Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Camp
gravitatori
Lurdes Morral
Física 2n batxillerat
2
1- Primers intents de
descripció de l’Univers
resum
resum
resum
3
1-Primers intents de descripció de
l’Univers
Els estels formen constel·lacions. Per exemple: Óssa Major que
conté l’este...
4
1-Primers intents de descripció de
l’Univers
El cel sembla que giri al voltant de l’estel polar.
Creien que els estels...
5
Proposa esferes de cristall que
sostenen els planetes i estels.
Però hi ha set astres (Sol,
LLuna, Mercuri, Venus, Mart,...
6
Hi ha idees heliocèntriques
però Ptolomeu s’imposa fins
el segle XV, incorporant els
epicicles, cercles petits que
giren...
7
1.2- Nicolàs Copèrnic
Permet explicar el moviment retrògrad
d’alguns planetes de manera simple i el
fet que , planetes c...
8
A
AA
C
C
C
D
D
D
G
G
G
H
H
H
B
B
B
I
I
I
F
F
F
E EE
1.2- Nicolàs Copèrnic Martsimul
9
1.3- Tycho Brahe
Als 14 anys ja va predir un eclipsi de Sol.
Va comprovar les dades astronòmiques de Copèrnic i va
obser...
10
1.4- Organització de dades. Kepler.
Poc observador, però molt matemàtic.
Les òrbites dels planetes al voltant del Sol s...
11
1.4- Organització de dades. Kepler.
a2
= b2
+ c2
applet
a: semieix major
b: semieix menor
c: semidistància focal
Excent...
12
1 de gener
r enero1
→
Sol
AA
r julio1
→
30 de
gener
30 de
juliol
1 de
juliol
Segona llei:
El radi que uneix qualsevol
p...
13
1.4- Organització de dades. Kepler.
Tercera llei:
La relació T2
/r3
(entre el quadrat
del període d’un planeta i el cub...
14
2-La llei de gravitació
universal
15
2.1- Isaac Newton
Galileu, va estudiar la caiguda de cossos i el moviment dels projectils.
Principi d’inèrcia.
Hi ha al...
16
2.2- Llei de gravitació universal
Dues masses puntuals m1, m2, separades una distància r s’atrauen amb
una força gravit...
17
2.3- Deducció de les lleis de Kepler a
partir de la llei de Newton
Un planeta de massa mp gira al voltant del Sol amb u...
18
3-El camp gravitatori
19
3.1- Concepte de camp gravitatori
Qualsevol massa M, modifica l’espai
que l’envolta.
Si col·loquem una altra massa m,
a...
20
3.2- Intensitat de camp gravitatori
Col·loquem una massa m en un punt, dins un camp gravitatori creat per M.
Definim in...
21
3.3- Línies de camp o de força
Si dibuixem els vectors intensitat de camp en cada
punt de l’espai, tindrem un camp vect...
22
3.4- Principi de superposició
Quan en una zona de l’espai coexisteixen varies masses, la
intensitat de camp resultant é...
23
3.5- Camp gravitatori terrestre
Camp gravitatori terrestre en un punt exterior, a una distància r.
r = RT+h
P
A
h
RT
r
...
24
4-Energia potencial
gravitatòria
25
pfpoopFcons EEEEEW pfp −=−−=∆−= )(
Una força és conservativa si existeix una funció matemàtica
anomenada energia potenc...
26
Suposem objecte de massa m, que es mou d’A a B, allunyant-se de M.
El treball que fa la força gravitatòria és:
rB
rA
rB...
27
4.2- L’energia potencial gravitatòria
Energia potencial grav. d’una massa m, a una distància r de M
AA
ppAF
r
Mm
G
r
Mm...
28
)E(E
r
Mm
G
r
mM
GW pApB
AB
BA −−=−=→
El treball que fan les forces del camp gravitatori per traslladar un cos
de massa...
29
4.3- L’energia potencial d’un cos de
massa m al camp gravitatori terrestre
hR
mM
G
r
mM
GE
T
TT
p
+
−=−=
• Energia pote...
30
• Si el moviment és prop de la superfície terrestre, és millor
assignar Ep=0 quan r=RT
Si movem un cos de rA fins a RT
...
31
4.4- Energia potencial gravitatòria d’un
sistema de masses
Principi de superposició: Ep del sistema, suma de totes les ...
32
5-Potencial gravitatori
33
5.1- Potencial gravitatori en un punt.
m
E
V p
=
mVEp =
m
r
Mm
G
m
E
V p
−
== r
M
GV −=
Potencial gravitatori, V, en un...
34
5.2- Diferència de potencial.
F
pApB
AB W
m
EE
VV −=
−
=−
)Vm(V)Vm(VEEΔEW ABBApBpApF −−=−=−=−=
Diferència de potencial,...
35
5.3- Potencial gravitatori de diverses
masses
Principi de superposició: Potencial gravitatori resultant és igual
a la s...
36
6-Moviment de cossos
en un camp gravitatori:
satèl·lits
37
6.1-Moviment de cossos en un camp
gravitatori: satèl·lits
Un satèl·lit pot seguir 3 tipus de trajectòries:
 Una el·lip...
38
6.2-Dinàmica d’un satèl·lit en òrbita
circular
r
v
m
2
2
r
mM
GF == 2
r
M
G v=
r
MGv =
Velocitat orbital no depèn de la...
39
6.3-Satè.lits geostacionaris
Tenen un període de rotació igual que el de la Terra: 23 h, 56 min,
3,5 s
La seva òrbita...
6.3-Satè.lits geostacionaris
41
2
2
2
1
2
1




== r
MGmmvEc
r
Mm
GEc
2
1
=
pc EE
2
1
−=
r
Mm
G
r
Mm
GEEE pcm −=+=
2
1
r
Mm
GEm
2
1
−= pm EE
2
1
...
42
m2m1 EE =
6.4-Velocitat de llançament per posar un
satèl·lit en òrbita
Si es llança un satèl·lit des de la superfície d...
43
23 EEE −=∆
6.5- Càlcul de l’energia per passar d’una
òrbita a una altra
Si volem que el satèl·lit que orbita a l’òrbita...
44
6.6-Velocitat d’escapament
Velocitat d’escapament: mínima velocitat inicial amb què cal
llançar un objecte , des de la ...
45
6.7-Forma de les trajectòries en funció
d’Em
Sol
0
2
1
2
1
<−==
r
Mm
GEE pm
Òrbita tancada (el·líptica
i circular)
Cond...
46
Com calcular la massa del Sol?
22
3
4
GM
T
r
π
s
=
Coneixent el període d’oscil·lació de la Terra al voltant del Sol
la...
Lleis Kepler
1ª: Planetes òrbites el·líptiques. Sol en un
dels focus
2ª: Recorren àrees iguals en temps iguals.
3ª: La rel...
Upcoming SlideShare
Loading in …5
×

Camp gravitatori

11,940 views

Published on

Camp gravitatori. Moviment d'astres. Energia potencial i cinètica de satèl.lits. 2n de batxillerat.

Published in: Education

Camp gravitatori

  1. 1. Camp gravitatori Lurdes Morral Física 2n batxillerat
  2. 2. 2 1- Primers intents de descripció de l’Univers resum resum resum
  3. 3. 3 1-Primers intents de descripció de l’Univers Els estels formen constel·lacions. Per exemple: Óssa Major que conté l’estel polar.
  4. 4. 4 1-Primers intents de descripció de l’Univers El cel sembla que giri al voltant de l’estel polar. Creien que els estels estaven enganxats a l’interior d’una esfera celest, centrada en la Terra.
  5. 5. 5 Proposa esferes de cristall que sostenen els planetes i estels. Però hi ha set astres (Sol, LLuna, Mercuri, Venus, Mart, Júpiter i Saturn) que segueixen moviments irregulars o erràtics. Se’ls anomena planetes. Sistema Ptolemaic. Trajectòries circulars. Model geocèntric. 1.1-Ptolomeu
  6. 6. 6 Hi ha idees heliocèntriques però Ptolomeu s’imposa fins el segle XV, incorporant els epicicles, cercles petits que giren al voltant d’un gran cercle, deferent, que envolta al Sol. 1.1-Ptolomeu
  7. 7. 7 1.2- Nicolàs Copèrnic Permet explicar el moviment retrògrad d’alguns planetes de manera simple i el fet que , planetes com Venus i Mercuri, tenen brillantor variable en el transcurs d’un any. Model heliocèntric. El Sol és el centre de l’univers.
  8. 8. 8 A AA C C C D D D G G G H H H B B B I I I F F F E EE 1.2- Nicolàs Copèrnic Martsimul
  9. 9. 9 1.3- Tycho Brahe Als 14 anys ja va predir un eclipsi de Sol. Va comprovar les dades astronòmiques de Copèrnic i va observar que hi havia errors de dies en predicció de fets astronòmics. Va dedicar-se a observar i recollir dades amb molta precisió. Va construir nous instruments astronòmics. Proposa un model geocèntric modificat: El Sol gira al voltant de la Terra i la resta de planetes al voltant del Sol.
  10. 10. 10 1.4- Organització de dades. Kepler. Poc observador, però molt matemàtic. Les òrbites dels planetes al voltant del Sol són el·líptiques. Recull totes les dades de Brahe en tres lleis. Primera llei: Els planetes es mouen seguint òrbites el·líptiques. En un dels seus focus hi ha el Sol. Sol Focus • Eix menor Afeli • b a Eix major Periheli • estacions
  11. 11. 11 1.4- Organització de dades. Kepler. a2 = b2 + c2 applet a: semieix major b: semieix menor c: semidistància focal Excentricitat , e a c e = Una circumferència és una el·lipse on e=0, ja que a=b El·lipse: Per la Terra: raf= 152.097.701 km rph=147.098.074 km e= 0,017 El.lipse El.lipse
  12. 12. 12 1 de gener r enero1 → Sol AA r julio1 → 30 de gener 30 de juliol 1 de juliol Segona llei: El radi que uneix qualsevol planeta amb el Sol recorre àrees iguals en temps iguals. Quan el planeta passa més a prop del Sol, es mou més de pressa. 1.4- Organització de dades. Kepler. Moment angular, : Per a un cos de massa m, que es desplaça al voltant d’un punt P, el moment angular és el moment del vector quantitat de moviment: → L )( →→→→→ ⋅×=×= vmrprL applet applet
  13. 13. 13 1.4- Organització de dades. Kepler. Tercera llei: La relació T2 /r3 (entre el quadrat del període d’un planeta i el cub de la distància mitjana del planeta al Sol), és constant. Moment angular dels planetes, , és constant:→ L Mòdul: on α, és l’angle que formen Direcció: perpendicular al pla que formen Sentit: Regle de la ma dreta. →→ pr i →→ pr i αsin)( ⋅⋅×=×= →→→→→ vmrprL Si el moviment és circular, α=90o , L=r⋅m⋅v m⋅vaf⋅raf = m⋅vph⋅rph Distància mitjana= a (semieix major el.lipse) applet
  14. 14. 14 2-La llei de gravitació universal
  15. 15. 15 2.1- Isaac Newton Galileu, va estudiar la caiguda de cossos i el moviment dels projectils. Principi d’inèrcia. Hi ha alguna connexió entre les lleis de Galileu a la Terra i les lleis de Kepler per al moviment dels cossos celestes? El Sol exerceix una força atractiva sobre la Terra, sinó es mouria en línia recta. Newton: la força que fa la Terra sobre la Lluna és de la mateixa natura que la que fa caure una poma a la Terra. Observa una disminució de l’acceleració de caiguda amb l’invers del quadrat de la distància.
  16. 16. 16 2.2- Llei de gravitació universal Dues masses puntuals m1, m2, separades una distància r s’atrauen amb una força gravitatòria directament proporcional a les masses i inversament proporcional al quadrat de la distància que les separa. 2 21 r mm GF = G= 6’67. 10-11 Nm2 kg-2 122 12 21 r mm GF u  −= applet
  17. 17. 17 2.3- Deducció de les lleis de Kepler a partir de la llei de Newton Un planeta de massa mp gira al voltant del Sol amb un període T. Suposem òrbita circular de radi r. 2 ps p-s r mM GF = r T r T r r v an 2 22 2 2 42 ππ ω =      === Si el planeta gira, té acceleració angular: T π ω 2 = La força que el fa girar és la gravitatòria: Per la segona llei de Newton: Sol mp R F → np-s aF pm= r T mp 2 2 2 ps 4 r mM G π = 2 2 3 s 4 r M G T π = sGMr T 3 2 2 4π =
  18. 18. 18 3-El camp gravitatori
  19. 19. 19 3.1- Concepte de camp gravitatori Qualsevol massa M, modifica l’espai que l’envolta. Si col·loquem una altra massa m, aquesta pateix una força atractiva M actua a distància sobre m. A l’espai modificat per M, en diem camp gravitatori 2 r mM GF =
  20. 20. 20 3.2- Intensitat de camp gravitatori Col·loquem una massa m en un punt, dins un camp gravitatori creat per M. Definim intensitat del camp gravitatori, g, en aquest punt: m → → = F g Vector Força sobre unitat de massa Unitats: N/Kg Igual direcció i sentit que la força gravitatòria m r Mm G m 2F g == Intensitat del camp gravitatori creat per una massa M puntual i esfèrica 2 M g r G= gm →→ ⋅=FForça gravitatòria sobre una massa m: u r G  2 M g −=
  21. 21. 21 3.3- Línies de camp o de força Si dibuixem els vectors intensitat de camp en cada punt de l’espai, tindrem un camp vectorial (poc pràctic) Si dibuixem línies contínues amb puntes de fletxa que marquin el sentit del camp, tindrem les línies de camp: • direcció vector intensitat és tangent a la línia • Intensitat del camp és proporcional al nombre de línies per unitat d’àrea. m M
  22. 22. 22 3.4- Principi de superposició Quan en una zona de l’espai coexisteixen varies masses, la intensitat de camp resultant és la suma vectorial de les intensitats de camps individuals: gggg nT →→→→ +++= ...21 r1 → r2 → r3 → g1 → g2 →g 3 → g 3 → g 1 → g T → m 1 m 2m3 P
  23. 23. 23 3.5- Camp gravitatori terrestre Camp gravitatori terrestre en un punt exterior, a una distància r. r = RT+h P A h RT r M Gg T T 2 = ( ) Kg N R M G hR M G r M Gg T T T TT T 81'9 1037'6 1097'5 1067'6 )( 26 24 11 222 = ⋅ ⋅ ⋅== + == − r>RT Pes = m·g g= intensitat de camp gravitatori Pes= força gravitatòria amb què la Terra atrau un cos. Prop de la superfície terrestre, on h<<RT Es representa per → og Pes= m·a = mgo go=a= 9’81 m/s2
  24. 24. 24 4-Energia potencial gravitatòria
  25. 25. 25 pfpoopFcons EEEEEW pfp −=−−=∆−= )( Una força és conservativa si existeix una funció matemàtica anomenada energia potencial, que depèn de la posició, de manera que el treball que fa la força quan un cos es mou entre dos punts és igual a l’increment d’energia potencial canviada de signe. 4.1- La força gravitatòria és conservativa El treball no depèn del camí seguit, sinó només dels punts inicial i final C1 C2 •A • B
  26. 26. 26 Suposem objecte de massa m, que es mou d’A a B, allunyant-se de M. El treball que fa la força gravitatòria és: rB rA rB rA o F r GMm r dr MmGdr r mM GW Br Ar     −−=∫−=∫= 1 180cos 22 A F r Mm G r mM GW B −= Treball=resta d’una funció que depèn de la posició Les forces gravitatòries són conservatives pBpA A F EE r Mm G r mM GW B −=−= 4.1- La força gravitatòria és conservativa
  27. 27. 27 4.2- L’energia potencial gravitatòria Energia potencial grav. d’una massa m, a una distància r de M AA ppAF r Mm G r Mm G mM GEEW −=− ∞ =−= ∞ Treball que fa el camp per moure m des d’A fins ∞ : Assignem E p ∞=0 r Mm GEp −= EP r r mM GEp −= Ep en un punt = treball que fa el camp gravitatori per portar la massa m des del punt fins a l’infinit a velocitat constant. WF<0 el camp no pot allunyar una massa → cal l’acció d’una força exterior Ep és sempre negativa
  28. 28. 28 )E(E r Mm G r mM GW pApB AB BA −−=−=→ El treball que fan les forces del camp gravitatori per traslladar un cos de massa m entre els punts A i B: 4.2- L’energia potencial gravitatòria Diferència d’energia potencial entre A i B: •Si el cos de massa m s’acosta al cos que crea el camp (rA>rB) El treball que fan les forces del camp és positiu El cos perd energia potencial •Si el cos de massa m s’allunya del cos que crea el camp (rA<rB) El treball que fan les forces del camp és negatiu. Cal una força exterior perquè es produeixi el desplaçament El cos guanya energia potencial EpB-EpA = treball canviat de signe que fa el camp gravitatori per portar la massa m, del punt A al B a velocitat constant.
  29. 29. 29 4.3- L’energia potencial d’un cos de massa m al camp gravitatori terrestre hR mM G r mM GE T TT p + −=−= • Energia potencial d’un cos de massa m, a una altura h sobre la superfície de la Terra Quan E p ∞=0
  30. 30. 30 • Si el moviment és prop de la superfície terrestre, és millor assignar Ep=0 quan r=RT Si movem un cos de rA fins a RT A T T T ppA r mM G R mM GEE −=− superfície A T T pA r mM G R mM GE T −=− 0 r mM G R mM GE TT T p −= Quan Ep =0 a la superfície de la Terra TRr ≅ hgmE op ⋅⋅= A petites altures 4.3- L’energia potencial d’un cos de massa m al camp gravitatori terrestre hmg r R hmg rR h mRg rR Rr mMGE o T o T To T T Tp ===      − = 2 2 ToT RgGM =2 T T o R M Gg =
  31. 31. 31 4.4- Energia potencial gravitatòria d’un sistema de masses Principi de superposició: Ep del sistema, suma de totes les Ep de totes les parelles possibles 23 2 3 13 1 3 12 1 2 231312 r mm G r mm G r mm GEEEE ppppT −−−=++= Aplicació: eclipsis
  32. 32. 32 5-Potencial gravitatori
  33. 33. 33 5.1- Potencial gravitatori en un punt. m E V p = mVEp = m r Mm G m E V p − == r M GV −= Potencial gravitatori, V, en un punt dins d’un camp gravitatori, és l’energia potencial que té la unitat de massa que hi hagi en aquest punt. Escalar Unitat: J/kg Energia potencial d’una massa en un punt on coneguem V: Prenent E p ∞=0 Potencial en un punt: treball que realitza el camp gravitatori per portar la unitat de massa m des del punt a l’infinit.
  34. 34. 34 5.2- Diferència de potencial. F pApB AB W m EE VV −= − =− )Vm(V)Vm(VEEΔEW ABBApBpApF −−=−=−=−= Diferència de potencial, VB-VA ,entre dos punts A i B: Diferència de potencial VB-VA : treball canviat de signe, que realitza el camp gravitatori per portar la unitat de massa m des del punt A al B.
  35. 35. 35 5.3- Potencial gravitatori de diverses masses Principi de superposició: Potencial gravitatori resultant és igual a la suma dels potencials deguts a cadascuna de les masses. ...21 ++=∑= VVVV i i
  36. 36. 36 6-Moviment de cossos en un camp gravitatori: satèl·lits
  37. 37. 37 6.1-Moviment de cossos en un camp gravitatori: satèl·lits Un satèl·lit pot seguir 3 tipus de trajectòries:  Una el·lipse (cas concret, cercle) Òrbites tancades  Una paràbola  Una hipèrbole Sol Estudiarem el cas d’òrbites circulars. Objectes celests que passen prop del planeta 1 cop i no tornen mai més Primer, cal posar en òrbita la nau espacial o el satèl·lit artificial.
  38. 38. 38 6.2-Dinàmica d’un satèl·lit en òrbita circular r v m 2 2 r mM GF == 2 r M G v= r MGv = Velocitat orbital no depèn de la massa del satèl·lit Depèn del radi de l’òrbita (h+ RT) Menor radi Major velocitat Període de rotació serà: r MG r v r rv T πππ ω π 22 / 22 ==== GM r T 3 2π= 2
  39. 39. 39 6.3-Satè.lits geostacionaris Tenen un període de rotació igual que el de la Terra: 23 h, 56 min, 3,5 s La seva òrbita està situada sobre l’equador terrestre. Es troben a uns 35800 km per sobre de la superfície de la Terra. GM r T 3 2π= 3 2 T 3 4 GMT r π = T=23,98 h MT= 5,98⋅ 1024 kg r= 4,22 ⋅107 m h= r-RT = 3,59 ⋅107 m = 35800 km. Satel.lits
  40. 40. 6.3-Satè.lits geostacionaris
  41. 41. 41 2 2 2 1 2 1     == r MGmmvEc r Mm GEc 2 1 = pc EE 2 1 −= r Mm G r Mm GEEE pcm −=+= 2 1 r Mm GEm 2 1 −= pm EE 2 1 = 6.4-Energia d’un satèl·lit en òrbita circular r Mm GEp −= Prenent E p ∞=0
  42. 42. 42 m2m1 EE = 6.4-Velocitat de llançament per posar un satèl·lit en òrbita Si es llança un satèl·lit des de la superfície de la Terra (posició1) perquè orbiti a una òrbita determinada (posició 2) p2c2p1c1 EEEE +=+ Només actuen forces conservatives → l’energia mecànica es conserva r Mm G 2 1 E r Mm Gvm 2 1 R Mm Gvm 2 1 m2 2 2 2 1 −==−⋅=−⋅       −⋅= 2r 1 R 1 2GMv T 1
  43. 43. 43 23 EEE −=∆ 6.5- Càlcul de l’energia per passar d’una òrbita a una altra Si volem que el satèl·lit que orbita a l’òrbita 2 passi a l’òrbita 3, caldrà donar-li una energia que serà la diferència entre les energies de les òrbites.       −−−= 23 r Mm G 2 1 r Mm G 2 1 ΔE       −⋅⋅⋅= 32 r 1 r 1 mMG 2 1 ΔE r Mm GEm 2 1 −=
  44. 44. 44 6.6-Velocitat d’escapament Velocitat d’escapament: mínima velocitat inicial amb què cal llançar un objecte , des de la superfície d’un planeta perquè l’objecte no torni a caure: r→∝ Cal que en el punt més alt, Ep=0 Moment del llançament p p p R mM GE −= Emec=0 Cal llançar-lo amb Ec=-Ep , i així Emec=0 0 2 1 2 =− p p o R mM Gmv p p escapament R GM v 2 = 1 r Mm GEp −= No depèn de la massa del satèl·lit Si ja està en òrbita, enlloc de Rp cal posar r = h+RT
  45. 45. 45 6.7-Forma de les trajectòries en funció d’Em Sol 0 2 1 2 1 <−== r Mm GEE pm Òrbita tancada (el·líptica i circular) Condició d’escapament Òrbita oberta (parabòlica o hiperbòlica) 0=mE 0>mE
  46. 46. 46 Com calcular la massa del Sol? 22 3 4 GM T r π s = Coneixent el període d’oscil·lació de la Terra al voltant del Sol la distància de la Terra al Sol, i G. Com calcular el radi de la Terra? 4 3 Sagan
  47. 47. Lleis Kepler 1ª: Planetes òrbites el·líptiques. Sol en un dels focus 2ª: Recorren àrees iguals en temps iguals. 3ª: La relació T2 /r3 és constant 22 3 4 GM T r π = 2 21 r mm GF = Llei gravitació universal m → → = F g 2 M g r G= Intensitat del camp gravitatori E p ∞=0 r Mm GEp −= Energia potencial gravitatòria m E V p = mVEp = r M GV −= E p ∞=0 Potencial gravitatori r r v an 2 2 ω== )V(Vm)V(VmEEΔEW ABBApBpApF −−=−=−=−= Diferència de potencial gm →→ ⋅=F Emec=0 p p escapament R GM v 2 = Velocitat d’escapament r Mm GEc 2 1 = r Mm GEm 2 1 −= Satèl·lit en òrbita circular m⋅vaf⋅raf = m⋅vph⋅rph m2m3 EEE −=∆ Energia per canviar d’òrbita

×