Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
APLICACIONES DE LAS
INTEGRALES
CALCULO DE AREAS DE
FIGURAS PLANAS
Índice
1 Área del recinto donde interviene una función
1.1 La función f(x) es positiva en [a, b]
1.2 La función f(x) es ne...
1.1 La función f(x) es positiva en [a, b]
[ ]b,aen0)x(f ≥
Área del recinto = ∫
b
a
dx)x(f
1 Área del recinto donde intervi...
y=x2
y=x4
-2x3
+2
Área =
2
4
2
4
2
3
2
u
3
56
3
8
3
64
3
x
dxx =−=





=∫
Área = ∫− −
=





+−=+−
2
1
2
2
1
...
1.2 La función f(x) es negativa en [a, b]
Área del recinto = - ∫
b
a
dx)x(f
Ejemplo:
Área =
2
2
2
2
2
3
2
u
3
16
3
8
3
8
3...
1.3 La función toma valores positivos y1.3 La función toma valores positivos y
negativosnegativos
Área (R) = ∫∫∫∫ −+−
b
e
...
Ejemplo:
1. Hallar el área delimitada por la gráfica de y = cos x y el eje OX en el intervalo [0 , 2π]
2
π
2
3π π2
y=cosx
...
Ejemplo:
2. Hallar el área limitada por la curva y = x3
– 6x2
+ 8x y el eje OX.
Área (R) = 24
2
232
0
23
u8dx)x8x6x(dx)x8x...
Ejemplo:
1. Hallar el área de la región limitada por las funciones y = x2
e y = 2x – 3 entre x = 2 y x = 4
Área (R) =
24
2...
2.2 Las dos funciones se cortan en [a, b]
Área (R) = ∫∫ −+−
b
c
c
a
dx)]x(g)x(f[dx)]x(f)x(g[
Volver al índice
Ejemplo:
1. Hallar el área de la región limitada por las funciones y = x2
e xy =
y = x2
xy =
Área (R) =
2
1
0
3
2
3
1
0
21...
Ejemplo:
2. Hallar el área del recinto limitado por la parábola y = x2
, la recta y = -x + 2 y el eje OX
Área (R) =
22
1
1...
AUTORES
ANA ANDRÉS JESÚS MARTÍNEZ
AMADEO BAYOD MIGUEL TREMPS
Upcoming SlideShare
Loading in …5
×

Integrales

358 views

Published on

Published in: Education
  • Be the first to comment

  • Be the first to like this

Integrales

  1. 1. APLICACIONES DE LAS INTEGRALES CALCULO DE AREAS DE FIGURAS PLANAS
  2. 2. Índice 1 Área del recinto donde interviene una función 1.1 La función f(x) es positiva en [a, b] 1.2 La función f(x) es negativa en [a, b] 1.3 La función toma valores positivos y negativos en [a, b] 2 Área del recinto donde intervienen dos funciones 2.1 Las dos funciones no se cortan en [a, b] 2.2 Las dos funciones se cortan en [a, b]
  3. 3. 1.1 La función f(x) es positiva en [a, b] [ ]b,aen0)x(f ≥ Área del recinto = ∫ b a dx)x(f 1 Área del recinto donde interviene una función El recinto será el limitado por la función f(x), el eje OX y dos recta verticales x =a y x = b. Volver al índice
  4. 4. y=x2 y=x4 -2x3 +2 Área = 2 4 2 4 2 3 2 u 3 56 3 8 3 64 3 x dxx =−=      =∫ Área = ∫− − =      +−=+− 2 1 2 2 1 45 34 u 10 51 x2 2 x 5 x dx)2x2x( Ejemplos 1. Hallar el área del recinto limitado por la parábola de ecuación y = x2 , el eje OX, la recta x = 2 y la recta x = 4. 2. Hallar el área de la región R limitada por la curva y = x4 – 2x3 + 2 entre x = -1 y x = 2.
  5. 5. 1.2 La función f(x) es negativa en [a, b] Área del recinto = - ∫ b a dx)x(f Ejemplo: Área = 2 2 2 2 2 3 2 u 3 16 3 8 3 8 3 x dx)x( =+=         =−− −− ∫ y = -x2 Hallar el área del recinto determinado por la parábola de ecuación y = -x2 , el eje OX y las rectas x = -2 y x = 2 El recinto será el limitado por la función f(x), el eje OX y dos recta verticales x =a y x = b. Volver al índice
  6. 6. 1.3 La función toma valores positivos y1.3 La función toma valores positivos y negativosnegativos Área (R) = ∫∫∫∫ −+− b e e d d c c a dx)x(fdx)x(fdx)x(fdx)x(f Volver al índice
  7. 7. Ejemplo: 1. Hallar el área delimitada por la gráfica de y = cos x y el eje OX en el intervalo [0 , 2π] 2 π 2 3π π2 y=cosx Área (R) = 2 u4dxxcosdxxcosdxxcos 2 3 2 2 2 3 2 0 ∫ ∫∫ π π π π π =+−
  8. 8. Ejemplo: 2. Hallar el área limitada por la curva y = x3 – 6x2 + 8x y el eje OX. Área (R) = 24 2 232 0 23 u8dx)x8x6x(dx)x8x6x( =+−−+− ∫∫ y = x3 – 6x2 + 8x
  9. 9. Ejemplo: 1. Hallar el área de la región limitada por las funciones y = x2 e y = 2x – 3 entre x = 2 y x = 4 Área (R) = 24 2 2 u 3 38 dx)]3x2(x[ =−−∫ y = x2 y = 2x – 3
  10. 10. 2.2 Las dos funciones se cortan en [a, b] Área (R) = ∫∫ −+− b c c a dx)]x(g)x(f[dx)]x(f)x(g[ Volver al índice
  11. 11. Ejemplo: 1. Hallar el área de la región limitada por las funciones y = x2 e xy = y = x2 xy = Área (R) = 2 1 0 3 2 3 1 0 21 0 2 1 u 3 1 3 x x 3 2 dxxdxx =         −=− ∫∫
  12. 12. Ejemplo: 2. Hallar el área del recinto limitado por la parábola y = x2 , la recta y = -x + 2 y el eje OX Área (R) = 22 1 1 0 2 u 6 5 dx)2x(dxx =+−+ ∫∫ y = x2 y = - x + 2
  13. 13. AUTORES ANA ANDRÉS JESÚS MARTÍNEZ AMADEO BAYOD MIGUEL TREMPS

×