SlideShare a Scribd company logo
1 of 21
Download to read offline
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH
________________
Đặng Minh Hải
CÁC TÍNH CHẤT CỦA HÀM SỐ
VÀ MỐI LIÊN HỆ GIỮA CHÚNG
TRONG DẠY HỌC TOÁN PHỔ THÔNG
Chuyên ngành : Lý luận và phương pháp dạy học môn Toán
Mã số : 60 14 10
LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC
NGƯỜI HƯỚNG DẪN KHOA HỌC
TS.LÊ THÁI BẢO THIÊN TRUNG
Thành phố Hồ Chí Minh - 2009
LỜI CẢM ƠN
Đầu tiên, tôi xin chân thành biết ơn TS. Lê Thái Bảo Thiên Trung, người đã nhiệt
tình hướng dẫn và giúp đỡ tôi hoàn thành luận văn này.
Tôi xin trân trọng cảm ơn PGS.TS. Lê Thị Hoài Châu, PGS.TS. Lê Văn Tiến,
TS. Trần Lương Công Khanh, TS. Lê Thái Bảo Thiên Trung đã nhiệt tình giảng dạy,
truyền thụ cho chúng tôi những kiến thức về Didactic toán, PGS.TS. Claude Comiti,
PGS.TS. Annie Bessot, TS. Alain Birebent đã đóng góp những ý kiến định hướng cho
đề tài.
Xin cảm ơn các anh chị cùng khóa đã quan tâm, giúp đỡ tôi.
Cuối cùng, xin cảm ơn gia đình, đặc biệt là vợ tôi, người đã luôn động viên tôi
trong quá trình thực hiện luận văn.
Tác giả
Đặng Minh Hải
DANH MỤC CÁC CHỮ VIẾT TẮT
HS : Học sinh
GV : Giáo viên
GKNC10 : Sách giáo khoa Đại số 10 nâng cao hiện hành
GKNC11 : Sách giáo khoa Đại số và Giải tích 11 nâng cao hiện hành
GKNC12 : Sách giáo khoa Giải tích 12 nâng cao hiện hành
GKCB10 : Sách giáo khoa Đại số 10 cơ bản hiện hành
GKCB11 : Sách giáo khoa Đại số và Giải tích 11 cơ bản hiện hành
GKCB12 : Sách giáo khoa Giải tích 12 cơ bản hiện hành
GVNC10 : Sách giáo viên Đại số 10 nâng cao hiện hành
GVNC11 : Sách giáo viên Đại số và Giải tích 11 nâng cao hiện hành
GVNC12 : Sách giáo viên Giải tích 12 nâng cao hiện hành
GVCB10 : Sách giáo viên Đại số 10 cơ bản hiện hành
GVCB11 : Sách giáo viên Đại số và Giải tích 11 cơ bản hiện hành
GVCB12 : Sách giáo viên Giải tích 12 cơ bản hiện hành
SGK : Sách giáo khoa
SGV : Sách giáo viên
DANH MỤC CÁC BẢNG
Bảng 2.1. Thống kê số lượng nhiệm vụ liên quan đến “khảo sát tính đơn điệu của
hàm số”..................................................................................................28
Bảng 3.1. Thống kê các câu trả lời tình huống 1 ...................................................74
Bảng 3.2. Thống kê các câu trả lời tình huống 2 ...................................................76
Bảng 3.3. Thống kê các câu trả lời tình huống 3 ...................................................82
Bảng 3.4. Thống kê câu trả lời pha 1.....................................................................94
Bảng 3.5. Thống kê câu trả lời pha 2.....................................................................96
MỞ ĐẦU
1. Những ghi nhận ban đầu và câu hỏi xuất phát
Trong chương trình toán ở trường phổ thông, các tính chất đơn điệu, liên tục, khả vi của
hàm số được huy động để giải quyết kiểu nhiệm vụ quan trọng: khảo sát hàm số (lớp 12).
Liên quan đến kiểu nhiệm vụ này, chương trình chủ yếu nghiên cứu các loại hàm số sau:
hàm bậc nhất y=ax+b, hàm bậc hai y=ax2
+bx+c, hàm đa thức bậc 3 y=ax3
+bx2
+cx+d, hàm
đa thức bậc bốn trùng phương y=ax4
+bx2
+c, hàm phân thức
ax b
y
cx d



(c≠0, ad-bc≠0),
hàm phân thức
2
ax bx c
y
a' x b'
 


(a≠0, a’≠0)1
. Có thể thấy rõ một đặc trưng chung là các hàm
số này đồng thời liên tục và khả vi trên các khoảng đơn điệu của nó. Với tư cách đối tượng2
,
các khái niệm hàm số đơn điệu, hàm số liên tục, hàm số khả vi đã được nghiên cứu ở các
lớp 10, 11. Điều này khiến chúng tôi tự hỏi rằng: mối liên hệ giữa ba khái niệm hàm số đơn
điệu, hàm số liên tục, đạo hàm được thể hiện như thế nào? Có chênh lệch gì so với các mối
liên hệ của chúng ở cấp độ tri thức khoa học?
Khi chúng tôi học giải tích ở bậc đại học, các giảng viên luôn nhấn mạnh mối liên hệ
liên tục-khả vi, đặc biệt là tính chất “một hàm số liên tục tại một điểm có thể không khả vi
tại điểm đó”. Các minh họa bằng đồ thị theo sau các chứng minh chặt chẽ trên các phản ví
dụ đã giúp chúng tôi hiểu rõ vấn đề, đặc biệt nhờ trực giác hình học, chúng tôi có thể dễ
dàng xây dựng các phản ví dụ kiểu này. Như vậy, đồ thị là công cụ hữu hiệu trong việc
minh họa trực quan mối liên hệ liên tục-khả vi. Ở phổ thông, điều này có được tính đến
không ? Rộng hơn, đồ thị có được tính đến như một công cụ cho phép làm rõ các mối liên
hệ giữa ba đối tượng: đơn điệu, liên tục, khả vi của hàm số không ?
Từ những vấn đề trên, chúng tôi thấy việc nghiên cứu “Các tính chất của hàm số và
mối liên hệ giữa chúng trong dạy học Toán phổ thông” là cần thiết.
2. Phạm vi lý thuyết tham chiếu
Nhằm tìm kiếm câu trả lời cho các câu hỏi trên, chúng tôi đặt nghiên cứu của mình
trong phạm vi lý thuyết didactic toán, cụ thể là lý thuyết nhân chủng học với các khái niệm :
1
Chỉ đề cập trong SGK nâng cao.
2
Theo Lê Văn Tiến (2005): “Trong phạm vi toán học ở trường phổ thông, ta hiểu một khái niệm hoạt động dưới dạng
Đối tượng khi nó là đối tượng được nghiên cứu (được nghiên cứu, được khai thác các tính chất,…)” [19, tr.56]
Chuyển đổi didactic, tổ chức toán học, mối quan hệ thể chế và mối quan hệ cá nhân với một
đối tượng tri thức. Đây là công cụ hữu hiệu làm rõ mối quan hệ thể chế với mối liên hệ giữa
tính đơn điệu, tính liên tục và sự khả vi của hàm số. Bên cạnh đó, lý thuyết tình huống với
các khái niệm: tình huống dạy học, biến didactic, môi trường được sử dụng nhằm xây dựng
các tình huống thực nghiệm. Ngoài ra, khái niệm hợp đồng didactic sẽ được sử dụng nhằm
một mặt làm rõ mối quan hệ thể chế, mặt khác khái niệm này giúp giải thích các ứng xử của
học sinh liên quan đến mối liên hệ giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số.
Trong phạm vi lý thuyết đã lựa chọn, từ các câu hỏi ban đầu, chúng tôi phát biểu các
câu hỏi nghiên cứu như sau:
Q1: Ở cấp độ tri thức khoa học, có thể có những mối liên hệ nào giữa tính đơn điệu,
tính liên tục và sự khả vi của hàm số?
Q2: Trong thể chế dạy học toán phổ thông Việt Nam, mối quan hệ thể chế với mối liên
hệ giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số được hình thành ra sao?
Có những đặc trưng và ràng buộc nào? So với tri thức khoa học, mối liên hệ nào được
đặt ra? Mối liên hệ nào không được đặt ra? Vì sao? Sự biểu diễn hàm số bằng hệ
thống biểu đạt đồ thị có được tính đến như một môi trường cho phép làm rõ mối liên
hệ giữa các đối tượng: tính đơn điệu, tính liên tục và sự khả vi của hàm số không?
Q3: Những ràng buộc của thể chế ảnh hưởng thế nào đến mối quan hệ cá nhân của
học sinh?
3. Mục đích và phương pháp nghiên cứu
Trong khuôn khổ một luận văn thạc sĩ, bám sát những câu hỏi đã đặt ra, chúng tôi giới
hạn vấn đề nghiên cứu của mình trên các mối liên hệ giữa ba tính chất đơn điệu, liên tục,
khả vi của hàm số. Mục đích của luận văn là đi tìm một số yếu tố cho phép trả lời các câu
hỏi nghiên cứu Q1, Q2, Q3 đã đặt ra ở trên. Trên cơ sở đó, chúng tôi sẽ tiến hành những
nghiên cứu sau:
-Nghiên cứu tri thức ở cấp độ tri thức khoa học về các mối liên hệ giữa tính đơn điệu,
tính liên tục và sự khả vi của hàm số bằng cách phân tích một số giáo trình đại học tiêu biểu.
Nghiên cứu này trả lời câu hỏi Q1 và dùng làm tham chiếu khi phân tích các mối liên hệ
giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số ở phổ thông.
-Nghiên cứu mối quan hệ thể chế trên các mối liên hệ giữa tính đơn điệu, tính liên tục và
sự khả vi của hàm số nhằm tìm câu trả lời cho câu hỏi Q2. Để thực hiện nghiên cứu này,
chúng tôi tiến hành phân tích chương trình và SGK hiện hành trên cơ sở tham chiếu những
kết quả đạt được từ nghiên cứu tri thức ở cấp độ tri thức toán học. Kết thúc phần này, chúng
tôi đề xuất các giả thuyết nghiên cứu liên quan đến quan niệm của học sinh dưới ảnh hưởng
của mối quan hệ thể chế và đặt ra câu hỏi nghiên cứu mới.
-Nghiên cứu thực nghiệm, nghiên cứu ảnh hưởng của mối quan hệ thể chế lên mối quan
hệ cá nhân của HS. Nghiên cứu này nhằm trả lời một phần câu hỏi Q3 và câu hỏi được đặt
ra liên quan đến đồ thị.
4. Tổ chức của luận văn
Luận văn gồm phần mở đầu, 3 chương và kết luận chung.
Trong phần mở đầu, chúng tôi trình bày câu hỏi ban đầu, khung lý thuyết tham chiếu,
mục đích và phương pháp nghiên cứu, tổ chức của luận văn.
Chương 1 là phần trình bày nghiên cứu tri thức ở cấp độ tri thức khoa học từ việc
phân tích một số giáo trình đại học.
Trong chương 2, chúng tôi trình bày phần nghiên cứu mối quan hệ thể chế với mối
liên hệ giữa ba đối tượng tính đơn điệu, tính liên tục và sự khả vi của hàm số. Trên cơ sở đó,
chúng tôi đề xuất các giả thuyết nghiên cứu và đặt câu hỏi mới.
Chương 3 là phần nghiên cứu thực nghiệm. Thực nghiệm thứ nhất nhằm kiểm chứng
tính thỏa đáng của giả thuyết đã nêu và tìm kiếm các yếu tố trả lời cho câu hỏi được đặt ra ở
cuối chương 2. Thực nghiệm thứ hai nhằm tìm hiểu tác động của đồ thị lên mối quan hệ cá
nhân của học sinh
Phần kết luận, chúng tôi tóm tắt những kết quả đã nghiên cứu và đề xuất hướng
nghiên cứu mới mở ra từ luận văn.
Chương 1 : MỐI LIÊN HỆ GIỮA BA ĐỐI TƯỢNG TÍNH ĐƠN
ĐIỆU, TÍNH LIÊN TỤC VÀ SỰ KHẢ VI CỦA HÀM SỐ Ở CẤP
ĐỘ TRI THỨC KHOA HỌC
Mục tiêu của chương là tìm câu trả lời cho câu hỏi sau :
Ở cấp độ tri thức khoa học, có thể có những mối liên hệ nào giữa tính đơn điệu, tính liên
tục và sự khả vi của hàm số?
Để đạt được mục tiêu này, chúng tôi chọn nghiên cứu các giáo trình :
 [21]-Nguyễn Đình Trí (2008)-Toán học cao cấp tập 2-Phép tính giải tích một biến
số-Nhà Xuất Bản Giáo Dục.
 [22]-Jean-Marie Monier (2002)-Giáo trình toán tập 1-Giải tích 1-Nhà xuất bản Giáo
dục.
[21] là giáo trình toán được dùng phổ biến trong các trường đại học ở Việt Nam. [22] là
cuốn sách được xuất bản trong khuôn khổ chương trình đào tạo kĩ sư chất lượng cao tại Việt
Nam, với sự trợ giúp của bộ phận Văn hóa và Hợp tác của Đại Sứ quán Pháp tại nước Cộng
hòa Xã hội chủ nghĩa Việt Nam. Đây là hai tài liệu tham khảo chính. Ngoài ra, ở một số nội
dung, để làm rõ vấn đề chúng tôi cũng tham khảo thêm :
 [6]-Fichtengon (1977) – Cơ sở Giải tích toán học - NXB Đại học và Trung học
chuyên nghiệp.
 [23]-Richard F. Bass (2009), Real Analysis, (www.math.uconn.edu/~bass/meas.pdf).
 [24]-Israel Kleiner (1989), Evolution of the Function Concept: A Brief Survey, The
College Mathematics Journal, Vol. 20, No. 4 (Sep), tr.282-300 Mathematical
Association of America.
 [25]-Discontinuous and monotone Functions
(www.mathcs.org/analysis/reals/cont/disconti.html)
Như vậy, chúng tôi chỉ giới hạn nghiên cứu các mối liên hệ có thể có giữa 3 đối tượng tính
đơn điệu, tính liên tục và sự khả vi của hàm số trong các giáo trình đã chọn.
Trước hết, chúng tôi điểm qua các khái niệm tính đơn điệu, tính liên tục và sự khả vi của
hàm số nhằm tìm hiểu xem các mối liên hệ giữa chúng có được thể hiện trong các định
nghĩa không ? Sau đó, chúng tôi xem xét các mối liên hệ được thể hiện trong các định lí,
tính chất liên quan đến ba đối tượng này.
1.1 Các khái niệm đơn điệu, liên tục, khả vi
1.1.1 Khái niệm hàm số đơn điệu
[21] đưa vào định nghĩa như sau:
“ NếuJ I R1
, hàm số f:I→R được gọi là tăng trên J nếu
1 2 1 2 1 2, , ( ) ( )x x J x x f x f x   
Tăng nghiêm ngặt trên J nếu
1 2 1 2 1 2, , ( ) ( )x x J x x f x f x   
Giảm trên J nếu
1 2 1 2 1 2, , ( ) ( )x x J x x f x f x   
Giảm nghiêm ngặt trên J nếu
1 2 1 2 1 2, , ( ) ( )x x J x x f x f x   
Hàm số tăng hay giảm trên J được gọi là đơn điệu trên J.” [21, tr.46]
Định nghĩa hàm đơn điệu trong [22]:
“ Cho ( )X R và X
f R 2
1)Ta nói f tăng khi và chỉ khi :
2
1 2 1 2 1 2 1 2( , ) , ( , , ( ) ( ))x x X x x X x x f x f x     
2) Ta nói f giảm khi và chỉ khi :
2
1 2 1 2 1 2 1 2( , ) , ( , , ( ) ( ))x x X x x X x x f x f x     
3) Ta nói f tăng nghiêm ngặt khi và chỉ khi :
2
1 2 1 2 1 2 1 2( , ) , ( , , ( ) ( ))x x X x x X x x f x f x     
4) Ta nói f giảm nghiêm ngặt khi và chỉ khi :
2
1 2 1 2 1 2 1 2( , ) , ( , , ( ) ( ))x x X x x X x x f x f x     
5)Ta nói f đơn điệu khi và chỉ khi f tăng hoặc f giảm.
6)Ta nói f đơn điệu nghiêm ngặt khi và chỉ khi f tăng nghiêm ngặt hoặc f giảm
nghiêm ngặt. ” 3
[22, tr.103]
Nhận xét :
Theo cách trình bày của [21] và [22], khái niệm hàm số đơn điệu được xét trên một tập con
bất kì khác rỗng của R. Cả [21] và [22] đều phân biệt “tăng (giảm)” với “tăng (giảm)
1
Trong [21] kí hiệu A  B nghĩa là mọi phần tử của A đều thuộc B hay A là tập con của B, A  B nghĩa là mọi phần
tử của A đều thuôc B, và B có ít nhất một phần tử không thuôc A hay A là tập con thực sự của B.
2
P(R) là tập các tập con của R, RX
là tập các hàm số từ X vào R.
3
f là hàm số từ X vào R.
nghiêm ngặt”. [21] dùng thuật ngữ đơn điệu để chỉ hàm tăng hay giảm còn trong trường hợp
hàm “tăng (giảm) nghiêm ngặt” thì không có một thuật ngữ chung. [22] thì nêu rõ “Ta nói f
đơn điệu khi và chỉ khi f tăng hoặc f giảm.” và “Ta nói f đơn điệu nghiêm ngặt khi và chỉ
khi f tăng nghiêm ngặt hoặc f giảm nghiêm ngặt.”. Từ đây về sau, trong luận văn này, khi
nói hàm đơn điệu ta hiểu hàm tăng hay giảm, khi nói hàm đơn điệu ngặt ta hiểu hàm tăng
hay giảm nghiêm ngặt.
1.1.2 Khái niệm hàm số liên tục
 Liên tục tại một điểm
“ Cho f(x) là một hàm số xác định trên (a,b); nói rằng f(x) liên tục tại ( , )ox a b nếu
lim ( ) ( )
o
o
x x
f x f x

 ” [21, tr.89]
“Cho f: I →K, a I . Ta nói f liên tục tại a khi và chỉ khi:
0, 0, ,( ( ) ( ) )x I x a f x f a              .” 4
[22, tr.120]
Nhận xét:
[21] và [22] định nghĩa khái niệm liên tục tại một điểm theo hai cách khác nhau. [21] thông
qua khái niệm giới hạn (tránh ngôn ngữ ,  ), [22] định nghĩa trực tiếp bằng ngôn ngữ
,  (định nghĩa của Weierstrass). Ngay sau định nghĩa trên, [22] đưa ra định lý: “Cho
:f I K , a I . Để f liên tục tại a thì điều kiện cần và đủ là f có giới hạn là f(a) tại điểm
a.”[22, tr.120], khẳng định sự tương đương của hai định nghĩa trên.
Tiếp theo định nghĩa về sự liên tục của hàm tại một điểm, [21] và [22] đều đưa ra
định nghĩa về điểm gián đoạn và phân loại chúng:
“Hàm số f(x) không liên tục tại điểm ox được gọi là gián đoạn tại điểm ấy.
Giả sử hàm f xác định trên đoạn [a,b], [ , ]ox a b là một điểm gián đoạn của f . Ta
nói ox là điểm gián đoạn bỏ qua được nếu ( 0) ( 0)o of x f x   5
; ox là điểm gián
đoạn loại một nếu ( 0) , ( 0)o of x R f x R    nhưng ( 0) ( 0)o of x f x   , hiệu
( 0) ( 0)o of x f x   được gọi là bước nhảy của f tại ox ; ox được gọi là điểm gián
đoạn loại hai nếu nó không thuộc hai loại trên.” [21, tr.90]
“Ta nói f gián đoạn tại a khi và chỉ khi f không liên tục tại a.
4
I là một trong chín loại khoảng của R: [a,b], [a,b), (a,b], (a,b), (-∞;a), (-∞;a], (b,+∞), [b,+∞), (-∞;+∞). K là hoặc R.
Trong luận văn này, ta hiểu K là R.
5
( 0) lim ( )
o
o
x x
f x f x

  , ( 0) lim ( )
o
o
x x
f x f x

 
[…]
Gián đoạn loại 1
Ta nói f có điểm gián đoạn loại 1 tại a khi và chỉ khi: f không liên tục tại a, f
có giới hạn trái tại a (nếu f xác định bên trái a), f có giới hạn phải tại a (nếu f
xác định bên phải a).
Nếu f không liên tục tại a và không có điểm gián đoạn loại 1 tại a, thì ta nói f
có điểm gián đoạn loại 2 tại a” [22, tr.120-121]
Nhận xét:
Cách định nghĩa điểm gián đoạn của [21] và [22] là giống nhau. Về cách phân loại, điểm
gián đoạn bỏ qua được và điểm gián đoạn loại 1 của [21] tương đương với điểm gián đoạn
loại 1 của [22].
 Liên tục trên khoảng
“Nói rằng hàm số f(x) liên tục trên khoảng (a,b) nếu f(x) liên tục tại mọi ( , )x a b .”
[21, tr.91]
“Cho :f I K . Ta nói f liên tục trên I khi và chỉ khi f liên tục tại mọi điểm của I.”
[22, tr.121]
1.1.3 Khái niệm hàm số khả vi
“ Cho a I , I
f K . Ta nói f khả vi tại a khi và chỉ khi
0
( ) ( )
lim
h
f a h f a
h
 
tồn tại và
hữu hạn; giới hạn này được kí hiệu là f’(a) và được gọi là đạo hàm của f tại a.” [22,
tr.139]
“Cho hàm số f(x) xác định trong khoảng (a,b) nói rằng hàm số f(x) khả vi tại điểm
( , )c a b nếu tồn tại giới hạn
( ) ( )
lim ,
x c
f x f c
A x c
x c

 

Số A; giới hạn của tỉ số
( ) ( )
,
f x f c
x c
x c



, khi x c được gọi là đạo hàm của hàm
số f(x) lấy tại điểm x=c; và kí hiệu f’(c).” [21, tr.119]
Nhận xét:
Hai cách định nghĩa về hình thức là khác nhau, nhưng thực chất là một. [21] nêu rõ điều này
qua nhận xét sau:
“Nếu đặt x c x   thì biểu thức định nghĩa trở thành
0
( ) ( )
lim : '( )
x
f c x f c
f c
x 
  


” [21, tr.119]
Sau khi trình bày định nghĩa đạo hàm tại một điểm, cả [21] và [22] đều phân tích rõ ý nghĩa
hình học của đạo hàm.
“Đạo hàm tại mỗi điểm chính là hệ số góc của tiếp tuyến của đồ thị của f(x) số tại
điểm đó; và một hàm số khả vi tại một điểm x=c có nghĩa là tại điểm x=c, đồ thị của
f(x) có một tiếp tuyến duy nhất không vuông góc với trục Ox.” [21, tr.120]
“[…] tính khả vi của f được diễn giải hình học bởi sự tồn tại của tiếp tuyến không
song song với (yy’) tại điểm A có tọa độ (a,f(a)) trên đường cong Cf biểu diễn f.
Tiếp tuyến này có hệ số góc là f’(a)”.
Như vậy, về mặt hình học, một hàm số không khả vi tại một điểm nào đó nếu đồ thị của nó
không có tiếp tuyến tại điểm đó.
1.1.4 Kết luận
Xét trên định nghĩa thì các khái niệm hàm số đơn điệu, hàm số liên tục, hàm số khả vi được
định nghĩa một cách độc lập nhau. Các mối liên hệ giữa ba đối tượng này không được thể
hiện trong các định nghĩa của chúng.
1.2 Mối liên hệ giữa ba khái niệm hàm số đơn điệu, hàm số liên tục và hàm số khả vi
1.2.1 Đơn điệu-Liên tục
Chúng tôi bắt đầu bằng định lý 3.10 trong [21]
“ Điều kiện ắt có và đủ để một hàm số xác định, liên tục trên một khoảng (a,b) là một đơn
ánh là hàm số đơn điệu ngặt trên khoảng đó.” [21, tr.103]
Nhận xét :
Mặc dù định lý phát biểu cho khoảng (a,b), xem xét cách chứng minh trong [21],
chúng tôi thấy rằng, nó vẫn đúng cho khoảng I bất kì. Do đó, ta có thể phát biểu lại định lý
trên như sau : “ cho hàm số f liên tục trên khoảng I. Khi đó, f đơn điệu ngặt trên I khi và
chỉ khi nó đơn ánh trên khoảng đó ”. Định lý trên đề cập đến mối liên hệ giữa tính đơn
điệu ngặt và sự đơn ánh của một hàm liên tục trên một khoảng I nào đó. Dễ dàng nhận thấy,
một hàm đơn điệu ngặt trên I thì đơn ánh trên I, nhưng nếu nó đơn ánh trên I thì chưa chắc
đã đơn điệu trên khoảng đó. Điều này được nêu rõ trong [22] :
“ Mọi ánh xạ đơn điệu nghiêm ngặt đều là đơn ánh ; nhưng điều ngược lại không
đúng như ở ví dụ sau :
O x21
1
2
4
y
, 1 à 1
1 , 1
1 , 1

  

 
 

R R
x x v x
x x
x
[22, tr.103]
Định lý 3.10 cho thấy, chiều ngược lại chỉ đúng nếu có thêm điều kiện hàm liên tục
trên I. Nhìn theo một góc độ khác, có thể nói một hàm liên tục trên khoảng I phải thỏa
mãn thêm điều kiện đơn ánh trên khoảng đó thì đơn điệu ngặt trên I.
Các tài liệu [21], [22] không đề cập đến tính liên tục của một hàm đơn điệu. Tuy
nhiên, ta biết rằng có những hàm đơn điệu trên một khoảng I nhưng không liên tục trên I,
xét ví dụ sau:
Ví dụ :
:[0,2]
, [0,1)
2 , [1,2]





f R
x x
x
x x
Rõ ràng, f đơn điệu tăng trên [0,2] nhưng
bị gián đoạn tại x=1 nên không liên tục
trên [0,2]. Ta thấy đồ thị của nó là một
đường đi lên từ trái sang phải nhưng
không liên nét trên [0 ;2].
Như vậy, một hàm đơn điệu trên I vẫn có thể bị gián đoạn trên I. Nhưng tập các điểm gián
đoạn và loại của điểm gián đoạn của một hàm đơn điệu trên khoảng I lại khá “ đặc biệt ”:
 Một hàm đơn điệu trên I thì các điểm gián đoạn nếu có của nó chỉ có thể là điểm gián
đoạn loại 1.
 Một hàm đơn điệu trên I thì tập các điểm gián đoạn của nó nhiều nhất đếm được ”
(tham khảo [25])
Từ đó ta thấy rằng, một hàm đơn điệu trên I vẫn có thể không liên tục trên khoảng đó, điểm
gián đoạn nếu có chỉ có thể có các điểm gián đoạn loại 1 và tập các điểm gián đoạn của nó
là đếm được. Ta đặt ra câu hỏi: một hàm số đơn điệu trên I cần thỏa mãn thêm điều kiện gì
để liên tục trên I ?
Xét định lí sau:
“Nếu tập các giá trị mà hàm đơn điệu tăng (giảm) f(x) lấy khi x biến thiên trong
khoảng I thuộc khoảng J và lấp đầy khoảng đó thì hàm f(x) liên tục trong khoảng
I.”(*) [6, tr.94]
Nhận xét:
Như vậy, một hàm đơn điệu trên một khoảng I sẽ liên tục trên I nếu ảnh của I qua nó là
một khoảng nào đó của R. Theo một hệ quả trong [6]: “ nếu hàm f xác định và liên tục trên
khoảng X bất kì (đóng hay không, hữu hạn hay vô hạn) thì các giá trị mà hàm nhận cũng sẽ
lấp đầy một khoảng nào đó”([6, tr.104]), ta thấy rằng một hàm liên tục trên khoảng I thì ảnh
của khoảng I qua nó là một khoảng, tuy nhiên điều ngược lại không đúng, xét ví dụ sau:
“
1
( ) sin ( 0), (0) 0f x x f
x
   ” [6, tr.105]. Hàm đã cho biến [-2,2] thành [-1,1] nhưng rõ
ràng không liên tục trên [-2,2] vì nó bị gián đoạn tại x=0.
Định lý (*) chỉ ra rằng, điều ngược lại sẽ đúng nếu hàm thỏa mãn thêm điều kiện “đơn điệu
trên khoảng I”. Đến đây ta trả lời được câu hỏi “một hàm đơn điệu trên I thỏa mãn thêm
điều kiện gì thì liên tục trên I ?”. Phần tiếp theo dưới đây chúng tôi giới thiệu một ứng dụng
quan trọng của định lí này.
Chúng ta đều biết rằng, các hàm sơ cấp liên tục trên miền xác định của chúng. Từ sự liên
tục của hàm hằng và hàm số y = x, ta dễ dàng chứng minh được sự liên tục của hàm đa thức,
phân thức trên tập xác định của chúng bằng cách dùng các định lí về tổng, hiệu, tích, thương
của các hàm liên tục. Nhưng việc chứng minh sự liên tục của các hàm sơ cấp cơ bản khác:
hàm mũ y = ax
(a>1), hàm lôgarit y=logax (a>0, a≠1), hàm lũy thừa y = xµ
(µ>0 hay µ<0),
các hàm lượng giác, các hàm lượng giác ngược thì phải nhờ đến định lý (*). Chẳng hạn:
“2o
. Hàm mũ y = ax
(a>1) đơn điệu tăng khi x biến thiên trong khoảng X=(-
∞;+∞). Giá trị của nó dương và lấp đầy toàn khoảng Y=(0;+∞), điều đó rõ ràng vì
lôgarit x = logay tồn tại đối với bất kì y>0. Thành thử hàm mũ liên tục với giá trị x
bất kì.” [6, tr.95]
Độc giả quan tâm có thể tham khảo thêm [6, tr.95-96].
Kết luận
Ta có một số tính chất sau thể hiện mối liên hệ giữa tính đơn điệu và liên tục của hàm số:
 Hàm đơn điệu trên I (khoảng, nửa khoảng, đoạn) có thể không liên tục trên I.
Hàm đơn điệu trên I thì chỉ có thể có điểm gián đoạn loại 1 và tập các điểm gián
đoạn của nó trên I nhiều nhất là đếm được.
 Hàm liên tục và đơn ánh trên I thì đơn điệu ngặt trên I.
 Hàm đơn điệu trên khoảng I, biến I thành một khoảng của R thì liên tục trên I.
1.2.2 Liên tục-Khả vi
Sau định nghĩa hàm khả vi tại một điểm, [22] đưa ra mệnh đề sau:
“Cho a I , I
f K . Nếu f khả vi tại a thì f liên tục tại a” [22, tr.141]
Nhận xét:
Mệnh đề trên cho thấy, một hàm khả vi tại một điểm thì liên tục tại điểm đó. Chiều ngược
lại thì sao?
Ngay sau mệnh đề trên, [22] đưa ra nhận xét:
“Khẳng định đảo của mệnh đề trên là sai. Một ánh xạ có thể liên tục tại a nhưng
không khả vi tại a như trong các ví dụ sau:
i)
. : R R
x x


Liên tục tại 0 nhưng không khả vi tại 0.
ii)
.:R R
x x
 

Liên tục tại 0 nhưng không khả vi tại 0, vì
0
0 1
0, h
h
h
h h



   
iii)
:
1
sin , 0
0 , 0




 

f R R
x x
x x
x
Liên tục tại 0 (vì 0
( ) 0x
f x x 
  ) và
không khả vi tại 0 vì
( ) (0) 1
sin
f h f
h h


không có giới hạn khi h→0.
[22, tr.142]
Vấn đề trên cũng được nêu rõ trong [21], nhưng không có ví dụ và minh họa rõ ràng
bằng đồ thị như [22].
Liên quan đến việc xem xét tính khả vi của một hàm liên tục trên một khoảng, đã từng
có một giai đoạn trong lịch sử (những năm nửa sau thế kỉ 19), người ta nghĩ rằng một hàm
số liên tục thì khả vi trừ ra tại một số hữu hạn các điểm: “đến khoảng những năm 1870,
nhiều bài viết về giải tích đã chứng minh một hàm số liên tục thì khả vi trừ ra tại một số hữu
hạn các điểm, ngay cả Cauchy6
cũng tin như vậy” ([24 , tr.293]). Năm 1872, Weierstrass đã
làm sửng sốt cộng đồng toán học khi đưa ra một ví dụ nổi tiếng về một hàm liên tục trên tập
số thực nhưng không khả vi tại điểm nào cả:  0
( ) cosn n
n
f x b a x


 
trong đó a là số nguyên lẻ, b là số thực trong khoảng (0,1) và
3
1
2
ab

  (Bolzano đã đưa ra
một ví dụ như thế vào năm 1834 nhưng không được chú ý) (tham khảo [24, tr.293]).
Như vậy, đã có một giai đoạn trong lịch sử người ta tin rằng, một hàm liên tục chỉ có thể
có hữu hạn các điểm tại đó hàm không khả vi, ví dụ của Weierstrass đã chỉ ra có những hàm
liên tục trên R nhưng không đâu khả vi. Từ đó, ta thấy rằng khi một hàm liên tục thì chưa
thể kết luận gì về sự khả vi của nó, một hàm liên tục tại một điểm có thể không khả vi tại
điểm đó, một hàm liên tục trên một khoảng có thể có hữu hạn hay vô hạn các điểm tại đó
hàm không khả vi hay có thể không đâu khả vi trên khoảng đó. Phân tích trên cũng chỉ ra
rằng, trong lịch sử phát triển của toán học, đã tồn tại một “chướng ngại” liên quan đến cực
“liên tục → khả vi”, đó là: một hàm số liên tục trên một khoảng thì khả vi trên khoảng đó
trừ ra tại một số hữu hạn các điểm.
Sau đây, chúng tôi giới thiệu một định lí về “giới hạn của đạo hàm” trong đó nêu ra một
số điều kiện để một hàm liên tục tại một điểm khả vi tại điểm đó:
“Hệ quả (“định lý giới hạn của đạo hàm”)
Cho ox R , I là một khoảng của R sao cho
o
ox I , f : I→R là một ánh xạ.
Nếu f liên tục tại xo , f khả vi tại I-{xo}, f’ có giới hạn hữu hạn là l tại xo
thì f khả vi tại xo và f’(xo)=l, và do đó f’ liên tục tại xo .” [22, tr.161]
Định lí trên chỉ ra rằng hàm số f : I→R liên tục tại xo nếu khả vi tại mọi điểm của I khác xo
và f’ có giới hạn hữu hạn l tại xo thì nó khả vi tại xo và f’(xo)=l .
Kết luận
Với cực liên tục – khả vi, ta có kết luận sau:
 Hàm khả vi tại một điểm thì liên tục tại điểm đó.
 Hàm liên tục tại một điểm có thể không khả vi tại điểm đó.
 Tồn tại một chướng ngại khoa học luận: Hàm số liên tục trên một khoảng
thì khả vi trên khoảng đó, trừ ra một số hữu hạn điểm.
6
Augustin-Louis Cauchy (1789 – 1857): một nhà toán học nổi tiếng người Pháp
1.2.3 Đơn điệu-Khả vi
Chúng tôi bắt đầu bằng định lí sau:
“Định lý 5.7
Cho f là một hàm số xác định, liên tục trong một khoảng đóng hữu hạn [a,b] và khả
vi trong khoảng mở (a,b), khi đó:
(1) Điều kiện ắt có và đủ để f(x) tăng (giảm) trên [a,b] là f’(x)0 (f’(x) 0) với mọi
( , )x a b
(2) Nếu f’(x)0 (f’(x)0) với mọi ( , )x a b và nếu f’(x)>0 (f’(x)<0) tại ít nhất một
điểm x thì f(a)>f(b) ( f(a)<f(b)).” [21, tr.161]
“Định lý 1: Cho f : I → R liên tục trên I, khả vi trên
o
I . Để f tăng trên I điều kiện cần
và đủ là : , '( ) 0
o
x I f x   .
[…] Khi khảo sát –f thay cho f, ta thu được định lý tương tự như định lý trên bằng
cách thay tăng bởi giảm và 0 bởi  0.” [22, tr.164-165]
Nhận xét:
Phát biểu trên trong [21] và [22] cho thấy khi hàm số f(x) liên tục trên I ( khoảng,
nửa khoảng, đoạn), khả vi trên
o
I 7
thì hàm đơn điệu tăng (giảm) trên I khi và chỉ khi f’(x)≥0
(f’(x)≤0) với mọi x thuộc
o
I .
Về đơn điệu nghiêm ngặt, [22] đưa ra định lí sau:
“Định lý 2: Cho f: I→R liên tục trên I, khả vi trên
o
I . Để f tăng nghiêm ngặt, điều
kiện cần và đủ là:
, '( ) 0  
o
x I f x và { 
o
x I , f’(x)=0} không chứa bất kì một khoảng có phần trong
không rỗng nào.” [22, tr.165]
Như vậy, ngoài các điều kiện giống với định lý 1, để f tăng nghiêm ngặt, ta còn cần thêm
điều kiện tập các điểm mà tại đó đạo hàm bằng 0 “không chứa bất kì một khoảng có phần
trong không rỗng nào.”
Từ đó mặc dù [22] không đề cập nhưng ta có thể suy ra hệ quả sau:
“ Cho f: I→R liên tục trên I, khả vi trên
o
I . Nếu , '( ) 0  
o
x I f x và { 
o
x I , f’(x)=0} nhiều
nhất đếm được thì f tăng nghiêm ngặt”.
7
o
I là phần trong của khoảng I, ví dụ phần trong của [a,b] là (a,b).
O x21
1
4
y
Một giả thuyết quan trọng của các phát biểu trên là f khả vi trên phần trong của khoảng đang
xét, ta đặt ra câu hỏi: “tồn tại hay không những hàm không khả vi trên
o
I nhưng vẫn đơn
điệu trên I ?”. Vấn đề này không được đưa ra trong [21] và [22] nhưng có thể trả lời ngay
rằng: tồn tại những hàm không khả vi trên
o
I nhưng vẫn đơn điệu trên khoảng đó. Ta sẽ thấy
rõ qua ví dụ sau:
Ví dụ:
:(0,2)
, (0,1)
3 2 , [1,2)



 

f R
x x
x
x x
Hàm số f(x) không khả vi trên (0,2) vì nó
không có đạo hàm tại x=1, nhưng đơn điệu
tăng trên (0,2).
Như vậy, một hàm đơn điệu trên khoảng I có thể không khả vi trên I. Tuy nhiên, khi một
hàm đơn điệu trên khoảng I thì tập các điểm không khả vi của hàm đó trên I lại có một tính
chất khá đặc biệt :
“ Hàm đơn điệu trên I thì khả vi hầu khắp nơi trên I, nghĩa là tập các điểm thuộc I mà
tại đó hàm không khả vi có độ đo lesbgue bằng không.” [23, tr.40]
Kết luận:
 Hàm liên tục trên I (khoảng, nửa khoảng, đoạn), khả vi trên
o
I thì tăng (giảm)
trên I khi và chỉ khi f’(x)≥0 (f’(x)≤0) với mọi x thuộc
o
I .
 Hàm liên tục trên I, khả vi trên
o
I thì f tăng (giảm) nghiêm ngặt khi và chỉ khi
f’(x)≥0 (f’(x)≤0) trên
o
I và { 
o
x I , f’(x)=0} không chứa bất kì một khoảng nào có
phần trong khác rỗng.
 Hàm đơn điệu trên I có thể không khả vi trên I.
 Hàm đơn điệu trên I thì khả vi hầu khắp nơi trên I.
1.3 Kết luận chương 1
Từ những phân tích trên, có thể thấy rõ giữa tính đơn điệu, tính liên tục và sự khả vi có
nhiều mối liên hệ qua lại với nhau, chúng tôi thể hiện bằng sơ đồ sau:
Để thấy rõ ý nghĩa của các mối liên hệ giữa 3 đối tượng này, chúng tôi tổng kết dưới dạng
các câu hỏi và câu trả lời đối với từng cực:
Cực Đơn điệu-Liên tục
Hàm số đơn điệu trên I (khoảng, nửa khoảng, đoạn) có liên tục trên I không?
 Hàm đơn điệu trên I có thể không liên tục trên I.
Như vậy một hàm số đơn điệu trên I có thể không liên tục trên I. Điểm gián đoạn và tập các
điểm gián đọan nếu có của một hàm số đơn điệu trên I có gì đặc biệt?
 Hàm đơn điệu trên I thì chỉ có thể có điểm gián đoạn loại 1 (tồn tại giới hạn trái và
phải) và tập các điểm gián đoạn của nó trên I nhiều nhất là đếm được.
Hàm đơn điệu trên khoảng I cần thêm điều kiện gì thì liên tục trên I ?
 Hàm đơn điệu trên khoảng I, biến I thành một khoảng nào đó của R thì liên tục trên I.
Một hàm số liên tục trên I cần thêm điều kiện gì thì đơn điệu trên I ?
 Hàm liên tục và đơn ánh trên khoảng I thì đơn điệu ngặt trên I.
Cực Đơn điệu-Khả vi
Hàm số khả vi trên I (khoảng, nửa khoảng, đoạn) thì đơn điệu trên I khi nào?
 Hàm liên tục trên I, khả vi trên
o
I (phần trong của I) thì tăng (giảm) trên I khi và chỉ
khi f’(x)≥0 (f’(x)≤0) với mọi x thuộc
o
I .
 Hàm f liên tục trên I, khả vi trên
o
I thì f tăng (giảm) nghiêm ngặt khi và chỉ khi
f’(x)≥0 (f’(x)≤0) trên
o
I và { 
o
x I , f’(x)=0} không chứa bất kì một khoảng nào có
phần trong khác rỗng.
Liên tục Khả vi
Đơn điệu
Một hệ quả được rút ra: Hàm f liên tục trên I, khả vi trên
o
I thì f tăng (giảm) nghiêm
ngặt khi f’(x)≥0 (f’(x)≤0) trên
o
I và tập các điểm làm đạo hàm triệt tiêu trên I nhiều
nhất đếm được.
Hàm số đơn điệu trên I có khả vi trên I không?
 Hàm đơn điệu trên I có thể không khả vi trên I.
Như vậy, một hàm số đơn điệu trên I có thể không khả vi trên I. Tập các điểm không khả vi
của hàm số trên I (các điểm thuộc I mà tại đó hàm số không khả vi) có gì đặc biệt?
 Hàm đơn điệu trên I thì khả vi hầu khắp nơi trên I (tập các điểm thuộc I mà tại đó
hàm số không khả vi có độ đo lesbgue bằng 0).
Cực Liên tục-Khả vi
Mối liên hệ liên tục-khả vi là mối liên hệ một chiều:
 Hàm khả vi tại một điểm thì liên tục tại điểm đó.
 Hàm liên tục tại một điểm có thể không khả vi tại điểm đó.
Có chướng ngại khoa học luận nào liên quan đến mối liên hệ này?
 Hàm số liên tục trên một khoảng thì khả vi trên khoảng đó, trừ ra một số hữu hạn
điểm.
Những kết quả đạt được trong chương này sẽ là cơ sở tham chiếu để chúng tôi tiến hành
nghiên cứu mối quan hệ thể chế ở chương 2, nghiên cứu này nhằm tìm câu trả lời cho câu
hỏi Q2 :
Q2: Trong thể chế dạy học toán phổ thông Việt Nam, mối quan hệ thể chế với mối liên
hệ giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số được hình thành ra sao?
Có những đặc trưng và ràng buộc nào? So với tri thức khoa học, mối liên hệ nào được
đặt ra? Mối liên hệ nào không được đặt ra? Vì sao? Sự biểu diễn hàm số bằng hệ
thống biểu đạt đồ thị có được tính đến như một môi trường cho phép làm rõ mối liên
hệ giữa các đối tượng: tính đơn điệu, tính liên tục và sự khả vi của hàm số không?
Cụ thể hơn, đối với từng cực chúng tôi đặc biệt quan tâm đến việc tìm câu trả lời cho các
câu hỏi sau:
Đơn điệu-Liên tục
Những tính chất liên quan đến mối liên hệ đơn điệu-liên tục được thể hiện như thế nào trong
SGK theo chương trình hiện hành? Đặc biệt, những hàm số đơn điệu trên một khoảng
DOWNLOAD ĐỂ XEM ĐẦY ĐỦ NỘI DUNG
MÃ TÀI LIỆU: 54362
DOWNLOAD: + Link tải: tailieumau.vn
Hoặc : + ZALO: 0932091562

More Related Content

What's hot

Luận văn: Quan điểm vectơ trong dạy học hình học giải tích ở trường phổ thông...
Luận văn: Quan điểm vectơ trong dạy học hình học giải tích ở trường phổ thông...Luận văn: Quan điểm vectơ trong dạy học hình học giải tích ở trường phổ thông...
Luận văn: Quan điểm vectơ trong dạy học hình học giải tích ở trường phổ thông...Viết thuê trọn gói ZALO 0934573149
 
Cđ nguyên lí đi rich lê
Cđ nguyên lí đi rich lêCđ nguyên lí đi rich lê
Cđ nguyên lí đi rich lêCảnh
 
Luận văn: Tiếp cận khái niệm phương trình và phép biến đổi phương trình bậc n...
Luận văn: Tiếp cận khái niệm phương trình và phép biến đổi phương trình bậc n...Luận văn: Tiếp cận khái niệm phương trình và phép biến đổi phương trình bậc n...
Luận văn: Tiếp cận khái niệm phương trình và phép biến đổi phương trình bậc n...Viết thuê trọn gói ZALO 0934573149
 
Luận văn: Hàm số mũ trong dạy học vật lý ở trung học phổ thông, HAY
Luận văn: Hàm số mũ trong dạy học vật lý ở trung học phổ thông, HAYLuận văn: Hàm số mũ trong dạy học vật lý ở trung học phổ thông, HAY
Luận văn: Hàm số mũ trong dạy học vật lý ở trung học phổ thông, HAYViết thuê trọn gói ZALO 0934573149
 
ứng dụng tích phân giải bài toán tổ hợp
ứng dụng tích phân giải bài toán tổ hợpứng dụng tích phân giải bài toán tổ hợp
ứng dụng tích phân giải bài toán tổ hợpOanh MJ
 
Xstk 07 12_2015_9914
Xstk 07 12_2015_9914Xstk 07 12_2015_9914
Xstk 07 12_2015_9914Nam Cengroup
 
Giải một số bài toán Lớp 4 bằng phương pháp sơ đồ đoạn thẳng
Giải một số bài toán Lớp 4 bằng phương pháp sơ đồ đoạn thẳng Giải một số bài toán Lớp 4 bằng phương pháp sơ đồ đoạn thẳng
Giải một số bài toán Lớp 4 bằng phương pháp sơ đồ đoạn thẳng tieuhocvn .info
 
Bg xac suat thong ke (khoi nganh ky thuat)
Bg xac suat thong ke (khoi nganh ky thuat)Bg xac suat thong ke (khoi nganh ky thuat)
Bg xac suat thong ke (khoi nganh ky thuat)Phi Phi
 
Ung dung he_thuc_vi-et_de_giai_cac_dang_bai_tap
Ung dung he_thuc_vi-et_de_giai_cac_dang_bai_tapUng dung he_thuc_vi-et_de_giai_cac_dang_bai_tap
Ung dung he_thuc_vi-et_de_giai_cac_dang_bai_tapLngVnGiang
 
Sáng kiến kinh nghiệm đổi mới phương pháp giảng dạy Toán học
Sáng kiến kinh nghiệm đổi mới phương pháp giảng dạy Toán họcSáng kiến kinh nghiệm đổi mới phương pháp giảng dạy Toán học
Sáng kiến kinh nghiệm đổi mới phương pháp giảng dạy Toán họcHọc Tập Long An
 

What's hot (20)

Luận văn: Didactic về công cụ vectơ trong hình học không gian
Luận văn: Didactic về công cụ vectơ trong hình học không gianLuận văn: Didactic về công cụ vectơ trong hình học không gian
Luận văn: Didactic về công cụ vectơ trong hình học không gian
 
Luận văn: Quan điểm vectơ trong dạy học hình học giải tích ở trường phổ thông...
Luận văn: Quan điểm vectơ trong dạy học hình học giải tích ở trường phổ thông...Luận văn: Quan điểm vectơ trong dạy học hình học giải tích ở trường phổ thông...
Luận văn: Quan điểm vectơ trong dạy học hình học giải tích ở trường phổ thông...
 
Cđ nguyên lí đi rich lê
Cđ nguyên lí đi rich lêCđ nguyên lí đi rich lê
Cđ nguyên lí đi rich lê
 
Luận văn: Tiếp cận khái niệm phương trình và phép biến đổi phương trình bậc n...
Luận văn: Tiếp cận khái niệm phương trình và phép biến đổi phương trình bậc n...Luận văn: Tiếp cận khái niệm phương trình và phép biến đổi phương trình bậc n...
Luận văn: Tiếp cận khái niệm phương trình và phép biến đổi phương trình bậc n...
 
Luận văn: Nghiên cứu thực hành giảng dạy thống kê mô tả ở trung học phổ thông
Luận văn: Nghiên cứu thực hành giảng dạy thống kê mô tả ở trung học phổ thôngLuận văn: Nghiên cứu thực hành giảng dạy thống kê mô tả ở trung học phổ thông
Luận văn: Nghiên cứu thực hành giảng dạy thống kê mô tả ở trung học phổ thông
 
Luận văn: Hàm số mũ trong dạy học vật lý ở trung học phổ thông, HAY
Luận văn: Hàm số mũ trong dạy học vật lý ở trung học phổ thông, HAYLuận văn: Hàm số mũ trong dạy học vật lý ở trung học phổ thông, HAY
Luận văn: Hàm số mũ trong dạy học vật lý ở trung học phổ thông, HAY
 
Luận văn: Dạy các phương trình và bất phương trình vô tỉ lớp 10
Luận văn: Dạy các phương trình và bất phương trình vô tỉ lớp 10Luận văn: Dạy các phương trình và bất phương trình vô tỉ lớp 10
Luận văn: Dạy các phương trình và bất phương trình vô tỉ lớp 10
 
Luận văn: CASYOPÉE và việc dạy học khái niệm hàm số trong môi trường tích hợp...
Luận văn: CASYOPÉE và việc dạy học khái niệm hàm số trong môi trường tích hợp...Luận văn: CASYOPÉE và việc dạy học khái niệm hàm số trong môi trường tích hợp...
Luận văn: CASYOPÉE và việc dạy học khái niệm hàm số trong môi trường tích hợp...
 
ứng dụng tích phân giải bài toán tổ hợp
ứng dụng tích phân giải bài toán tổ hợpứng dụng tích phân giải bài toán tổ hợp
ứng dụng tích phân giải bài toán tổ hợp
 
Luận văn: Sử dụng kiến thức khái niệm của học sinh trong giải quyết vấn đề
Luận văn: Sử dụng kiến thức khái niệm của học sinh trong giải quyết vấn đềLuận văn: Sử dụng kiến thức khái niệm của học sinh trong giải quyết vấn đề
Luận văn: Sử dụng kiến thức khái niệm của học sinh trong giải quyết vấn đề
 
Đề tài: Phương pháp giải một số lớp mô hình cân bằng, HAY
Đề tài: Phương pháp giải một số lớp mô hình cân bằng, HAYĐề tài: Phương pháp giải một số lớp mô hình cân bằng, HAY
Đề tài: Phương pháp giải một số lớp mô hình cân bằng, HAY
 
Pp2 co hien
Pp2 co hienPp2 co hien
Pp2 co hien
 
Xstk 07 12_2015_9914
Xstk 07 12_2015_9914Xstk 07 12_2015_9914
Xstk 07 12_2015_9914
 
Giải một số bài toán Lớp 4 bằng phương pháp sơ đồ đoạn thẳng
Giải một số bài toán Lớp 4 bằng phương pháp sơ đồ đoạn thẳng Giải một số bài toán Lớp 4 bằng phương pháp sơ đồ đoạn thẳng
Giải một số bài toán Lớp 4 bằng phương pháp sơ đồ đoạn thẳng
 
Bg xac suat thong ke (khoi nganh ky thuat)
Bg xac suat thong ke (khoi nganh ky thuat)Bg xac suat thong ke (khoi nganh ky thuat)
Bg xac suat thong ke (khoi nganh ky thuat)
 
Ung dung he_thuc_vi-et_de_giai_cac_dang_bai_tap
Ung dung he_thuc_vi-et_de_giai_cac_dang_bai_tapUng dung he_thuc_vi-et_de_giai_cac_dang_bai_tap
Ung dung he_thuc_vi-et_de_giai_cac_dang_bai_tap
 
Sáng kiến kinh nghiệm đổi mới phương pháp giảng dạy Toán học
Sáng kiến kinh nghiệm đổi mới phương pháp giảng dạy Toán họcSáng kiến kinh nghiệm đổi mới phương pháp giảng dạy Toán học
Sáng kiến kinh nghiệm đổi mới phương pháp giảng dạy Toán học
 
PP Giải VL
PP Giải VLPP Giải VL
PP Giải VL
 
Luận văn: Dạy và học phân số ở bậc tiểu học Lào, HOT, 9đ
Luận văn: Dạy và học phân số ở bậc tiểu học Lào, HOT, 9đLuận văn: Dạy và học phân số ở bậc tiểu học Lào, HOT, 9đ
Luận văn: Dạy và học phân số ở bậc tiểu học Lào, HOT, 9đ
 
Luận văn: Nghiên cứu didactic việc sử dụng phần mềm cabri, 9đ
Luận văn: Nghiên cứu didactic việc sử dụng phần mềm cabri, 9đLuận văn: Nghiên cứu didactic việc sử dụng phần mềm cabri, 9đ
Luận văn: Nghiên cứu didactic việc sử dụng phần mềm cabri, 9đ
 

Similar to Luận văn: Các tính chất của hàm số và mối liên hệ giữa chúng trong dạy học toán ở phổ thông

Luận văn: Một nghiên cứu DIDACTIC về vị trí tương đối giữa hai đường thẳng tr...
Luận văn: Một nghiên cứu DIDACTIC về vị trí tương đối giữa hai đường thẳng tr...Luận văn: Một nghiên cứu DIDACTIC về vị trí tương đối giữa hai đường thẳng tr...
Luận văn: Một nghiên cứu DIDACTIC về vị trí tương đối giữa hai đường thẳng tr...Dịch vụ viết thuê Khóa Luận - ZALO 0932091562
 
Luận văn: Việc sử dụng kiến thức khái niệm của học sinh trong giải quyết vấn ...
Luận văn: Việc sử dụng kiến thức khái niệm của học sinh trong giải quyết vấn ...Luận văn: Việc sử dụng kiến thức khái niệm của học sinh trong giải quyết vấn ...
Luận văn: Việc sử dụng kiến thức khái niệm của học sinh trong giải quyết vấn ...Dịch vụ viết thuê Luận Văn - ZALO 0932091562
 
Luận văn: Nghiên cứu DIDACTIC phần bổ sung của chương trình thí điểm trung họ...
Luận văn: Nghiên cứu DIDACTIC phần bổ sung của chương trình thí điểm trung họ...Luận văn: Nghiên cứu DIDACTIC phần bổ sung của chương trình thí điểm trung họ...
Luận văn: Nghiên cứu DIDACTIC phần bổ sung của chương trình thí điểm trung họ...Viết thuê trọn gói ZALO 0934573149
 
Trac nghiem bang hinh ve va do thi
Trac nghiem bang hinh ve va do thiTrac nghiem bang hinh ve va do thi
Trac nghiem bang hinh ve va do thiHuyenngth
 
Khóa luận giáo dục tiểu học.
Khóa luận giáo dục tiểu học.Khóa luận giáo dục tiểu học.
Khóa luận giáo dục tiểu học.ssuser499fca
 
Luận văn: Khái niệm giá trị tuyệt đối trong dạy học toán ở trường phổ thông
Luận văn: Khái niệm giá trị tuyệt đối trong dạy học toán ở trường phổ thôngLuận văn: Khái niệm giá trị tuyệt đối trong dạy học toán ở trường phổ thông
Luận văn: Khái niệm giá trị tuyệt đối trong dạy học toán ở trường phổ thôngViết thuê trọn gói ZALO 0934573149
 
Cđ đồng dư thức trong toán 7
Cđ đồng dư thức trong toán 7Cđ đồng dư thức trong toán 7
Cđ đồng dư thức trong toán 7Cảnh
 
Luận văn: Nghiên cứu Didactic về hình vẽ ở trường phổ thông bước chuyển từ hì...
Luận văn: Nghiên cứu Didactic về hình vẽ ở trường phổ thông bước chuyển từ hì...Luận văn: Nghiên cứu Didactic về hình vẽ ở trường phổ thông bước chuyển từ hì...
Luận văn: Nghiên cứu Didactic về hình vẽ ở trường phổ thông bước chuyển từ hì...Dịch vụ viết thuê Khóa Luận - ZALO 0932091562
 
Luận văn: Nghiên cứu DIDACTIC về dạy học các bài toán tối ưu trong chủ đề giả...
Luận văn: Nghiên cứu DIDACTIC về dạy học các bài toán tối ưu trong chủ đề giả...Luận văn: Nghiên cứu DIDACTIC về dạy học các bài toán tối ưu trong chủ đề giả...
Luận văn: Nghiên cứu DIDACTIC về dạy học các bài toán tối ưu trong chủ đề giả...Viết thuê trọn gói ZALO 0934573149
 

Similar to Luận văn: Các tính chất của hàm số và mối liên hệ giữa chúng trong dạy học toán ở phổ thông (20)

Luận văn: Một nghiên cứu DIDACTIC về vị trí tương đối giữa hai đường thẳng tr...
Luận văn: Một nghiên cứu DIDACTIC về vị trí tương đối giữa hai đường thẳng tr...Luận văn: Một nghiên cứu DIDACTIC về vị trí tương đối giữa hai đường thẳng tr...
Luận văn: Một nghiên cứu DIDACTIC về vị trí tương đối giữa hai đường thẳng tr...
 
Luận văn: Nghiên cứu về cấp số nhân trong dạy Toán THPT, HOT
Luận văn: Nghiên cứu về cấp số nhân trong dạy Toán THPT, HOTLuận văn: Nghiên cứu về cấp số nhân trong dạy Toán THPT, HOT
Luận văn: Nghiên cứu về cấp số nhân trong dạy Toán THPT, HOT
 
Luận văn: Hệ thức vi-ét trong chương trình toán, HAY, 9đ
Luận văn: Hệ thức vi-ét trong chương trình toán, HAY, 9đLuận văn: Hệ thức vi-ét trong chương trình toán, HAY, 9đ
Luận văn: Hệ thức vi-ét trong chương trình toán, HAY, 9đ
 
Luận văn: Dạy học số phức ở trường phổ thông, HAY
Luận văn: Dạy học số phức ở trường phổ thông, HAYLuận văn: Dạy học số phức ở trường phổ thông, HAY
Luận văn: Dạy học số phức ở trường phổ thông, HAY
 
Luận văn: Khái niệm lũy thừa trọng dạy học toán ở trường phổ thông
Luận văn: Khái niệm lũy thừa trọng dạy học toán ở trường phổ thôngLuận văn: Khái niệm lũy thừa trọng dạy học toán ở trường phổ thông
Luận văn: Khái niệm lũy thừa trọng dạy học toán ở trường phổ thông
 
Luận văn: Khái niệm khoảng, đoạn trong phép tính đạo hàm, nguyên hàm và tích ...
Luận văn: Khái niệm khoảng, đoạn trong phép tính đạo hàm, nguyên hàm và tích ...Luận văn: Khái niệm khoảng, đoạn trong phép tính đạo hàm, nguyên hàm và tích ...
Luận văn: Khái niệm khoảng, đoạn trong phép tính đạo hàm, nguyên hàm và tích ...
 
Luận văn: Việc sử dụng kiến thức khái niệm của học sinh trong giải quyết vấn ...
Luận văn: Việc sử dụng kiến thức khái niệm của học sinh trong giải quyết vấn ...Luận văn: Việc sử dụng kiến thức khái niệm của học sinh trong giải quyết vấn ...
Luận văn: Việc sử dụng kiến thức khái niệm của học sinh trong giải quyết vấn ...
 
Khóa luận: Một nghiên cứu về dạy – học diện tích đa giác phẳng, 9 ĐIỂM
Khóa luận: Một nghiên cứu về dạy – học diện tích đa giác phẳng, 9 ĐIỂMKhóa luận: Một nghiên cứu về dạy – học diện tích đa giác phẳng, 9 ĐIỂM
Khóa luận: Một nghiên cứu về dạy – học diện tích đa giác phẳng, 9 ĐIỂM
 
Luận văn: Nghiên cứu DIDACTIC phần bổ sung của chương trình thí điểm trung họ...
Luận văn: Nghiên cứu DIDACTIC phần bổ sung của chương trình thí điểm trung họ...Luận văn: Nghiên cứu DIDACTIC phần bổ sung của chương trình thí điểm trung họ...
Luận văn: Nghiên cứu DIDACTIC phần bổ sung của chương trình thí điểm trung họ...
 
Luận văn: Dạy học giới hạn hữu hạn của hàm số ở trường phổ thông
Luận văn: Dạy học giới hạn hữu hạn của hàm số ở trường phổ thôngLuận văn: Dạy học giới hạn hữu hạn của hàm số ở trường phổ thông
Luận văn: Dạy học giới hạn hữu hạn của hàm số ở trường phổ thông
 
Luận văn: Kỹ năng giao tiếp của sinh viên Sư phạm trường Cao đẳng Cần Thơ
Luận văn:  Kỹ năng giao tiếp của sinh viên Sư phạm trường Cao đẳng Cần ThơLuận văn:  Kỹ năng giao tiếp của sinh viên Sư phạm trường Cao đẳng Cần Thơ
Luận văn: Kỹ năng giao tiếp của sinh viên Sư phạm trường Cao đẳng Cần Thơ
 
Trac nghiem bang hinh ve va do thi
Trac nghiem bang hinh ve va do thiTrac nghiem bang hinh ve va do thi
Trac nghiem bang hinh ve va do thi
 
Luận văn: Quan điểm vectơ trong dạy học phép biến hình ở trường phổ thông
Luận văn: Quan điểm vectơ trong dạy học phép biến hình ở trường phổ thôngLuận văn: Quan điểm vectơ trong dạy học phép biến hình ở trường phổ thông
Luận văn: Quan điểm vectơ trong dạy học phép biến hình ở trường phổ thông
 
Khóa luận giáo dục tiểu học.
Khóa luận giáo dục tiểu học.Khóa luận giáo dục tiểu học.
Khóa luận giáo dục tiểu học.
 
Luận văn: Khái niệm giá trị tuyệt đối trong dạy học toán ở trường phổ thông
Luận văn: Khái niệm giá trị tuyệt đối trong dạy học toán ở trường phổ thôngLuận văn: Khái niệm giá trị tuyệt đối trong dạy học toán ở trường phổ thông
Luận văn: Khái niệm giá trị tuyệt đối trong dạy học toán ở trường phổ thông
 
Cđ đồng dư thức trong toán 7
Cđ đồng dư thức trong toán 7Cđ đồng dư thức trong toán 7
Cđ đồng dư thức trong toán 7
 
Khó Khăn Tâm Lý Trong Việc Giải Quyết Tình Huống Sư Phạm Của Sinh Vi...
Khó Khăn Tâm Lý Trong Việc Giải Quyết Tình Huống Sư Phạm Của Sinh Vi...Khó Khăn Tâm Lý Trong Việc Giải Quyết Tình Huống Sư Phạm Của Sinh Vi...
Khó Khăn Tâm Lý Trong Việc Giải Quyết Tình Huống Sư Phạm Của Sinh Vi...
 
Luận văn: Nghiên cứu Didactic về hình vẽ ở trường phổ thông bước chuyển từ hì...
Luận văn: Nghiên cứu Didactic về hình vẽ ở trường phổ thông bước chuyển từ hì...Luận văn: Nghiên cứu Didactic về hình vẽ ở trường phổ thông bước chuyển từ hì...
Luận văn: Nghiên cứu Didactic về hình vẽ ở trường phổ thông bước chuyển từ hì...
 
Toan a2 bai tap
Toan a2   bai tapToan a2   bai tap
Toan a2 bai tap
 
Luận văn: Nghiên cứu DIDACTIC về dạy học các bài toán tối ưu trong chủ đề giả...
Luận văn: Nghiên cứu DIDACTIC về dạy học các bài toán tối ưu trong chủ đề giả...Luận văn: Nghiên cứu DIDACTIC về dạy học các bài toán tối ưu trong chủ đề giả...
Luận văn: Nghiên cứu DIDACTIC về dạy học các bài toán tối ưu trong chủ đề giả...
 

More from Dịch Vụ Viết Thuê Khóa Luận Zalo/Telegram 0917193864

More from Dịch Vụ Viết Thuê Khóa Luận Zalo/Telegram 0917193864 (20)

List 200 Đề Tài Báo Cáo Thực Tập Ngành Digital Marketing, 9 Điểm Từ Sinh Viên...
List 200 Đề Tài Báo Cáo Thực Tập Ngành Digital Marketing, 9 Điểm Từ Sinh Viên...List 200 Đề Tài Báo Cáo Thực Tập Ngành Digital Marketing, 9 Điểm Từ Sinh Viên...
List 200 Đề Tài Báo Cáo Thực Tập Ngành Digital Marketing, 9 Điểm Từ Sinh Viên...
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Du Lịch Khách Sạn, Điểm Cao Mới Nhất
List 200 Đề Tài Báo Cáo Thực Tập Ngành Du Lịch Khách Sạn, Điểm Cao Mới NhấtList 200 Đề Tài Báo Cáo Thực Tập Ngành Du Lịch Khách Sạn, Điểm Cao Mới Nhất
List 200 Đề Tài Báo Cáo Thực Tập Ngành Du Lịch Khách Sạn, Điểm Cao Mới Nhất
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Du Lịch Lữ Hành, Điểm Cao Mới Nhất
List 200 Đề Tài Báo Cáo Thực Tập Ngành Du Lịch Lữ Hành, Điểm Cao Mới NhấtList 200 Đề Tài Báo Cáo Thực Tập Ngành Du Lịch Lữ Hành, Điểm Cao Mới Nhất
List 200 Đề Tài Báo Cáo Thực Tập Ngành Du Lịch Lữ Hành, Điểm Cao Mới Nhất
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Công Nghiệp, Từ Các Trường Đại Học
List 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Công Nghiệp, Từ Các Trường Đại HọcList 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Công Nghiệp, Từ Các Trường Đại Học
List 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Công Nghiệp, Từ Các Trường Đại Học
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Công Nghiệp, Từ Các Trường Đại Học
List 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Công Nghiệp, Từ Các Trường Đại HọcList 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Công Nghiệp, Từ Các Trường Đại Học
List 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Công Nghiệp, Từ Các Trường Đại Học
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Công Trình, Từ Các Trường Đại Học
List 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Công Trình, Từ Các Trường Đại HọcList 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Công Trình, Từ Các Trường Đại Học
List 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Công Trình, Từ Các Trường Đại Học
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Tử Viễn Thông, 9 Điểm
List 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Tử Viễn Thông, 9 ĐiểmList 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Tử Viễn Thông, 9 Điểm
List 200 Đề Tài Báo Cáo Thực Tập Ngành Điện Tử Viễn Thông, 9 Điểm
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Đông Phương Học, Điểm Cao Mới Nhất
List 200 Đề Tài Báo Cáo Thực Tập Ngành Đông Phương Học, Điểm Cao Mới NhấtList 200 Đề Tài Báo Cáo Thực Tập Ngành Đông Phương Học, Điểm Cao Mới Nhất
List 200 Đề Tài Báo Cáo Thực Tập Ngành Đông Phương Học, Điểm Cao Mới Nhất
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Hệ Thống Thông Tin, Từ Các Trường Đại Học
List 200 Đề Tài Báo Cáo Thực Tập Ngành Hệ Thống Thông Tin, Từ Các Trường Đại HọcList 200 Đề Tài Báo Cáo Thực Tập Ngành Hệ Thống Thông Tin, Từ Các Trường Đại Học
List 200 Đề Tài Báo Cáo Thực Tập Ngành Hệ Thống Thông Tin, Từ Các Trường Đại Học
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Hướng Dẫn Viên Du Lịch, 9 Điểm
List 200 Đề Tài Báo Cáo Thực Tập Ngành Hướng Dẫn Viên Du Lịch, 9 ĐiểmList 200 Đề Tài Báo Cáo Thực Tập Ngành Hướng Dẫn Viên Du Lịch, 9 Điểm
List 200 Đề Tài Báo Cáo Thực Tập Ngành Hướng Dẫn Viên Du Lịch, 9 Điểm
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Doanh Quốc Tế, Từ Sinh Viên Khá Giỏi
List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Doanh Quốc Tế, Từ Sinh Viên Khá GiỏiList 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Doanh Quốc Tế, Từ Sinh Viên Khá Giỏi
List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Doanh Quốc Tế, Từ Sinh Viên Khá Giỏi
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Doanh Thương Mại, Từ Sinh Viên Kh...
List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Doanh Thương Mại, Từ Sinh Viên Kh...List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Doanh Thương Mại, Từ Sinh Viên Kh...
List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Doanh Thương Mại, Từ Sinh Viên Kh...
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Tế Đầu Tư, Từ Sinh Viên Khá Giỏi
List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Tế Đầu Tư, Từ Sinh Viên Khá GiỏiList 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Tế Đầu Tư, Từ Sinh Viên Khá Giỏi
List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Tế Đầu Tư, Từ Sinh Viên Khá Giỏi
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Tế Quốc Tế, Điểm Cao Từ Các Trườn...
List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Tế Quốc Tế, Điểm Cao Từ Các Trườn...List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Tế Quốc Tế, Điểm Cao Từ Các Trườn...
List 200 Đề Tài Báo Cáo Thực Tập Ngành Kinh Tế Quốc Tế, Điểm Cao Từ Các Trườn...
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành May Thời Trang, Từ Sinh Viên Khá Giỏi
List 200 Đề Tài Báo Cáo Thực Tập Ngành May Thời Trang, Từ Sinh Viên Khá GiỏiList 200 Đề Tài Báo Cáo Thực Tập Ngành May Thời Trang, Từ Sinh Viên Khá Giỏi
List 200 Đề Tài Báo Cáo Thực Tập Ngành May Thời Trang, Từ Sinh Viên Khá Giỏi
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Ngôn Ngữ Anh, Từ Sinh Viên Khá Giỏi
List 200 Đề Tài Báo Cáo Thực Tập Ngành Ngôn Ngữ Anh, Từ Sinh Viên Khá GiỏiList 200 Đề Tài Báo Cáo Thực Tập Ngành Ngôn Ngữ Anh, Từ Sinh Viên Khá Giỏi
List 200 Đề Tài Báo Cáo Thực Tập Ngành Ngôn Ngữ Anh, Từ Sinh Viên Khá Giỏi
 
List 200 đề tài báo cáo thực tập ngành ngôn ngữ nhật, từ các trường đại học
List 200 đề tài báo cáo thực tập ngành ngôn ngữ nhật, từ các trường đại họcList 200 đề tài báo cáo thực tập ngành ngôn ngữ nhật, từ các trường đại học
List 200 đề tài báo cáo thực tập ngành ngôn ngữ nhật, từ các trường đại học
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Quan Hệ Công Chúng, Từ Khóa Trước
List 200 Đề Tài Báo Cáo Thực Tập Ngành Quan Hệ Công Chúng, Từ Khóa TrướcList 200 Đề Tài Báo Cáo Thực Tập Ngành Quan Hệ Công Chúng, Từ Khóa Trước
List 200 Đề Tài Báo Cáo Thực Tập Ngành Quan Hệ Công Chúng, Từ Khóa Trước
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Quan Hệ Quốc Tế, Từ Sinh Viên Khá Giỏi
List 200 Đề Tài Báo Cáo Thực Tập Ngành Quan Hệ Quốc Tế, Từ Sinh Viên Khá GiỏiList 200 Đề Tài Báo Cáo Thực Tập Ngành Quan Hệ Quốc Tế, Từ Sinh Viên Khá Giỏi
List 200 Đề Tài Báo Cáo Thực Tập Ngành Quan Hệ Quốc Tế, Từ Sinh Viên Khá Giỏi
 
List 200 Đề Tài Báo Cáo Thực Tập Ngành Quản Lý Công, 9 Điểm Từ Sinh Viên Giỏi
List 200 Đề Tài Báo Cáo Thực Tập Ngành Quản Lý Công, 9 Điểm Từ Sinh Viên GiỏiList 200 Đề Tài Báo Cáo Thực Tập Ngành Quản Lý Công, 9 Điểm Từ Sinh Viên Giỏi
List 200 Đề Tài Báo Cáo Thực Tập Ngành Quản Lý Công, 9 Điểm Từ Sinh Viên Giỏi
 

Recently uploaded

Nhóm 10-Xác suất và thống kê toán-đại học thương mại
Nhóm 10-Xác suất và thống kê toán-đại học thương mạiNhóm 10-Xác suất và thống kê toán-đại học thương mại
Nhóm 10-Xác suất và thống kê toán-đại học thương mạiTruongThiDiemQuynhQP
 
ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...
ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...
ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...PhcTrn274398
 
1第一课:你好.pptx. Chinese lesson 1: Hello.Nỉ hao
1第一课:你好.pptx. Chinese lesson 1: Hello.Nỉ hao1第一课:你好.pptx. Chinese lesson 1: Hello.Nỉ hao
1第一课:你好.pptx. Chinese lesson 1: Hello.Nỉ haoBookoTime
 
2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard
2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard
2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hardBookoTime
 
Hệ phương trình tuyến tính và các ứng dụng trong kinh tế
Hệ phương trình tuyến tính và các ứng dụng trong kinh tếHệ phương trình tuyến tính và các ứng dụng trong kinh tế
Hệ phương trình tuyến tính và các ứng dụng trong kinh tếngTonH1
 
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...Nguyen Thanh Tu Collection
 
[GIẢI PHẪU BỆNH] Tổn thương cơ bản của tb bào mô
[GIẢI PHẪU BỆNH] Tổn thương cơ bản của tb bào mô[GIẢI PHẪU BỆNH] Tổn thương cơ bản của tb bào mô
[GIẢI PHẪU BỆNH] Tổn thương cơ bản của tb bào môBryan Williams
 
Gieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdf
Gieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdfGieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdf
Gieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdfXem Số Mệnh
 
Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...
Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...
Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...Xem Số Mệnh
 
syllabus for the book "Tiếng Anh 6 i-Learn Smart World"
syllabus for the book "Tiếng Anh 6 i-Learn Smart World"syllabus for the book "Tiếng Anh 6 i-Learn Smart World"
syllabus for the book "Tiếng Anh 6 i-Learn Smart World"LaiHoang6
 
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdfXem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdfXem Số Mệnh
 
Sáng kiến Dạy học theo định hướng STEM một số chủ đề phần “vật sống”, Khoa họ...
Sáng kiến Dạy học theo định hướng STEM một số chủ đề phần “vật sống”, Khoa họ...Sáng kiến Dạy học theo định hướng STEM một số chủ đề phần “vật sống”, Khoa họ...
Sáng kiến Dạy học theo định hướng STEM một số chủ đề phần “vật sống”, Khoa họ...Nguyen Thanh Tu Collection
 
Lập lá số tử vi trọn đời có luận giải chi tiết, chính xác n...
Lập lá số tử vi trọn đời có luận giải chi tiết, chính xác n...Lập lá số tử vi trọn đời có luận giải chi tiết, chính xác n...
Lập lá số tử vi trọn đời có luận giải chi tiết, chính xác n...Xem Số Mệnh
 
50 ĐỀ ĐỀ XUẤT THI VÀO 10 THPT SỞ GIÁO DỤC THANH HÓA MÔN TIẾNG ANH 9 CÓ TỰ LUẬ...
50 ĐỀ ĐỀ XUẤT THI VÀO 10 THPT SỞ GIÁO DỤC THANH HÓA MÔN TIẾNG ANH 9 CÓ TỰ LUẬ...50 ĐỀ ĐỀ XUẤT THI VÀO 10 THPT SỞ GIÁO DỤC THANH HÓA MÔN TIẾNG ANH 9 CÓ TỰ LUẬ...
50 ĐỀ ĐỀ XUẤT THI VÀO 10 THPT SỞ GIÁO DỤC THANH HÓA MÔN TIẾNG ANH 9 CÓ TỰ LUẬ...Nguyen Thanh Tu Collection
 
bài 5.1.docx Sinh học di truyền đại cương năm nhất của học sinh y đa khoa
bài 5.1.docx Sinh học di truyền đại cương năm nhất của học sinh y đa khoabài 5.1.docx Sinh học di truyền đại cương năm nhất của học sinh y đa khoa
bài 5.1.docx Sinh học di truyền đại cương năm nhất của học sinh y đa khoa2353020138
 
Ma trận - định thức và các ứng dụng trong kinh tế
Ma trận - định thức và các ứng dụng trong kinh tếMa trận - định thức và các ứng dụng trong kinh tế
Ma trận - định thức và các ứng dụng trong kinh tếngTonH1
 
Mạch điện tử - Điện tử số sáng tạo VN-new.pdf
Mạch điện tử - Điện tử số sáng tạo VN-new.pdfMạch điện tử - Điện tử số sáng tạo VN-new.pdf
Mạch điện tử - Điện tử số sáng tạo VN-new.pdfXem Số Mệnh
 
Linh kiện điện tử - Điện tử số sáng tạo VN.pdf
Linh kiện điện tử - Điện tử số sáng tạo VN.pdfLinh kiện điện tử - Điện tử số sáng tạo VN.pdf
Linh kiện điện tử - Điện tử số sáng tạo VN.pdfXem Số Mệnh
 
Bài giảng về vật liệu ceramic ( sứ vệ sinh, gạch ốp lát )
Bài giảng về vật liệu ceramic ( sứ vệ sinh, gạch ốp lát )Bài giảng về vật liệu ceramic ( sứ vệ sinh, gạch ốp lát )
Bài giảng về vật liệu ceramic ( sứ vệ sinh, gạch ốp lát )lamdapoet123
 
Sáng kiến “Sử dụng ứng dụng Quizizz nhằm nâng cao chất lượng ôn thi tốt nghiệ...
Sáng kiến “Sử dụng ứng dụng Quizizz nhằm nâng cao chất lượng ôn thi tốt nghiệ...Sáng kiến “Sử dụng ứng dụng Quizizz nhằm nâng cao chất lượng ôn thi tốt nghiệ...
Sáng kiến “Sử dụng ứng dụng Quizizz nhằm nâng cao chất lượng ôn thi tốt nghiệ...Nguyen Thanh Tu Collection
 

Recently uploaded (20)

Nhóm 10-Xác suất và thống kê toán-đại học thương mại
Nhóm 10-Xác suất và thống kê toán-đại học thương mạiNhóm 10-Xác suất và thống kê toán-đại học thương mại
Nhóm 10-Xác suất và thống kê toán-đại học thương mại
 
ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...
ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...
ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...
 
1第一课:你好.pptx. Chinese lesson 1: Hello.Nỉ hao
1第一课:你好.pptx. Chinese lesson 1: Hello.Nỉ hao1第一课:你好.pptx. Chinese lesson 1: Hello.Nỉ hao
1第一课:你好.pptx. Chinese lesson 1: Hello.Nỉ hao
 
2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard
2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard
2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard
 
Hệ phương trình tuyến tính và các ứng dụng trong kinh tế
Hệ phương trình tuyến tính và các ứng dụng trong kinh tếHệ phương trình tuyến tính và các ứng dụng trong kinh tế
Hệ phương trình tuyến tính và các ứng dụng trong kinh tế
 
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...
 
[GIẢI PHẪU BỆNH] Tổn thương cơ bản của tb bào mô
[GIẢI PHẪU BỆNH] Tổn thương cơ bản của tb bào mô[GIẢI PHẪU BỆNH] Tổn thương cơ bản của tb bào mô
[GIẢI PHẪU BỆNH] Tổn thương cơ bản của tb bào mô
 
Gieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdf
Gieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdfGieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdf
Gieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdf
 
Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...
Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...
Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...
 
syllabus for the book "Tiếng Anh 6 i-Learn Smart World"
syllabus for the book "Tiếng Anh 6 i-Learn Smart World"syllabus for the book "Tiếng Anh 6 i-Learn Smart World"
syllabus for the book "Tiếng Anh 6 i-Learn Smart World"
 
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdfXem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
 
Sáng kiến Dạy học theo định hướng STEM một số chủ đề phần “vật sống”, Khoa họ...
Sáng kiến Dạy học theo định hướng STEM một số chủ đề phần “vật sống”, Khoa họ...Sáng kiến Dạy học theo định hướng STEM một số chủ đề phần “vật sống”, Khoa họ...
Sáng kiến Dạy học theo định hướng STEM một số chủ đề phần “vật sống”, Khoa họ...
 
Lập lá số tử vi trọn đời có luận giải chi tiết, chính xác n...
Lập lá số tử vi trọn đời có luận giải chi tiết, chính xác n...Lập lá số tử vi trọn đời có luận giải chi tiết, chính xác n...
Lập lá số tử vi trọn đời có luận giải chi tiết, chính xác n...
 
50 ĐỀ ĐỀ XUẤT THI VÀO 10 THPT SỞ GIÁO DỤC THANH HÓA MÔN TIẾNG ANH 9 CÓ TỰ LUẬ...
50 ĐỀ ĐỀ XUẤT THI VÀO 10 THPT SỞ GIÁO DỤC THANH HÓA MÔN TIẾNG ANH 9 CÓ TỰ LUẬ...50 ĐỀ ĐỀ XUẤT THI VÀO 10 THPT SỞ GIÁO DỤC THANH HÓA MÔN TIẾNG ANH 9 CÓ TỰ LUẬ...
50 ĐỀ ĐỀ XUẤT THI VÀO 10 THPT SỞ GIÁO DỤC THANH HÓA MÔN TIẾNG ANH 9 CÓ TỰ LUẬ...
 
bài 5.1.docx Sinh học di truyền đại cương năm nhất của học sinh y đa khoa
bài 5.1.docx Sinh học di truyền đại cương năm nhất của học sinh y đa khoabài 5.1.docx Sinh học di truyền đại cương năm nhất của học sinh y đa khoa
bài 5.1.docx Sinh học di truyền đại cương năm nhất của học sinh y đa khoa
 
Ma trận - định thức và các ứng dụng trong kinh tế
Ma trận - định thức và các ứng dụng trong kinh tếMa trận - định thức và các ứng dụng trong kinh tế
Ma trận - định thức và các ứng dụng trong kinh tế
 
Mạch điện tử - Điện tử số sáng tạo VN-new.pdf
Mạch điện tử - Điện tử số sáng tạo VN-new.pdfMạch điện tử - Điện tử số sáng tạo VN-new.pdf
Mạch điện tử - Điện tử số sáng tạo VN-new.pdf
 
Linh kiện điện tử - Điện tử số sáng tạo VN.pdf
Linh kiện điện tử - Điện tử số sáng tạo VN.pdfLinh kiện điện tử - Điện tử số sáng tạo VN.pdf
Linh kiện điện tử - Điện tử số sáng tạo VN.pdf
 
Bài giảng về vật liệu ceramic ( sứ vệ sinh, gạch ốp lát )
Bài giảng về vật liệu ceramic ( sứ vệ sinh, gạch ốp lát )Bài giảng về vật liệu ceramic ( sứ vệ sinh, gạch ốp lát )
Bài giảng về vật liệu ceramic ( sứ vệ sinh, gạch ốp lát )
 
Sáng kiến “Sử dụng ứng dụng Quizizz nhằm nâng cao chất lượng ôn thi tốt nghiệ...
Sáng kiến “Sử dụng ứng dụng Quizizz nhằm nâng cao chất lượng ôn thi tốt nghiệ...Sáng kiến “Sử dụng ứng dụng Quizizz nhằm nâng cao chất lượng ôn thi tốt nghiệ...
Sáng kiến “Sử dụng ứng dụng Quizizz nhằm nâng cao chất lượng ôn thi tốt nghiệ...
 

Luận văn: Các tính chất của hàm số và mối liên hệ giữa chúng trong dạy học toán ở phổ thông

  • 1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH ________________ Đặng Minh Hải CÁC TÍNH CHẤT CỦA HÀM SỐ VÀ MỐI LIÊN HỆ GIỮA CHÚNG TRONG DẠY HỌC TOÁN PHỔ THÔNG Chuyên ngành : Lý luận và phương pháp dạy học môn Toán Mã số : 60 14 10 LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS.LÊ THÁI BẢO THIÊN TRUNG Thành phố Hồ Chí Minh - 2009
  • 2. LỜI CẢM ƠN Đầu tiên, tôi xin chân thành biết ơn TS. Lê Thái Bảo Thiên Trung, người đã nhiệt tình hướng dẫn và giúp đỡ tôi hoàn thành luận văn này. Tôi xin trân trọng cảm ơn PGS.TS. Lê Thị Hoài Châu, PGS.TS. Lê Văn Tiến, TS. Trần Lương Công Khanh, TS. Lê Thái Bảo Thiên Trung đã nhiệt tình giảng dạy, truyền thụ cho chúng tôi những kiến thức về Didactic toán, PGS.TS. Claude Comiti, PGS.TS. Annie Bessot, TS. Alain Birebent đã đóng góp những ý kiến định hướng cho đề tài. Xin cảm ơn các anh chị cùng khóa đã quan tâm, giúp đỡ tôi. Cuối cùng, xin cảm ơn gia đình, đặc biệt là vợ tôi, người đã luôn động viên tôi trong quá trình thực hiện luận văn. Tác giả Đặng Minh Hải
  • 3. DANH MỤC CÁC CHỮ VIẾT TẮT HS : Học sinh GV : Giáo viên GKNC10 : Sách giáo khoa Đại số 10 nâng cao hiện hành GKNC11 : Sách giáo khoa Đại số và Giải tích 11 nâng cao hiện hành GKNC12 : Sách giáo khoa Giải tích 12 nâng cao hiện hành GKCB10 : Sách giáo khoa Đại số 10 cơ bản hiện hành GKCB11 : Sách giáo khoa Đại số và Giải tích 11 cơ bản hiện hành GKCB12 : Sách giáo khoa Giải tích 12 cơ bản hiện hành GVNC10 : Sách giáo viên Đại số 10 nâng cao hiện hành GVNC11 : Sách giáo viên Đại số và Giải tích 11 nâng cao hiện hành GVNC12 : Sách giáo viên Giải tích 12 nâng cao hiện hành GVCB10 : Sách giáo viên Đại số 10 cơ bản hiện hành GVCB11 : Sách giáo viên Đại số và Giải tích 11 cơ bản hiện hành GVCB12 : Sách giáo viên Giải tích 12 cơ bản hiện hành SGK : Sách giáo khoa SGV : Sách giáo viên
  • 4. DANH MỤC CÁC BẢNG Bảng 2.1. Thống kê số lượng nhiệm vụ liên quan đến “khảo sát tính đơn điệu của hàm số”..................................................................................................28 Bảng 3.1. Thống kê các câu trả lời tình huống 1 ...................................................74 Bảng 3.2. Thống kê các câu trả lời tình huống 2 ...................................................76 Bảng 3.3. Thống kê các câu trả lời tình huống 3 ...................................................82 Bảng 3.4. Thống kê câu trả lời pha 1.....................................................................94 Bảng 3.5. Thống kê câu trả lời pha 2.....................................................................96
  • 5. MỞ ĐẦU 1. Những ghi nhận ban đầu và câu hỏi xuất phát Trong chương trình toán ở trường phổ thông, các tính chất đơn điệu, liên tục, khả vi của hàm số được huy động để giải quyết kiểu nhiệm vụ quan trọng: khảo sát hàm số (lớp 12). Liên quan đến kiểu nhiệm vụ này, chương trình chủ yếu nghiên cứu các loại hàm số sau: hàm bậc nhất y=ax+b, hàm bậc hai y=ax2 +bx+c, hàm đa thức bậc 3 y=ax3 +bx2 +cx+d, hàm đa thức bậc bốn trùng phương y=ax4 +bx2 +c, hàm phân thức ax b y cx d    (c≠0, ad-bc≠0), hàm phân thức 2 ax bx c y a' x b'     (a≠0, a’≠0)1 . Có thể thấy rõ một đặc trưng chung là các hàm số này đồng thời liên tục và khả vi trên các khoảng đơn điệu của nó. Với tư cách đối tượng2 , các khái niệm hàm số đơn điệu, hàm số liên tục, hàm số khả vi đã được nghiên cứu ở các lớp 10, 11. Điều này khiến chúng tôi tự hỏi rằng: mối liên hệ giữa ba khái niệm hàm số đơn điệu, hàm số liên tục, đạo hàm được thể hiện như thế nào? Có chênh lệch gì so với các mối liên hệ của chúng ở cấp độ tri thức khoa học? Khi chúng tôi học giải tích ở bậc đại học, các giảng viên luôn nhấn mạnh mối liên hệ liên tục-khả vi, đặc biệt là tính chất “một hàm số liên tục tại một điểm có thể không khả vi tại điểm đó”. Các minh họa bằng đồ thị theo sau các chứng minh chặt chẽ trên các phản ví dụ đã giúp chúng tôi hiểu rõ vấn đề, đặc biệt nhờ trực giác hình học, chúng tôi có thể dễ dàng xây dựng các phản ví dụ kiểu này. Như vậy, đồ thị là công cụ hữu hiệu trong việc minh họa trực quan mối liên hệ liên tục-khả vi. Ở phổ thông, điều này có được tính đến không ? Rộng hơn, đồ thị có được tính đến như một công cụ cho phép làm rõ các mối liên hệ giữa ba đối tượng: đơn điệu, liên tục, khả vi của hàm số không ? Từ những vấn đề trên, chúng tôi thấy việc nghiên cứu “Các tính chất của hàm số và mối liên hệ giữa chúng trong dạy học Toán phổ thông” là cần thiết. 2. Phạm vi lý thuyết tham chiếu Nhằm tìm kiếm câu trả lời cho các câu hỏi trên, chúng tôi đặt nghiên cứu của mình trong phạm vi lý thuyết didactic toán, cụ thể là lý thuyết nhân chủng học với các khái niệm : 1 Chỉ đề cập trong SGK nâng cao. 2 Theo Lê Văn Tiến (2005): “Trong phạm vi toán học ở trường phổ thông, ta hiểu một khái niệm hoạt động dưới dạng Đối tượng khi nó là đối tượng được nghiên cứu (được nghiên cứu, được khai thác các tính chất,…)” [19, tr.56]
  • 6. Chuyển đổi didactic, tổ chức toán học, mối quan hệ thể chế và mối quan hệ cá nhân với một đối tượng tri thức. Đây là công cụ hữu hiệu làm rõ mối quan hệ thể chế với mối liên hệ giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số. Bên cạnh đó, lý thuyết tình huống với các khái niệm: tình huống dạy học, biến didactic, môi trường được sử dụng nhằm xây dựng các tình huống thực nghiệm. Ngoài ra, khái niệm hợp đồng didactic sẽ được sử dụng nhằm một mặt làm rõ mối quan hệ thể chế, mặt khác khái niệm này giúp giải thích các ứng xử của học sinh liên quan đến mối liên hệ giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số. Trong phạm vi lý thuyết đã lựa chọn, từ các câu hỏi ban đầu, chúng tôi phát biểu các câu hỏi nghiên cứu như sau: Q1: Ở cấp độ tri thức khoa học, có thể có những mối liên hệ nào giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số? Q2: Trong thể chế dạy học toán phổ thông Việt Nam, mối quan hệ thể chế với mối liên hệ giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số được hình thành ra sao? Có những đặc trưng và ràng buộc nào? So với tri thức khoa học, mối liên hệ nào được đặt ra? Mối liên hệ nào không được đặt ra? Vì sao? Sự biểu diễn hàm số bằng hệ thống biểu đạt đồ thị có được tính đến như một môi trường cho phép làm rõ mối liên hệ giữa các đối tượng: tính đơn điệu, tính liên tục và sự khả vi của hàm số không? Q3: Những ràng buộc của thể chế ảnh hưởng thế nào đến mối quan hệ cá nhân của học sinh? 3. Mục đích và phương pháp nghiên cứu Trong khuôn khổ một luận văn thạc sĩ, bám sát những câu hỏi đã đặt ra, chúng tôi giới hạn vấn đề nghiên cứu của mình trên các mối liên hệ giữa ba tính chất đơn điệu, liên tục, khả vi của hàm số. Mục đích của luận văn là đi tìm một số yếu tố cho phép trả lời các câu hỏi nghiên cứu Q1, Q2, Q3 đã đặt ra ở trên. Trên cơ sở đó, chúng tôi sẽ tiến hành những nghiên cứu sau: -Nghiên cứu tri thức ở cấp độ tri thức khoa học về các mối liên hệ giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số bằng cách phân tích một số giáo trình đại học tiêu biểu. Nghiên cứu này trả lời câu hỏi Q1 và dùng làm tham chiếu khi phân tích các mối liên hệ giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số ở phổ thông.
  • 7. -Nghiên cứu mối quan hệ thể chế trên các mối liên hệ giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số nhằm tìm câu trả lời cho câu hỏi Q2. Để thực hiện nghiên cứu này, chúng tôi tiến hành phân tích chương trình và SGK hiện hành trên cơ sở tham chiếu những kết quả đạt được từ nghiên cứu tri thức ở cấp độ tri thức toán học. Kết thúc phần này, chúng tôi đề xuất các giả thuyết nghiên cứu liên quan đến quan niệm của học sinh dưới ảnh hưởng của mối quan hệ thể chế và đặt ra câu hỏi nghiên cứu mới. -Nghiên cứu thực nghiệm, nghiên cứu ảnh hưởng của mối quan hệ thể chế lên mối quan hệ cá nhân của HS. Nghiên cứu này nhằm trả lời một phần câu hỏi Q3 và câu hỏi được đặt ra liên quan đến đồ thị. 4. Tổ chức của luận văn Luận văn gồm phần mở đầu, 3 chương và kết luận chung. Trong phần mở đầu, chúng tôi trình bày câu hỏi ban đầu, khung lý thuyết tham chiếu, mục đích và phương pháp nghiên cứu, tổ chức của luận văn. Chương 1 là phần trình bày nghiên cứu tri thức ở cấp độ tri thức khoa học từ việc phân tích một số giáo trình đại học. Trong chương 2, chúng tôi trình bày phần nghiên cứu mối quan hệ thể chế với mối liên hệ giữa ba đối tượng tính đơn điệu, tính liên tục và sự khả vi của hàm số. Trên cơ sở đó, chúng tôi đề xuất các giả thuyết nghiên cứu và đặt câu hỏi mới. Chương 3 là phần nghiên cứu thực nghiệm. Thực nghiệm thứ nhất nhằm kiểm chứng tính thỏa đáng của giả thuyết đã nêu và tìm kiếm các yếu tố trả lời cho câu hỏi được đặt ra ở cuối chương 2. Thực nghiệm thứ hai nhằm tìm hiểu tác động của đồ thị lên mối quan hệ cá nhân của học sinh Phần kết luận, chúng tôi tóm tắt những kết quả đã nghiên cứu và đề xuất hướng nghiên cứu mới mở ra từ luận văn.
  • 8. Chương 1 : MỐI LIÊN HỆ GIỮA BA ĐỐI TƯỢNG TÍNH ĐƠN ĐIỆU, TÍNH LIÊN TỤC VÀ SỰ KHẢ VI CỦA HÀM SỐ Ở CẤP ĐỘ TRI THỨC KHOA HỌC Mục tiêu của chương là tìm câu trả lời cho câu hỏi sau : Ở cấp độ tri thức khoa học, có thể có những mối liên hệ nào giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số? Để đạt được mục tiêu này, chúng tôi chọn nghiên cứu các giáo trình :  [21]-Nguyễn Đình Trí (2008)-Toán học cao cấp tập 2-Phép tính giải tích một biến số-Nhà Xuất Bản Giáo Dục.  [22]-Jean-Marie Monier (2002)-Giáo trình toán tập 1-Giải tích 1-Nhà xuất bản Giáo dục. [21] là giáo trình toán được dùng phổ biến trong các trường đại học ở Việt Nam. [22] là cuốn sách được xuất bản trong khuôn khổ chương trình đào tạo kĩ sư chất lượng cao tại Việt Nam, với sự trợ giúp của bộ phận Văn hóa và Hợp tác của Đại Sứ quán Pháp tại nước Cộng hòa Xã hội chủ nghĩa Việt Nam. Đây là hai tài liệu tham khảo chính. Ngoài ra, ở một số nội dung, để làm rõ vấn đề chúng tôi cũng tham khảo thêm :  [6]-Fichtengon (1977) – Cơ sở Giải tích toán học - NXB Đại học và Trung học chuyên nghiệp.  [23]-Richard F. Bass (2009), Real Analysis, (www.math.uconn.edu/~bass/meas.pdf).  [24]-Israel Kleiner (1989), Evolution of the Function Concept: A Brief Survey, The College Mathematics Journal, Vol. 20, No. 4 (Sep), tr.282-300 Mathematical Association of America.  [25]-Discontinuous and monotone Functions (www.mathcs.org/analysis/reals/cont/disconti.html) Như vậy, chúng tôi chỉ giới hạn nghiên cứu các mối liên hệ có thể có giữa 3 đối tượng tính đơn điệu, tính liên tục và sự khả vi của hàm số trong các giáo trình đã chọn. Trước hết, chúng tôi điểm qua các khái niệm tính đơn điệu, tính liên tục và sự khả vi của hàm số nhằm tìm hiểu xem các mối liên hệ giữa chúng có được thể hiện trong các định nghĩa không ? Sau đó, chúng tôi xem xét các mối liên hệ được thể hiện trong các định lí, tính chất liên quan đến ba đối tượng này.
  • 9. 1.1 Các khái niệm đơn điệu, liên tục, khả vi 1.1.1 Khái niệm hàm số đơn điệu [21] đưa vào định nghĩa như sau: “ NếuJ I R1 , hàm số f:I→R được gọi là tăng trên J nếu 1 2 1 2 1 2, , ( ) ( )x x J x x f x f x    Tăng nghiêm ngặt trên J nếu 1 2 1 2 1 2, , ( ) ( )x x J x x f x f x    Giảm trên J nếu 1 2 1 2 1 2, , ( ) ( )x x J x x f x f x    Giảm nghiêm ngặt trên J nếu 1 2 1 2 1 2, , ( ) ( )x x J x x f x f x    Hàm số tăng hay giảm trên J được gọi là đơn điệu trên J.” [21, tr.46] Định nghĩa hàm đơn điệu trong [22]: “ Cho ( )X R và X f R 2 1)Ta nói f tăng khi và chỉ khi : 2 1 2 1 2 1 2 1 2( , ) , ( , , ( ) ( ))x x X x x X x x f x f x      2) Ta nói f giảm khi và chỉ khi : 2 1 2 1 2 1 2 1 2( , ) , ( , , ( ) ( ))x x X x x X x x f x f x      3) Ta nói f tăng nghiêm ngặt khi và chỉ khi : 2 1 2 1 2 1 2 1 2( , ) , ( , , ( ) ( ))x x X x x X x x f x f x      4) Ta nói f giảm nghiêm ngặt khi và chỉ khi : 2 1 2 1 2 1 2 1 2( , ) , ( , , ( ) ( ))x x X x x X x x f x f x      5)Ta nói f đơn điệu khi và chỉ khi f tăng hoặc f giảm. 6)Ta nói f đơn điệu nghiêm ngặt khi và chỉ khi f tăng nghiêm ngặt hoặc f giảm nghiêm ngặt. ” 3 [22, tr.103] Nhận xét : Theo cách trình bày của [21] và [22], khái niệm hàm số đơn điệu được xét trên một tập con bất kì khác rỗng của R. Cả [21] và [22] đều phân biệt “tăng (giảm)” với “tăng (giảm) 1 Trong [21] kí hiệu A  B nghĩa là mọi phần tử của A đều thuộc B hay A là tập con của B, A  B nghĩa là mọi phần tử của A đều thuôc B, và B có ít nhất một phần tử không thuôc A hay A là tập con thực sự của B. 2 P(R) là tập các tập con của R, RX là tập các hàm số từ X vào R. 3 f là hàm số từ X vào R.
  • 10. nghiêm ngặt”. [21] dùng thuật ngữ đơn điệu để chỉ hàm tăng hay giảm còn trong trường hợp hàm “tăng (giảm) nghiêm ngặt” thì không có một thuật ngữ chung. [22] thì nêu rõ “Ta nói f đơn điệu khi và chỉ khi f tăng hoặc f giảm.” và “Ta nói f đơn điệu nghiêm ngặt khi và chỉ khi f tăng nghiêm ngặt hoặc f giảm nghiêm ngặt.”. Từ đây về sau, trong luận văn này, khi nói hàm đơn điệu ta hiểu hàm tăng hay giảm, khi nói hàm đơn điệu ngặt ta hiểu hàm tăng hay giảm nghiêm ngặt. 1.1.2 Khái niệm hàm số liên tục  Liên tục tại một điểm “ Cho f(x) là một hàm số xác định trên (a,b); nói rằng f(x) liên tục tại ( , )ox a b nếu lim ( ) ( ) o o x x f x f x   ” [21, tr.89] “Cho f: I →K, a I . Ta nói f liên tục tại a khi và chỉ khi: 0, 0, ,( ( ) ( ) )x I x a f x f a              .” 4 [22, tr.120] Nhận xét: [21] và [22] định nghĩa khái niệm liên tục tại một điểm theo hai cách khác nhau. [21] thông qua khái niệm giới hạn (tránh ngôn ngữ ,  ), [22] định nghĩa trực tiếp bằng ngôn ngữ ,  (định nghĩa của Weierstrass). Ngay sau định nghĩa trên, [22] đưa ra định lý: “Cho :f I K , a I . Để f liên tục tại a thì điều kiện cần và đủ là f có giới hạn là f(a) tại điểm a.”[22, tr.120], khẳng định sự tương đương của hai định nghĩa trên. Tiếp theo định nghĩa về sự liên tục của hàm tại một điểm, [21] và [22] đều đưa ra định nghĩa về điểm gián đoạn và phân loại chúng: “Hàm số f(x) không liên tục tại điểm ox được gọi là gián đoạn tại điểm ấy. Giả sử hàm f xác định trên đoạn [a,b], [ , ]ox a b là một điểm gián đoạn của f . Ta nói ox là điểm gián đoạn bỏ qua được nếu ( 0) ( 0)o of x f x   5 ; ox là điểm gián đoạn loại một nếu ( 0) , ( 0)o of x R f x R    nhưng ( 0) ( 0)o of x f x   , hiệu ( 0) ( 0)o of x f x   được gọi là bước nhảy của f tại ox ; ox được gọi là điểm gián đoạn loại hai nếu nó không thuộc hai loại trên.” [21, tr.90] “Ta nói f gián đoạn tại a khi và chỉ khi f không liên tục tại a. 4 I là một trong chín loại khoảng của R: [a,b], [a,b), (a,b], (a,b), (-∞;a), (-∞;a], (b,+∞), [b,+∞), (-∞;+∞). K là hoặc R. Trong luận văn này, ta hiểu K là R. 5 ( 0) lim ( ) o o x x f x f x    , ( 0) lim ( ) o o x x f x f x   
  • 11. […] Gián đoạn loại 1 Ta nói f có điểm gián đoạn loại 1 tại a khi và chỉ khi: f không liên tục tại a, f có giới hạn trái tại a (nếu f xác định bên trái a), f có giới hạn phải tại a (nếu f xác định bên phải a). Nếu f không liên tục tại a và không có điểm gián đoạn loại 1 tại a, thì ta nói f có điểm gián đoạn loại 2 tại a” [22, tr.120-121] Nhận xét: Cách định nghĩa điểm gián đoạn của [21] và [22] là giống nhau. Về cách phân loại, điểm gián đoạn bỏ qua được và điểm gián đoạn loại 1 của [21] tương đương với điểm gián đoạn loại 1 của [22].  Liên tục trên khoảng “Nói rằng hàm số f(x) liên tục trên khoảng (a,b) nếu f(x) liên tục tại mọi ( , )x a b .” [21, tr.91] “Cho :f I K . Ta nói f liên tục trên I khi và chỉ khi f liên tục tại mọi điểm của I.” [22, tr.121] 1.1.3 Khái niệm hàm số khả vi “ Cho a I , I f K . Ta nói f khả vi tại a khi và chỉ khi 0 ( ) ( ) lim h f a h f a h   tồn tại và hữu hạn; giới hạn này được kí hiệu là f’(a) và được gọi là đạo hàm của f tại a.” [22, tr.139] “Cho hàm số f(x) xác định trong khoảng (a,b) nói rằng hàm số f(x) khả vi tại điểm ( , )c a b nếu tồn tại giới hạn ( ) ( ) lim , x c f x f c A x c x c     Số A; giới hạn của tỉ số ( ) ( ) , f x f c x c x c    , khi x c được gọi là đạo hàm của hàm số f(x) lấy tại điểm x=c; và kí hiệu f’(c).” [21, tr.119] Nhận xét: Hai cách định nghĩa về hình thức là khác nhau, nhưng thực chất là một. [21] nêu rõ điều này qua nhận xét sau: “Nếu đặt x c x   thì biểu thức định nghĩa trở thành 0 ( ) ( ) lim : '( ) x f c x f c f c x       ” [21, tr.119]
  • 12. Sau khi trình bày định nghĩa đạo hàm tại một điểm, cả [21] và [22] đều phân tích rõ ý nghĩa hình học của đạo hàm. “Đạo hàm tại mỗi điểm chính là hệ số góc của tiếp tuyến của đồ thị của f(x) số tại điểm đó; và một hàm số khả vi tại một điểm x=c có nghĩa là tại điểm x=c, đồ thị của f(x) có một tiếp tuyến duy nhất không vuông góc với trục Ox.” [21, tr.120] “[…] tính khả vi của f được diễn giải hình học bởi sự tồn tại của tiếp tuyến không song song với (yy’) tại điểm A có tọa độ (a,f(a)) trên đường cong Cf biểu diễn f. Tiếp tuyến này có hệ số góc là f’(a)”. Như vậy, về mặt hình học, một hàm số không khả vi tại một điểm nào đó nếu đồ thị của nó không có tiếp tuyến tại điểm đó. 1.1.4 Kết luận Xét trên định nghĩa thì các khái niệm hàm số đơn điệu, hàm số liên tục, hàm số khả vi được định nghĩa một cách độc lập nhau. Các mối liên hệ giữa ba đối tượng này không được thể hiện trong các định nghĩa của chúng. 1.2 Mối liên hệ giữa ba khái niệm hàm số đơn điệu, hàm số liên tục và hàm số khả vi 1.2.1 Đơn điệu-Liên tục Chúng tôi bắt đầu bằng định lý 3.10 trong [21] “ Điều kiện ắt có và đủ để một hàm số xác định, liên tục trên một khoảng (a,b) là một đơn ánh là hàm số đơn điệu ngặt trên khoảng đó.” [21, tr.103] Nhận xét : Mặc dù định lý phát biểu cho khoảng (a,b), xem xét cách chứng minh trong [21], chúng tôi thấy rằng, nó vẫn đúng cho khoảng I bất kì. Do đó, ta có thể phát biểu lại định lý trên như sau : “ cho hàm số f liên tục trên khoảng I. Khi đó, f đơn điệu ngặt trên I khi và chỉ khi nó đơn ánh trên khoảng đó ”. Định lý trên đề cập đến mối liên hệ giữa tính đơn điệu ngặt và sự đơn ánh của một hàm liên tục trên một khoảng I nào đó. Dễ dàng nhận thấy, một hàm đơn điệu ngặt trên I thì đơn ánh trên I, nhưng nếu nó đơn ánh trên I thì chưa chắc đã đơn điệu trên khoảng đó. Điều này được nêu rõ trong [22] : “ Mọi ánh xạ đơn điệu nghiêm ngặt đều là đơn ánh ; nhưng điều ngược lại không đúng như ở ví dụ sau :
  • 13. O x21 1 2 4 y , 1 à 1 1 , 1 1 , 1           R R x x v x x x x [22, tr.103] Định lý 3.10 cho thấy, chiều ngược lại chỉ đúng nếu có thêm điều kiện hàm liên tục trên I. Nhìn theo một góc độ khác, có thể nói một hàm liên tục trên khoảng I phải thỏa mãn thêm điều kiện đơn ánh trên khoảng đó thì đơn điệu ngặt trên I. Các tài liệu [21], [22] không đề cập đến tính liên tục của một hàm đơn điệu. Tuy nhiên, ta biết rằng có những hàm đơn điệu trên một khoảng I nhưng không liên tục trên I, xét ví dụ sau: Ví dụ : :[0,2] , [0,1) 2 , [1,2]      f R x x x x x Rõ ràng, f đơn điệu tăng trên [0,2] nhưng bị gián đoạn tại x=1 nên không liên tục trên [0,2]. Ta thấy đồ thị của nó là một đường đi lên từ trái sang phải nhưng không liên nét trên [0 ;2]. Như vậy, một hàm đơn điệu trên I vẫn có thể bị gián đoạn trên I. Nhưng tập các điểm gián đoạn và loại của điểm gián đoạn của một hàm đơn điệu trên khoảng I lại khá “ đặc biệt ”:  Một hàm đơn điệu trên I thì các điểm gián đoạn nếu có của nó chỉ có thể là điểm gián đoạn loại 1.  Một hàm đơn điệu trên I thì tập các điểm gián đoạn của nó nhiều nhất đếm được ” (tham khảo [25]) Từ đó ta thấy rằng, một hàm đơn điệu trên I vẫn có thể không liên tục trên khoảng đó, điểm gián đoạn nếu có chỉ có thể có các điểm gián đoạn loại 1 và tập các điểm gián đoạn của nó là đếm được. Ta đặt ra câu hỏi: một hàm số đơn điệu trên I cần thỏa mãn thêm điều kiện gì để liên tục trên I ? Xét định lí sau:
  • 14. “Nếu tập các giá trị mà hàm đơn điệu tăng (giảm) f(x) lấy khi x biến thiên trong khoảng I thuộc khoảng J và lấp đầy khoảng đó thì hàm f(x) liên tục trong khoảng I.”(*) [6, tr.94] Nhận xét: Như vậy, một hàm đơn điệu trên một khoảng I sẽ liên tục trên I nếu ảnh của I qua nó là một khoảng nào đó của R. Theo một hệ quả trong [6]: “ nếu hàm f xác định và liên tục trên khoảng X bất kì (đóng hay không, hữu hạn hay vô hạn) thì các giá trị mà hàm nhận cũng sẽ lấp đầy một khoảng nào đó”([6, tr.104]), ta thấy rằng một hàm liên tục trên khoảng I thì ảnh của khoảng I qua nó là một khoảng, tuy nhiên điều ngược lại không đúng, xét ví dụ sau: “ 1 ( ) sin ( 0), (0) 0f x x f x    ” [6, tr.105]. Hàm đã cho biến [-2,2] thành [-1,1] nhưng rõ ràng không liên tục trên [-2,2] vì nó bị gián đoạn tại x=0. Định lý (*) chỉ ra rằng, điều ngược lại sẽ đúng nếu hàm thỏa mãn thêm điều kiện “đơn điệu trên khoảng I”. Đến đây ta trả lời được câu hỏi “một hàm đơn điệu trên I thỏa mãn thêm điều kiện gì thì liên tục trên I ?”. Phần tiếp theo dưới đây chúng tôi giới thiệu một ứng dụng quan trọng của định lí này. Chúng ta đều biết rằng, các hàm sơ cấp liên tục trên miền xác định của chúng. Từ sự liên tục của hàm hằng và hàm số y = x, ta dễ dàng chứng minh được sự liên tục của hàm đa thức, phân thức trên tập xác định của chúng bằng cách dùng các định lí về tổng, hiệu, tích, thương của các hàm liên tục. Nhưng việc chứng minh sự liên tục của các hàm sơ cấp cơ bản khác: hàm mũ y = ax (a>1), hàm lôgarit y=logax (a>0, a≠1), hàm lũy thừa y = xµ (µ>0 hay µ<0), các hàm lượng giác, các hàm lượng giác ngược thì phải nhờ đến định lý (*). Chẳng hạn: “2o . Hàm mũ y = ax (a>1) đơn điệu tăng khi x biến thiên trong khoảng X=(- ∞;+∞). Giá trị của nó dương và lấp đầy toàn khoảng Y=(0;+∞), điều đó rõ ràng vì lôgarit x = logay tồn tại đối với bất kì y>0. Thành thử hàm mũ liên tục với giá trị x bất kì.” [6, tr.95] Độc giả quan tâm có thể tham khảo thêm [6, tr.95-96]. Kết luận Ta có một số tính chất sau thể hiện mối liên hệ giữa tính đơn điệu và liên tục của hàm số:  Hàm đơn điệu trên I (khoảng, nửa khoảng, đoạn) có thể không liên tục trên I. Hàm đơn điệu trên I thì chỉ có thể có điểm gián đoạn loại 1 và tập các điểm gián đoạn của nó trên I nhiều nhất là đếm được.  Hàm liên tục và đơn ánh trên I thì đơn điệu ngặt trên I.
  • 15.  Hàm đơn điệu trên khoảng I, biến I thành một khoảng của R thì liên tục trên I. 1.2.2 Liên tục-Khả vi Sau định nghĩa hàm khả vi tại một điểm, [22] đưa ra mệnh đề sau: “Cho a I , I f K . Nếu f khả vi tại a thì f liên tục tại a” [22, tr.141] Nhận xét: Mệnh đề trên cho thấy, một hàm khả vi tại một điểm thì liên tục tại điểm đó. Chiều ngược lại thì sao? Ngay sau mệnh đề trên, [22] đưa ra nhận xét: “Khẳng định đảo của mệnh đề trên là sai. Một ánh xạ có thể liên tục tại a nhưng không khả vi tại a như trong các ví dụ sau: i) . : R R x x   Liên tục tại 0 nhưng không khả vi tại 0. ii) .:R R x x    Liên tục tại 0 nhưng không khả vi tại 0, vì 0 0 1 0, h h h h h        iii) : 1 sin , 0 0 , 0        f R R x x x x x Liên tục tại 0 (vì 0 ( ) 0x f x x    ) và không khả vi tại 0 vì ( ) (0) 1 sin f h f h h   không có giới hạn khi h→0. [22, tr.142] Vấn đề trên cũng được nêu rõ trong [21], nhưng không có ví dụ và minh họa rõ ràng bằng đồ thị như [22]. Liên quan đến việc xem xét tính khả vi của một hàm liên tục trên một khoảng, đã từng có một giai đoạn trong lịch sử (những năm nửa sau thế kỉ 19), người ta nghĩ rằng một hàm số liên tục thì khả vi trừ ra tại một số hữu hạn các điểm: “đến khoảng những năm 1870,
  • 16. nhiều bài viết về giải tích đã chứng minh một hàm số liên tục thì khả vi trừ ra tại một số hữu hạn các điểm, ngay cả Cauchy6 cũng tin như vậy” ([24 , tr.293]). Năm 1872, Weierstrass đã làm sửng sốt cộng đồng toán học khi đưa ra một ví dụ nổi tiếng về một hàm liên tục trên tập số thực nhưng không khả vi tại điểm nào cả:  0 ( ) cosn n n f x b a x     trong đó a là số nguyên lẻ, b là số thực trong khoảng (0,1) và 3 1 2 ab    (Bolzano đã đưa ra một ví dụ như thế vào năm 1834 nhưng không được chú ý) (tham khảo [24, tr.293]). Như vậy, đã có một giai đoạn trong lịch sử người ta tin rằng, một hàm liên tục chỉ có thể có hữu hạn các điểm tại đó hàm không khả vi, ví dụ của Weierstrass đã chỉ ra có những hàm liên tục trên R nhưng không đâu khả vi. Từ đó, ta thấy rằng khi một hàm liên tục thì chưa thể kết luận gì về sự khả vi của nó, một hàm liên tục tại một điểm có thể không khả vi tại điểm đó, một hàm liên tục trên một khoảng có thể có hữu hạn hay vô hạn các điểm tại đó hàm không khả vi hay có thể không đâu khả vi trên khoảng đó. Phân tích trên cũng chỉ ra rằng, trong lịch sử phát triển của toán học, đã tồn tại một “chướng ngại” liên quan đến cực “liên tục → khả vi”, đó là: một hàm số liên tục trên một khoảng thì khả vi trên khoảng đó trừ ra tại một số hữu hạn các điểm. Sau đây, chúng tôi giới thiệu một định lí về “giới hạn của đạo hàm” trong đó nêu ra một số điều kiện để một hàm liên tục tại một điểm khả vi tại điểm đó: “Hệ quả (“định lý giới hạn của đạo hàm”) Cho ox R , I là một khoảng của R sao cho o ox I , f : I→R là một ánh xạ. Nếu f liên tục tại xo , f khả vi tại I-{xo}, f’ có giới hạn hữu hạn là l tại xo thì f khả vi tại xo và f’(xo)=l, và do đó f’ liên tục tại xo .” [22, tr.161] Định lí trên chỉ ra rằng hàm số f : I→R liên tục tại xo nếu khả vi tại mọi điểm của I khác xo và f’ có giới hạn hữu hạn l tại xo thì nó khả vi tại xo và f’(xo)=l . Kết luận Với cực liên tục – khả vi, ta có kết luận sau:  Hàm khả vi tại một điểm thì liên tục tại điểm đó.  Hàm liên tục tại một điểm có thể không khả vi tại điểm đó.  Tồn tại một chướng ngại khoa học luận: Hàm số liên tục trên một khoảng thì khả vi trên khoảng đó, trừ ra một số hữu hạn điểm. 6 Augustin-Louis Cauchy (1789 – 1857): một nhà toán học nổi tiếng người Pháp
  • 17. 1.2.3 Đơn điệu-Khả vi Chúng tôi bắt đầu bằng định lí sau: “Định lý 5.7 Cho f là một hàm số xác định, liên tục trong một khoảng đóng hữu hạn [a,b] và khả vi trong khoảng mở (a,b), khi đó: (1) Điều kiện ắt có và đủ để f(x) tăng (giảm) trên [a,b] là f’(x)0 (f’(x) 0) với mọi ( , )x a b (2) Nếu f’(x)0 (f’(x)0) với mọi ( , )x a b và nếu f’(x)>0 (f’(x)<0) tại ít nhất một điểm x thì f(a)>f(b) ( f(a)<f(b)).” [21, tr.161] “Định lý 1: Cho f : I → R liên tục trên I, khả vi trên o I . Để f tăng trên I điều kiện cần và đủ là : , '( ) 0 o x I f x   . […] Khi khảo sát –f thay cho f, ta thu được định lý tương tự như định lý trên bằng cách thay tăng bởi giảm và 0 bởi  0.” [22, tr.164-165] Nhận xét: Phát biểu trên trong [21] và [22] cho thấy khi hàm số f(x) liên tục trên I ( khoảng, nửa khoảng, đoạn), khả vi trên o I 7 thì hàm đơn điệu tăng (giảm) trên I khi và chỉ khi f’(x)≥0 (f’(x)≤0) với mọi x thuộc o I . Về đơn điệu nghiêm ngặt, [22] đưa ra định lí sau: “Định lý 2: Cho f: I→R liên tục trên I, khả vi trên o I . Để f tăng nghiêm ngặt, điều kiện cần và đủ là: , '( ) 0   o x I f x và {  o x I , f’(x)=0} không chứa bất kì một khoảng có phần trong không rỗng nào.” [22, tr.165] Như vậy, ngoài các điều kiện giống với định lý 1, để f tăng nghiêm ngặt, ta còn cần thêm điều kiện tập các điểm mà tại đó đạo hàm bằng 0 “không chứa bất kì một khoảng có phần trong không rỗng nào.” Từ đó mặc dù [22] không đề cập nhưng ta có thể suy ra hệ quả sau: “ Cho f: I→R liên tục trên I, khả vi trên o I . Nếu , '( ) 0   o x I f x và {  o x I , f’(x)=0} nhiều nhất đếm được thì f tăng nghiêm ngặt”. 7 o I là phần trong của khoảng I, ví dụ phần trong của [a,b] là (a,b).
  • 18. O x21 1 4 y Một giả thuyết quan trọng của các phát biểu trên là f khả vi trên phần trong của khoảng đang xét, ta đặt ra câu hỏi: “tồn tại hay không những hàm không khả vi trên o I nhưng vẫn đơn điệu trên I ?”. Vấn đề này không được đưa ra trong [21] và [22] nhưng có thể trả lời ngay rằng: tồn tại những hàm không khả vi trên o I nhưng vẫn đơn điệu trên khoảng đó. Ta sẽ thấy rõ qua ví dụ sau: Ví dụ: :(0,2) , (0,1) 3 2 , [1,2)       f R x x x x x Hàm số f(x) không khả vi trên (0,2) vì nó không có đạo hàm tại x=1, nhưng đơn điệu tăng trên (0,2). Như vậy, một hàm đơn điệu trên khoảng I có thể không khả vi trên I. Tuy nhiên, khi một hàm đơn điệu trên khoảng I thì tập các điểm không khả vi của hàm đó trên I lại có một tính chất khá đặc biệt : “ Hàm đơn điệu trên I thì khả vi hầu khắp nơi trên I, nghĩa là tập các điểm thuộc I mà tại đó hàm không khả vi có độ đo lesbgue bằng không.” [23, tr.40] Kết luận:  Hàm liên tục trên I (khoảng, nửa khoảng, đoạn), khả vi trên o I thì tăng (giảm) trên I khi và chỉ khi f’(x)≥0 (f’(x)≤0) với mọi x thuộc o I .  Hàm liên tục trên I, khả vi trên o I thì f tăng (giảm) nghiêm ngặt khi và chỉ khi f’(x)≥0 (f’(x)≤0) trên o I và {  o x I , f’(x)=0} không chứa bất kì một khoảng nào có phần trong khác rỗng.  Hàm đơn điệu trên I có thể không khả vi trên I.  Hàm đơn điệu trên I thì khả vi hầu khắp nơi trên I.
  • 19. 1.3 Kết luận chương 1 Từ những phân tích trên, có thể thấy rõ giữa tính đơn điệu, tính liên tục và sự khả vi có nhiều mối liên hệ qua lại với nhau, chúng tôi thể hiện bằng sơ đồ sau: Để thấy rõ ý nghĩa của các mối liên hệ giữa 3 đối tượng này, chúng tôi tổng kết dưới dạng các câu hỏi và câu trả lời đối với từng cực: Cực Đơn điệu-Liên tục Hàm số đơn điệu trên I (khoảng, nửa khoảng, đoạn) có liên tục trên I không?  Hàm đơn điệu trên I có thể không liên tục trên I. Như vậy một hàm số đơn điệu trên I có thể không liên tục trên I. Điểm gián đoạn và tập các điểm gián đọan nếu có của một hàm số đơn điệu trên I có gì đặc biệt?  Hàm đơn điệu trên I thì chỉ có thể có điểm gián đoạn loại 1 (tồn tại giới hạn trái và phải) và tập các điểm gián đoạn của nó trên I nhiều nhất là đếm được. Hàm đơn điệu trên khoảng I cần thêm điều kiện gì thì liên tục trên I ?  Hàm đơn điệu trên khoảng I, biến I thành một khoảng nào đó của R thì liên tục trên I. Một hàm số liên tục trên I cần thêm điều kiện gì thì đơn điệu trên I ?  Hàm liên tục và đơn ánh trên khoảng I thì đơn điệu ngặt trên I. Cực Đơn điệu-Khả vi Hàm số khả vi trên I (khoảng, nửa khoảng, đoạn) thì đơn điệu trên I khi nào?  Hàm liên tục trên I, khả vi trên o I (phần trong của I) thì tăng (giảm) trên I khi và chỉ khi f’(x)≥0 (f’(x)≤0) với mọi x thuộc o I .  Hàm f liên tục trên I, khả vi trên o I thì f tăng (giảm) nghiêm ngặt khi và chỉ khi f’(x)≥0 (f’(x)≤0) trên o I và {  o x I , f’(x)=0} không chứa bất kì một khoảng nào có phần trong khác rỗng. Liên tục Khả vi Đơn điệu
  • 20. Một hệ quả được rút ra: Hàm f liên tục trên I, khả vi trên o I thì f tăng (giảm) nghiêm ngặt khi f’(x)≥0 (f’(x)≤0) trên o I và tập các điểm làm đạo hàm triệt tiêu trên I nhiều nhất đếm được. Hàm số đơn điệu trên I có khả vi trên I không?  Hàm đơn điệu trên I có thể không khả vi trên I. Như vậy, một hàm số đơn điệu trên I có thể không khả vi trên I. Tập các điểm không khả vi của hàm số trên I (các điểm thuộc I mà tại đó hàm số không khả vi) có gì đặc biệt?  Hàm đơn điệu trên I thì khả vi hầu khắp nơi trên I (tập các điểm thuộc I mà tại đó hàm số không khả vi có độ đo lesbgue bằng 0). Cực Liên tục-Khả vi Mối liên hệ liên tục-khả vi là mối liên hệ một chiều:  Hàm khả vi tại một điểm thì liên tục tại điểm đó.  Hàm liên tục tại một điểm có thể không khả vi tại điểm đó. Có chướng ngại khoa học luận nào liên quan đến mối liên hệ này?  Hàm số liên tục trên một khoảng thì khả vi trên khoảng đó, trừ ra một số hữu hạn điểm. Những kết quả đạt được trong chương này sẽ là cơ sở tham chiếu để chúng tôi tiến hành nghiên cứu mối quan hệ thể chế ở chương 2, nghiên cứu này nhằm tìm câu trả lời cho câu hỏi Q2 : Q2: Trong thể chế dạy học toán phổ thông Việt Nam, mối quan hệ thể chế với mối liên hệ giữa tính đơn điệu, tính liên tục và sự khả vi của hàm số được hình thành ra sao? Có những đặc trưng và ràng buộc nào? So với tri thức khoa học, mối liên hệ nào được đặt ra? Mối liên hệ nào không được đặt ra? Vì sao? Sự biểu diễn hàm số bằng hệ thống biểu đạt đồ thị có được tính đến như một môi trường cho phép làm rõ mối liên hệ giữa các đối tượng: tính đơn điệu, tính liên tục và sự khả vi của hàm số không? Cụ thể hơn, đối với từng cực chúng tôi đặc biệt quan tâm đến việc tìm câu trả lời cho các câu hỏi sau: Đơn điệu-Liên tục Những tính chất liên quan đến mối liên hệ đơn điệu-liên tục được thể hiện như thế nào trong SGK theo chương trình hiện hành? Đặc biệt, những hàm số đơn điệu trên một khoảng
  • 21. DOWNLOAD ĐỂ XEM ĐẦY ĐỦ NỘI DUNG MÃ TÀI LIỆU: 54362 DOWNLOAD: + Link tải: tailieumau.vn Hoặc : + ZALO: 0932091562