R2 e =T. +-q- +-q-2 00 2h 4k Por tanto, T=T. +- - +- - 1- -q"'R q1llR2[ (r)2]00 2h 4k R (2.47) Del mismo modo, T =T. +-q-- 1- !..-IIIR2[ ( )2]sup 4k R (2.47a) donde Tsup es la temperatura en la superficie del cilindro. Esta distribución de la temperatura puede normalizarse al definir las variables " T - :Z;up T =-----;~- qlll R2/2k y * r r =R http://carlos2524.jimdo.com/
  • 65. 2.6. Cilindro con generación uniforme de calor 51 Así, la ecuación 2.47a se transforma en ,. , (2.48) Nótese que la expresión anterior es en esencia igual a la distribución adimensio- nal de temperatura para una placa con generación de calor, excepto por el coefi- ciente (1/2) en la ecuación 2.48. En la figura 2.13 se muestra un esquema de la dis- tribución adimensional de la temperatura en una placa plana y en un cilindro con generación uniforme de calor. Determine una expresión para calcular la diferencia entre la temperatura máxi- ma y la temperatura ambiente como función de la corriente eléctrica en un con- ductor de cobre calibre 14 (1.626 mm de diámetro). Supóngase que la resistivi- dad eléctrica del cobre es de 1.73 x 10-8 nm, la conductividad térmica de 380 W/mK y el coeficiente de transferencia de calor igual a 10 W/m20 C. Solución Según la ecuación 2.47, pero donde Pe es la resistividad eléctrica, nm, y Re la resistencia eléctrica, n. T' 1.0 Placa 0.5 Cilindro o-;------------~-- 1.0 x*, r'" o Figura 2.13. Distribución adimensional de la temperatura en una placa plana y en un ci- lindro con generación uniforme de calor. http://carlos2524.jimdo.com/
  • 66. S2 Ejemplo 2.11. 2. Conducción unidimensional en estado estable Con estas expresiones se obtiene i 2 Pe ( 2k)Tmáx - T~ = !1T = 2 2 1+- 4n- R k hR Sustituyendo valores !1T =0.163 i2 En la figura E.2.1O se presenta en forma cualitativa la variación de !1T como función de i. tlT 36.68 oC r---~ 15 A Figura E.2.10. Supóngase que el conductor desnudo del ejemplo anterior se aísla con hule (k = 0.15 W/m°C). a) Calcule el espesor cótico de aislamiento. b) Para las mismas condiciones ambientales, y suponiendo que se emplean 2 mm de aislante, determine una nueva expresión para calcular la diferen- cia entre la temperatura máxima y la temperatura ambiente como función de la corriente eléctrica. Solución a) Según la ecuación 2.24, ka 0.15 00Rcrírico = - = - - = . 15m = 15mm h:3 10 http://carlos2524.jimdo.com/
  • 67. 2.6. Cilindro en generación uniforme de calor 53 b) Por otra parte, donde ·2 'T' T l Pe 12 = máx - 2 2 4n R2 k y Ra se refiere al radio exterior del conductor aislado, R2 es el radio exterior del conductor desnudo y h) el coeficiente de transferencia de calor. Ordenando la expresión anterior, Sustituyendo valores se obtiene !1T= 0.058 P Obsérvese que el incremento de temperatura es menor que cuando el conductor se encontraba desnudo. En este caso, Ra < R crítico' !::J.T 13.05 oC 1-----7 15 A Figura E.2.ll. http://carlos2524.jimdo.com/
  • 68. 54 2. Conducción unidimensional en estado estable 2.7. Superficies extendidas El uso de superficies extendidas es de especial importancia en aplicaciones donde se desea incrementar el flujo de calor y no se dipone del área suficiente, o porque el coeficiente de transferencia de calor es relativamente bajo. Para ilustrar esto, considérese la superficie vertical de un dispositivo electrónico que mide 0.1 m por 0.1 m, el cual se encuentra a 50 oC y se localiza en aire ambiente a 25 oc. Supón- gase que el coeficiente de transferencia de calor es igual a 10 W/m20 C. La mera aplicación de la ley de Newton del enfriamiento indica que esta superficie puede disipar por convección q =hA~T= (10)(0.1 X 0.1)(50 - 25) = 2.5 W ¿Qué podría hacerse para incrementar la transferencia de calor por un factor de 10, es decir, a 25 W? Hay varias posibilidades para incrementar el flujo de calor disi- pado por convección: aumentar la diferencia de temperaturas entre la superficie y el fluido; incrementar el coeficiente de transferencia de calor, o aumentar el área. Quizá ninguna de estas tres opciones sea factible. Esto es, la temperatura de la su- perficie no puede incrementarse por las condiciones de operación del dispositivo electrónico; el coeficiente de transferencia de calor tal vez podría incrementarse mediante un abanico pero no es práctico, y la superficie no puede cambiarse de ta- maño (0.1 x 0.1 m) por condiciones de diseño. Sin embargo, utilizar superficies extendidas o aletas de enfriamiento como la que se muestra en la figura 2.14 pue- de hacer que el área de transferencia de calor y, en consecuencia, el calor disipa- do se incrementen de manera significativa. Estas superficies pueden ser parte in- tegral del material de la base o pueden adherirse a ella. En la figura 2.14 se muestra el esquema de una superficie extendida de sección transversal rectangular constante, la cual está adherida a otra superficie cuya tem- peratura es To. En esta aleta de enfriamiento horizontal el aire debe circular por las .. x Figura 2.14. Supetficie extendida de sección transversal rectangular constante. http://carlos2524.jimdo.com/
  • 69. 2.7. Superficies extendidas 55 superficies superior e inferior. Por otra parte, si la aplicación disipa calor por con- vección natural, el aire debe también circular por las dos superficies de área L por W, por lo que la superficie extendida que se ilustra en la figura 2.14 debe girarse 90 grados. Las superficies extendidas tienen varias aplicaciones. Cabe mencionar su uso en los radiadores de automóvil, en el enfriamiento de equipo eléctrico o electróni- co, en motores de combustión interna enfriados por aire, en intercambiadores de calor líquido a gas, etcétera. Antes de discutir cualquier geometría concreta, se desarrollará una ecuación general que permita establecer la distribución de la temperatura en una superficie extendida. 2.7.1. Ecuación general para una superficie extendida Se tiene una superficie extendida cuya sección transversal es variable, como se muestra en la figura 2.15. Supóngase que el espesor de la aleta es muy pequeño, de manera que el gradiente de temperatura en la dirección transversal no es signi- ficativo, así que la conducción sólo es relevante en la dirección x. Digamos ade- más que la conductividad térmica del material y el coeficiente de transferencia de calor son constantes. Mediante un balance de energía en el sistema de la figura 2.15 tenemos que q"AI x - q"AI x+ Ax - hPtu(T - T~) =O (2.49) donde A(x) es el área transversal al flujo de calor por conducción y P(x) el perí- metro de la superficie extendida por donde se disipa calor por convección. Dividiendo la expresión anterior entre tu y por el teorema del valor medio, cuando tu tiende a cero, se obtiene - ~(q"A)-hP(T-T~)=O o q" : + Ad:;' +hP(T - T~) =O (2.50) Si introducimos la ley de Fourier de conducción de calor y suponemos que la con- ductividad térmica es constante, dT dA d2 T -k---kA-+hP(T-T )=0 d.x dx dx2 ~ http://carlos2524.jimdo.com/
  • 70. 56 2. Conducción unidimensional en estado estable Figura 2.15. Superficie extendida de sección transversal variable. Reacomodando la expresión, (2.51) La ecuación anterior es una expresión general para determinar la distribución de la temperatura en una superficie extendida en la que no hay generación interna de calor ni radiación. En esta expresión tanto el área A como el perímetro P suelen ser funciones de la variable independiente x. Las condiciones de frontera necesa- rias para evaluar de una manera única el perfil de temperatura dependen de las con- diciones físicas del problema. Normalmente deben especificarse los valores de las condiciones de frontera en dos puntos, a menos que se conozcan la temperatura y su gradiente. 2.7.2. Superficies extendidas de sección transversal constante Imagine una superficie extendida como la de la figura 2.14. En estas circunstan- cias y definiendo la diferencia de temperaturas () =T - Too, la ecuación 2.51 se sim- plifica a (2.52) La solución general de la ecuación diferencial anterior es de la forma () =Cl cosh mx + C2 senh mx (2.53) http://carlos2524.jimdo.com/
  • 71. 2.7. Superficies extendidas 57 donde, por conveniencia, En el caso de una superficie extendida de sección transversal rectangular de di- mensiones W por t como la que se muestra en la figura 2.14 y t « W, el paráme- tro m2 adquiere un valor aproximado de 2h/kt. De forma similar, cuando la sección transversal sea circular de radio R, el parámetro m2 adquiere un valor de 2h/kR. Puesto que la temperatura en la base de la superficie extendida es igual a la temperatura Tode la superficie a la que está adherida -suponiendo desde luego que la resistencia de contacto es igual a cero- , una de las condiciones de fronte- ra puede escribirse como T =To o e=eo en x =O (2.54) La otra condición de frontera puede establecerse suponiendo que las pérdidas de calor por la superficie libre de la aleta o superficie extendida son despreciables, o que el extremo libre se encuentra aislado, esto es, dT =0 o de =0 dx dx en x =L (2.55) Al sustituir las condiciones de frontera 2.54 y 2.55 en la solución general 2.53 tenemos y C2 =-ea tanh mL En consecuencia, e =eocosh mx - eotanh mL senh mx Reacomodando la expresión, e coshm(L -x) eo coshmL (2.56) http://carlos2524.jimdo.com/
  • 72. 58 2. Conducción unidimensional en estado estable Si recurrimos a las variables originales, T-Too _ coshm(L-x) _ cosh[mL(l-x/ L)] coshmL coshmL (2.57) En la figura 2.16 se muestra la variación de la temperatura adimensional (T - Too)/(To- Too) a través de la superficie extendida como función de la distancia adimensional x/L para diferentes valores del parámetro mL. Obsérvese que la temperatura en el extremo libre de la superficie extendida difiere de la temperatura ambiente y se aproxima a ella para valores muy grandes de mL, esto es, cuando h o L son relativamente grandes o cuando k o t (o R) son relativamente pequeños. Nótese que la ecuación 2.57 también es válida para una superficie extendida de longitud 2L, empotrada entre dos superficies cuyas tempe- raturas son iguales aTo. El flujo de calor disipado a través de la superficie extendida puede calcularse después que se ha determinado la distribución de la temperatura. Como el calor entra en la base de la aleta por conducción para luego disiparse por convección, dTI rL q = -kA- = JI hP(T - Too )dx dx x=o o (2.58) Al emplear el concepto de derivada, dTI- =-meTo - Too) tanhmL dx x=o - - - - - - - - - - - - - _1- _ O 1 x/L Figura 2.16. Variación de temperatura a través de una superficie extendida de sección transversal constante. http://carlos2524.jimdo.com/
  • 73. 2.7. Superficies extendidas 59 Si utilizamos la ecuación 2.58 y reordenamos, q = -JhPkA(To - T=) tanhmL (2.59) En ciertas circunstancias el calor que disipa el extremo libre de la aleta o superfi- cie extendida no es insignificante y, en consecuencia, no todo el calor conducido a través de la base se disipa por la superficie convectiva comprendida entre x = O Yx =L. En esas circunstancias la ecuación 2.59 puede modificarse ligeramente pa- ra que tome en cuenta las posibles pérdidas de calor por el extremo libre, agregan- do a la longitud física L un incremento de longitud M = t/2. Es decir, con una lon- gitud conegida Le = L + t/2 en la ecuación 2.59. Por tanto, (2.60) Sin embargo, cabe señalar que la desviación en el flujo de calor calculado con la ecuación 2.60 en vez de la 2.59 es menor de 7.6%, siempre que el parámetro ht/k adquiera un valor menor a 0.5. Por otra parte, dada un área de perfil Ap =Lt en una aleta de sección transver- / sal rectangular, la dimensión óptima del espesor t puede determinarse como se muestra a continuación. En términos del área de perfil Ap, el calor disipado puede establecerse mediante la ecuación 2.59 como q = -J2hkt(To- T=)tanh(Ap~t-3/2J Derivando esta expresión con respecto al espesor t e igualando a cero se obtiene 3~sech2~ = tanh~ donde ~ = Ap~t-3 / 2 . Puesto que se tiene que 2 tanh~ =senh2~ sech2~ 1 ~ =-senh2~ 6 Al resolver esta última relación se obtiene http://carlos2524.jimdo.com/
  • 74. " I " l ' , .' ." ''''I ¡ <! "I 60 Ejemplo 2.12. 2. Conducción unidimensional en estado estable Por consiguiente, el espesor óptimo t de la superficie extendida de área de perfil Ap es en consecuencia, ~2hA2t=0.79P T L =1.262~kAp21t (2.61) (2.62) Imagínese una superficie extendida de sección transversal rectangular con las dimensiones siguientes: altura, 3.5 cm; profundidad, 3.0 cm, y espesor, 0.2 cm. Si la aleta es de aluminio (k =205 W/m°C), el coeficiente promedio de trans- ferencia de calor es igual a 600 W/m2K, la temperatura en la base es de 135 oC y la del aire ambiente de 40 oC, calcule el calor disipado por la aleta. Solución Según la ecuación 2.59, q =.)hPkA (Tú - Too )tanh mL donde P =2W =(2)(0.03) =0.06 m A = Wt = (0.03)(0.002) = 6 x 10-5 m2 m = [2hk't1 = (2)(600) =54.lOm-1 f kt' (205)(0.002) L =0.035 m Sustituyendo valores se obtiene q =~(600)(0.06)(205)(6 x 10-5 )(135 - 40)tanh[(54.10)(0.035)] q =60.41 W Obsérvese que el área de la base que ocupa la superficie extendida (2 mm x 30 mm) sólo disiparía (600)(60 x 10-6)(135 - 40) =3.42 W si no se tuviera la aleta. http://carlos2524.jimdo.com/
  • 75. 2. 7. Superficies exterufidas 61 Figura 2.17. Aleta circular. 2.7.3. Aletas circulares Considérese ahora una aleta circular como la que se muestra en la figura 2.17, donde el espesor t de la aleta es relativamente pequeño, de manera que la transfe- rencia de calor por conducción se produce sólo en la dirección radial. Mediante la ecuación 2.51 y definiendo la diferencia de temperaturas e=T - Too se obtiene (2.63) donde A =2nrt y P =(2)(2nr) =4nr Sustituyendo estas expresiones para el área A(r) y el perímetro P(r) en la ecuación 2.63, o donde 2h kt (2.64) http://carlos2524.jimdo.com/