Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Machine Learning on Big Data

36,394 views

Published on

Max Lin gave a guest lecture about machine learning on big data in the Harvard CS 264 class on March 29, 2011.

Published in: Technology
  • I have Found a better PPT on ThesisScientist.com on the same Topic
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Big Data: Strategy, Busienss-Model and Monetization https://www.slideshare.net/ishmelev/datamoney
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Python Machine Learning --- http://amzn.to/1Zg8QHd
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (MIT Press) --- http://amzn.to/1nZc3NI
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Machine Learning: The Art and Science of Algorithms that Make Sense of Data --- http://amzn.to/1R7qOtL
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

Machine Learning on Big Data

  1. 1. Machine Learning on Big DataLessons Learned from Google ProjectsMax LinSoftware Engineer | Google ResearchMassively Parallel Computing | Harvard CS 264Guest Lecture | March 29th, 2011
  2. 2. Outline• Machine Learning intro• Scaling machine learning algorithms up• Design choices of large scale ML systems
  3. 3. Outline• Machine Learning intro• Scaling machine learning algorithms up• Design choices of large scale ML systems
  4. 4. “Machine Learning is a studyof computer algorithms that improve automatically through experience.”
  5. 5. The quick brown foxjumped over the lazy dog.
  6. 6. The quick brown fox Englishjumped over the lazy dog.
  7. 7. The quick brown fox Englishjumped over the lazy dog.To err is human, but toreally foul things up youneed a computer.
  8. 8. The quick brown fox Englishjumped over the lazy dog.To err is human, but toreally foul things up you Englishneed a computer.
  9. 9. The quick brown fox Englishjumped over the lazy dog.To err is human, but toreally foul things up you Englishneed a computer.No hay mal que por bienno venga.
  10. 10. The quick brown fox Englishjumped over the lazy dog.To err is human, but toreally foul things up you Englishneed a computer.No hay mal que por bien Spanishno venga.
  11. 11. The quick brown fox Englishjumped over the lazy dog.To err is human, but toreally foul things up you Englishneed a computer.No hay mal que por bien Spanishno venga.La tercera es la vencida.
  12. 12. The quick brown fox Englishjumped over the lazy dog.To err is human, but toreally foul things up you Englishneed a computer.No hay mal que por bien Spanishno venga.La tercera es la vencida. Spanish
  13. 13. The quick brown fox Englishjumped over the lazy dog.To err is human, but toreally foul things up you Englishneed a computer.No hay mal que por bien Spanishno venga.La tercera es la vencida. SpanishTo be or not to be -- thatis the question
  14. 14. The quick brown fox Englishjumped over the lazy dog.To err is human, but toreally foul things up you Englishneed a computer.No hay mal que por bien Spanishno venga.La tercera es la vencida. SpanishTo be or not to be -- that ?is the question
  15. 15. The quick brown fox Englishjumped over the lazy dog.To err is human, but toreally foul things up you Englishneed a computer.No hay mal que por bien Spanishno venga.La tercera es la vencida. SpanishTo be or not to be -- that ?is the questionLa fe mueve montañas.
  16. 16. The quick brown fox Englishjumped over the lazy dog.To err is human, but toreally foul things up you Englishneed a computer.No hay mal que por bien Spanishno venga.La tercera es la vencida. SpanishTo be or not to be -- that ?is the questionLa fe mueve montañas. ?
  17. 17. The quick brown fox English jumped over the lazy dog. To err is human, but to really foul things up you EnglishTraining need a computer. No hay mal que por bien Spanish no venga. La tercera es la vencida. Spanish To be or not to be -- that ? is the question La fe mueve montañas. ?
  18. 18. The quick brown fox English jumped over the lazy dog. To err is human, but to really foul things up you EnglishTraining Input X need a computer. No hay mal que por bien Spanish no venga. La tercera es la vencida. Spanish To be or not to be -- that ? is the question La fe mueve montañas. ?
  19. 19. The quick brown fox English jumped over the lazy dog. To err is human, but to really foul things up you EnglishTraining Input X need a computer. Output Y No hay mal que por bien Spanish no venga. La tercera es la vencida. Spanish To be or not to be -- that ? is the question La fe mueve montañas. ?
  20. 20. The quick brown fox English jumped over the lazy dog. To err is human, but to really foul things up you EnglishTraining Input X need a computer. Output Y No hay mal que por bien Spanish no venga. Model f(x) La tercera es la vencida. Spanish To be or not to be -- that ? is the question La fe mueve montañas. ?
  21. 21. The quick brown fox English jumped over the lazy dog. To err is human, but to really foul things up you EnglishTraining Input X need a computer. Output Y No hay mal que por bien Spanish no venga. Model f(x) La tercera es la vencida. Spanish To be or not to be -- that ?Testing is the question La fe mueve montañas. ?
  22. 22. The quick brown fox English jumped over the lazy dog. To err is human, but to really foul things up you EnglishTraining Input X need a computer. Output Y No hay mal que por bien Spanish no venga. Model f(x) La tercera es la vencida. Spanish To be or not to be -- that ?Testing f(x’) is the question La fe mueve montañas. ?
  23. 23. The quick brown fox English jumped over the lazy dog. To err is human, but to really foul things up you EnglishTraining Input X need a computer. Output Y No hay mal que por bien Spanish no venga. Model f(x) La tercera es la vencida. Spanish To be or not to be -- that ?Testing f(x’) is the question = y’ La fe mueve montañas. ?
  24. 24. Linear Classifier
  25. 25. Linear ClassifierThe quick brown fox jumped over the lazy dog.
  26. 26. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’
  27. 27. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ...
  28. 28. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’
  29. 29. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ...
  30. 30. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’
  31. 31. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ...
  32. 32. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’
  33. 33. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ...
  34. 34. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’
  35. 35. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ...
  36. 36. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ...0,
  37. 37. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ... 0, ...
  38. 38. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ... 0, ... 0,
  39. 39. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ... 0, ... 0, ...
  40. 40. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ... 0, ... 0, ... 1,
  41. 41. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ... 0, ... 0, ... 1, ...
  42. 42. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ... 0, ... 0, ... 1, ... 1,
  43. 43. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ... 0, ... 0, ... 1, ... 1, ...
  44. 44. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ... 0, ... 0, ... 1, ... 1, ... 0,
  45. 45. Linear Classifier The quick brown fox jumped over the lazy dog.‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ... 0, ... 0, ... 1, ... 1, ... 0, ...
  46. 46. Linear Classifier The quick brown fox jumped over the lazy dog. ‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ...[ 0, ... 0, ... 1, ... 1, ... 0, ...
  47. 47. Linear Classifier The quick brown fox jumped over the lazy dog. ‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ...[ 0, ... 0, ... 1, ... 1, ... 0, ... ]
  48. 48. Linear Classifier The quick brown fox jumped over the lazy dog. ‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ...x [ 0, ... 0, ... 1, ... 1, ... 0, ... ]
  49. 49. Linear Classifier The quick brown fox jumped over the lazy dog. ‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ...x [ 0, ... 0, ... 1, ... 1, ... 0, ... ] [ 0.1, ... 132, ... 150, ... 200, ... -153, ... ]
  50. 50. Linear Classifier The quick brown fox jumped over the lazy dog. ‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ...x [ 0, ... 0, ... 1, ... 1, ... 0, ... ]w [ 0.1, ... 132, ... 150, ... 200, ... -153, ... ]
  51. 51. Linear Classifier The quick brown fox jumped over the lazy dog. ‘a’ ... ‘aardvark’ ... ‘dog’ ... ‘the’ ... ‘montañas’ ...x [ 0, ... 0, ... 1, ... 1, ... 0, ... ]w [ 0.1, ... 132, ... 150, ... 200, ... -153, ... ] P f (x) = w · x = w p ∗ xp p=1
  52. 52. Training Data Input X Ouput Y P ... ... ...N ... ... ... ... ... ... ...
  53. 53. Typical machine learningdata at GoogleN: 100 billions / 1 billionP: 1 billion / 10 million(mean / median) http://www.flickr.com/photos/mr_t_in_dc/5469563053
  54. 54. Classifier Training• Training: Given {(x, y)} and f, minimize the following objective function N arg min L(yi , f (xi ; w)) + R(w) w n=1
  55. 55. Use Newton’s method? t +1 t t −1 tw ← w − H(w ) J(w ) http://www.flickr.com/photos/visitfinland/5424369765/
  56. 56. Outline• Machine Learning intro• Scaling machine learning algorithms up• Design choices of large scale ML systems
  57. 57. Scaling Up
  58. 58. Scaling Up• Why big data?
  59. 59. Scaling Up• Why big data?• Parallelize machine learning algorithms
  60. 60. Scaling Up• Why big data?• Parallelize machine learning algorithms • Embarrassingly parallel
  61. 61. Scaling Up• Why big data?• Parallelize machine learning algorithms • Embarrassingly parallel • Parallelize sub-routines
  62. 62. Scaling Up• Why big data?• Parallelize machine learning algorithms • Embarrassingly parallel • Parallelize sub-routines • Distributed learning
  63. 63. Subsampling
  64. 64. Subsampling Big Data
  65. 65. Subsampling Big DataShard 1 Shard 2 Shard 3 Shard M ...
  66. 66. Subsampling Big DataReduce N Shard 1
  67. 67. Subsampling Big DataReduce N Shard 1 Machine
  68. 68. Subsampling Big DataReduce N Machine Shard 1
  69. 69. Subsampling Big DataReduce N Machine Shard 1 Model
  70. 70. Why not Small Data? [Banko and Brill, 2001]
  71. 71. Scaling Up• Why big data?• Parallelize machine learning algorithms • Embarrassingly parallel • Parallelize sub-routines • Distributed learning
  72. 72. Parallelize Estimates• Naive Bayes Classifier N P i arg min − P (xp |yi ; w)P (yi ; w) w i=1 p=1• Maximum Likelihood Estimates N i i=1 1EN,the (x ) wthe|EN = N i=1 1EN (xi )
  73. 73. Word Counting
  74. 74. Word CountingMap
  75. 75. Word Counting X: “The quick brown fox ...”Map Y: EN
  76. 76. Word Counting (‘the|EN’, 1) X: “The quick brown fox ...”Map Y: EN
  77. 77. Word Counting (‘the|EN’, 1) X: “The quick brown fox ...”Map (‘quick|EN’, 1) Y: EN
  78. 78. Word Counting (‘the|EN’, 1) X: “The quick brown fox ...”Map (‘quick|EN’, 1) Y: EN (‘brown|EN’, 1)
  79. 79. Word Counting (‘the|EN’, 1) X: “The quick brown fox ...” Map (‘quick|EN’, 1) Y: EN (‘brown|EN’, 1)Reduce
  80. 80. Word Counting (‘the|EN’, 1) X: “The quick brown fox ...” Map (‘quick|EN’, 1) Y: EN (‘brown|EN’, 1)Reduce [ (‘the|EN’, 1), (‘the|EN’, 1), (‘the|EN’, 1) ]
  81. 81. Word Counting (‘the|EN’, 1) X: “The quick brown fox ...” Map (‘quick|EN’, 1) Y: EN (‘brown|EN’, 1)Reduce [ (‘the|EN’, 1), (‘the|EN’, 1), (‘the|EN’, 1) ] C(‘the’|EN) = SUM of values = 3
  82. 82. Word Counting (‘the|EN’, 1) X: “The quick brown fox ...” Map (‘quick|EN’, 1) Y: EN (‘brown|EN’, 1)Reduce [ (‘the|EN’, 1), (‘the|EN’, 1), (‘the|EN’, 1) ] C(‘the’|EN) = SUM of values = 3 C( the |EN ) w the |EN = C(EN )
  83. 83. Word Counting
  84. 84. Word Counting Big Data
  85. 85. Word Counting Big DataShard 1 Shard 2 Shard 3 ... Shard M
  86. 86. Word Counting Big Data Mapper 1 Mapper 2 Mapper 3 Mapper MMap Shard 1 Shard 2 Shard 3 ... Shard M (‘the’ | EN, 1)
  87. 87. Word Counting Big Data Mapper 1 Mapper 2 Mapper 3 Mapper M Map Shard 1 Shard 2 Shard 3 ... Shard M (‘the’ | EN, 1) (‘fox’ | EN, 1) ... (‘montañas’ | ES, 1) ReducerReduce Tally counts and update w
  88. 88. Word Counting Big Data Mapper 1 Mapper 2 Mapper 3 Mapper M Map Shard 1 Shard 2 Shard 3 ... Shard M (‘the’ | EN, 1) (‘fox’ | EN, 1) ... (‘montañas’ | ES, 1) ReducerReduce Tally counts and update w Model
  89. 89. Parallelize Optimization N P i yi exp( p=1 wp ∗ xp ) arg min P w i=1 1 + exp( p=1 wp ∗ xi ) p
  90. 90. Parallelize Optimization• Maximum Entropy Classifiers P N i yi exp( p=1 wp ∗ xp ) arg min P w i=1 1 + exp( p=1 wp ∗ xi ) p
  91. 91. Parallelize Optimization• Maximum Entropy Classifiers P N i yi exp( p=1 wp ∗ xp ) arg min P w i=1 1 + exp( p=1 wp ∗ xi ) p
  92. 92. Parallelize Optimization• Maximum Entropy Classifiers P N i yi exp( p=1 wp ∗ xp ) arg min P w i=1 1 + exp( p=1 wp ∗ xi ) p
  93. 93. Parallelize Optimization• Maximum Entropy Classifiers P N i yi exp( p=1 wp ∗ xp ) arg min P w i=1 1 + exp( p=1 wp ∗ xi ) p• Good: J(w) is concave
  94. 94. Parallelize Optimization• Maximum Entropy Classifiers P N i yi exp( p=1 wp ∗ xp ) arg min P w i=1 1 + exp( p=1 wp ∗ xi ) p• Good: J(w) is concave• Bad: no closed-form solution like NB
  95. 95. Parallelize Optimization• Maximum Entropy Classifiers P N i yi exp( p=1 wp ∗ xp ) arg min P w i=1 1 + exp( p=1 wp ∗ xi ) p• Good: J(w) is concave• Bad: no closed-form solution like NB• Ugly: Large N
  96. 96. Gradient Descent http://www.cs.cmu.edu/~epxing/Class/10701/Lecture/lecture7.pdf
  97. 97. Gradient Descent
  98. 98. Gradient Descent• w is initialized as zero• for t in 1 to T • Calculate gradients •
  99. 99. Gradient Descent• w is initialized as zero• for t in 1 to T • Calculate gradients J(w) •
  100. 100. Gradient Descent• w is initialized as zero• for t in 1 to T • Calculate gradients J(w) • w ← w − η J(w) t+1 t
  101. 101. Gradient Descent• w is initialized as zero• for t in 1 to T • Calculate gradients J(w) • w ← w − η J(w) t+1 t N J(w) = P (w, xi , yi ) i=1
  102. 102. Distribute Gradient• w is initialized as zero• for t in 1 to T • Calculate gradients in parallel• Training CPU: O(TPN) to O(TPN / M)
  103. 103. Distribute Gradient• w is initialized as zero• for t in 1 to T • Calculate gradients in parallel wt+1 ← wt − η J(w)• Training CPU: O(TPN) to O(TPN / M)
  104. 104. Distribute Gradient
  105. 105. Distribute Gradient Big Data
  106. 106. Distribute Gradient Big Data Shard 1 Shard 2 Shard 3 ... Shard M
  107. 107. Distribute Gradient Big Data Machine 1 Machine 2 Machine 3 Machine MMap Shard 1 Shard 2 Shard 3 ... Shard M (dummy key, partial gradient sum)
  108. 108. Distribute Gradient Big Data Machine 1 Machine 2 Machine 3 Machine M Map Shard 1 Shard 2 Shard 3 ... Shard M (dummy key, partial gradient sum)Reduce Sum and Update w
  109. 109. Distribute Gradient Big Data Machine 1 Machine 2 Machine 3 Machine M Map Shard 1 Shard 2 Shard 3 ... Shard M (dummy key, partial gradient sum)Reduce Sum and Update w Repeat M/R until converge Model
  110. 110. Scaling Up• Why big data?• Parallelize machine learning algorithms • Embarrassingly parallel • Parallelize sub-routines • Distributed learning
  111. 111. Parallelize Subroutines• Support Vector Machines 1 n 2 arg min ||w||2 +C ζi w,b,ζ 2 i=1 s.t. 1 − yi (w · φ(xi ) + b) ≤ ζi , ζi ≥ 0• Solve the dual problem 1 T arg min α Qα − αT 1 α 2 s.t. 0 ≤ α ≤ C, yT α = 0
  112. 112. The computationalcost for the Primal-Dual Interior PointMethod is O(n^3) intime and O(n^2) in memoryhttp://www.flickr.com/photos/sea-turtle/198445204/
  113. 113. Parallel SVM [Chang et al, 2007] √ N
  114. 114. Parallel SVM [Chang et al, 2007]• Parallel, row-wise incomplete Cholesky Factorization for Q √ N
  115. 115. Parallel SVM [Chang et al, 2007]• Parallel, row-wise incomplete Cholesky Factorization for Q• Parallel interior point method • Time O(n^3) becomes O(n^2 / M) √ • Memory O(n^2) becomes O(n N / M)
  116. 116. Parallel SVM [Chang et al, 2007]• Parallel, row-wise incomplete Cholesky Factorization for Q• Parallel interior point method • Time O(n^3) becomes O(n^2 / M) √ • Memory O(n^2) becomes O(n N / M)• Parallel Support Vector Machines (psvm) http:// code.google.com/p/psvm/ • Implement in MPI
  117. 117. Parallel ICF• Distribute Q by row into M machines Machine 1 Machine 2 Machine 3 row 1 row 3 row 5 ... row 2 row 4 row 6• For each dimension n < N √ • Send local pivots to master • Master selects largest local pivots and broadcast the global pivot to workers
  118. 118. Scaling Up• Why big data?• Parallelize machine learning algorithms • Embarrassingly parallel • Parallelize sub-routines • Distributed learning
  119. 119. Majority Vote
  120. 120. Majority Vote Big Data
  121. 121. Majority Vote Big DataShard 1 Shard 2 Shard 3 ... Shard M
  122. 122. Majority Vote Big Data Machine 1 Machine 2 Machine 3 Machine MMap Shard 1 Shard 2 Shard 3 ... Shard M
  123. 123. Majority Vote Big Data Machine 1 Machine 2 Machine 3 Machine MMap Shard 1 Shard 2 Shard 3 ... Shard M Model 1 Model 2 Model 3 Model 4
  124. 124. Majority Vote• Train individual classifiers independently• Predict by taking majority votes• Training CPU: O(TPN) to O(TPN / M)
  125. 125. Parameter Mixture [Mann et al, 2009]
  126. 126. Parameter Mixture [Mann et al, 2009] Big Data
  127. 127. Parameter Mixture [Mann et al, 2009] Big Data Shard 1 Shard 2 Shard 3 ... Shard M
  128. 128. Parameter Mixture [Mann et al, 2009] Big Data Machine 1 Machine 2 Machine 3 Machine MMap Shard 1 Shard 2 Shard 3 ... Shard M (dummy key, w1) (dummy key, w2) ...
  129. 129. Parameter Mixture [Mann et al, 2009] Big Data Machine 1 Machine 2 Machine 3 Machine M Map Shard 1 Shard 2 Shard 3 ... Shard M (dummy key, w1) (dummy key, w2) ...Reduce Average w
  130. 130. Parameter Mixture [Mann et al, 2009] Big Data Machine 1 Machine 2 Machine 3 Machine M Map Shard 1 Shard 2 Shard 3 ... Shard M (dummy key, w1) (dummy key, w2) ...Reduce Average w Model
  131. 131. Much Less network usage than distributed gradient descent O(MN) vs. O(MNT)ttp://www.flickr.com/photos/annamatic3000/127945652/
  132. 132. Iterative Param Mixture [McDonald et al., 2010]
  133. 133. Iterative Param Mixture[McDonald et al., 2010] Big Data
  134. 134. Iterative Param Mixture [McDonald et al., 2010] Big Data Shard 1 Shard 2 Shard 3 ... Shard M
  135. 135. Iterative Param Mixture [McDonald et al., 2010] Big Data Machine 1 Machine 2 Machine 3 Machine MMap Shard 1 Shard 2 Shard 3 ... Shard M (dummy key, w1) (dummy key, w2) ...
  136. 136. Iterative Param Mixture [McDonald et al., 2010] Big Data Machine 1 Machine 2 Machine 3 Machine M Map Shard 1 Shard 2 Shard 3 ... Shard M (dummy key, w1) (dummy key, w2) ... Reduceafter each Average w epoch
  137. 137. Iterative Param Mixture [McDonald et al., 2010] Big Data Machine 1 Machine 2 Machine 3 Machine M Map Shard 1 Shard 2 Shard 3 ... Shard M (dummy key, w1) (dummy key, w2) ... Reduceafter each Average w epoch Model
  138. 138. Outline• Machine Learning intro• Scaling machine learning algorithms up• Design choices of large scale ML systems
  139. 139. Scalable http://www.flickr.com/photos/mr_t_in_dc/5469563053
  140. 140. Parallelhttp://www.flickr.com/photos/aloshbennett/3209564747/
  141. 141. Accuracyhttp://www.flickr.com/photos/wanderlinse/4367261825/
  142. 142. http://www.flickr.com/photos/imagelink/4006753760/
  143. 143. Binary Classificationhttp://www.flickr.com/photos/brenderous/4532934181/
  144. 144. Automatic FeatureDiscovery http://www.flickr.com/photos/mararie/2340572508/
  145. 145. Fast Responsehttp://www.flickr.com/photos/prunejuice/3687192643/
  146. 146. Memory is new hard disk.http://www.flickr.com/photos/jepoirrier/840415676/
  147. 147. Algorithm + Infrastructurehttp://www.flickr.com/photos/neubie/854242030/
  148. 148. Design forMulticores http://www.flickr.com/photos/geektechnique/2344029370/
  149. 149. Combiner
  150. 150. Multi-shard Combiner[Chandra et al., 2010]
  151. 151. MachineLearning on Big Data
  152. 152. Parallelize ML Algorithms
  153. 153. Parallelize ML Algorithms• Embarrassingly parallel
  154. 154. Parallelize ML Algorithms• Embarrassingly parallel• Parallelize sub-routines
  155. 155. Parallelize ML Algorithms• Embarrassingly parallel• Parallelize sub-routines• Distributed learning
  156. 156. Parallel
  157. 157. Parallel Accuracy
  158. 158. Parallel Accuracy FastResponse
  159. 159. Parallel Accuracy FastResponse
  160. 160. Google APIs
  161. 161. Google APIs• Prediction API • machine learning service on the cloud • http://code.google.com/apis/predict
  162. 162. Google APIs• Prediction API • machine learning service on the cloud • http://code.google.com/apis/predict• BigQuery • interactive analysis of massive data on the cloud • http://code.google.com/apis/bigquery

×