Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Aulas de concreto armado

7,882 views

Published on

  • Be the first to comment

Aulas de concreto armado

  1. 1. 1 Introdução ao Concreto Estrutural CONCRETO • material composto, preparado por ocasião de sua aplicação, • mistura de um aglomerante hidráulico (cimento) com materiais inertes (agregados) e água, • traço do concreto: proporção entre os diversos componentes, • fator água/cimento (a/c): parâmetro importante para a resistência do concreto • aditivos: acentuar características específicas, como acelerador de pega, super fluidificante, etc. CIMENTOS  Componentes básicos: cal (CaO), sílica (SiO2), alumina (Al2O3) e óxido de ferro (Fe2O3), os componentes básicos são sempre os mesmos, variando para cada tipo a proporção em que esses componentes comparecem. Cimento de endurecimento normal Cimento de endurecimento normal CP – cimento Portland (NBR 5732): CP25, CP32, CP40; Cimentos de endurecimento lento Cimentos de endurecimento lento AF – cimento de alto forno (NBR 5735): AF25, AF32; POZ – cimento pozolânico (NBR 5736): POZ25, POZ32; ARS – cimento de alta resistência a sulfatos (NBR5737); MRS – cimento de moderada resistência a sulfatos (NBR5737); Cimentos de endurecimento rápido Cimentos de endurecimento rápido ARI – cimento de alta resistência inicial (NBR5733). AGREGADOS podem ser de origem natural (areia e pedregulho) ou artificial (pedrisco e pedra britada) • agregado miúdo: quando é retido menos do que 5% do total na peneira com malha de abertura de 4.8 mm; • agregado graúdo: quando passa menos do que 5% do total na peneira com malha de abertura de 4.8 mm; PEDRA BRITADA é classificada pelo seu diâmetro máximo nominal, normalmente são utilizadas as britas 1 e 2. brita diâmetro nominal (mm) 0 4,8 a 9,5 1 9,5 a 19 2 19 a 25 3 25 a 50 4 50 a 76 5 76 a 100
  2. 2. 2 CONCRETO SIMPLES: (características principais) • boa resistência a compressão fcc (tensão normal de ruptura a compressão) variando de 10 a 40 MPa. • baixa resistência a tração fct (tensão normal de ruptura a tração) da ordem de fcc/10. • módulo de elasticidade Ec= 20.000 MPa a 35.000 MPa, NBR 6118 – Ec = 0,9 x 6.600 (fck + 3,5)1/2 • coeficiente de dilatação térmica – t = 10-5 o C-1 Os efeitos da variação térmica são importantes, havendo necessidade, muitas vezes, da utilização de juntas de dilatação. • retração do concreto Diminuição de volume no decorrer do tempo, independente de qualquer solicitação, em ambiente normal. Depende de vários fatores: umidade do meio ambiente, espessura das peças, etc. (s= -15x10-5 => T=-15 o C) • fluência do concreto incremento adicional de deformação ao longo do tempo (cc), quando solicitado permanentemente. cc= c0 a 3 , = (1+ c0 CONCRETO ESTRUTURAL baixa resistência à tração do concreto simples, inviabiliza o seu uso em peças como tirantes e vigas IDÉIA ! associação do concreto simples com o aço (ótima resistência à tração) que constitui a armadura do material composto –concreto estrutural ADERÊNCIA entre o concreto concreto e a armadura armadura garante a ligação dos materiais. COSTURA as armaduras devem seguir a trajetória das tensões principais de tração, ao ocorrer a ruptura do concreto da zona tracionada da seção, a armadura costura as partes resultantes, restando apenas uma fissura fissura como registro desta ruptura. CONCRETO ESTRUTURAL quando é utilizada na composição da peça a armadura livre de solicitações iniciais, tem-se o concreto armado. Caso, contrário, isto é, quando a armadura é aplicada já com certo estiramento inicial, tem-se o concreto protendido .
  3. 3. 3 CONCRETO ARMADO CONCRETO PROTENDIDO CONCRETO ARMADO  Aderência entre o concreto e a armadura, permitindo a mobilização da armadura imersa na massa de concreto. Aderência Perfeita. Aderência Perfeita.  Proteção da armadura pelo concreto, evitando a corrosão mesmo na presença de pequenas fissuras. Importância dos limites para as aberturas de fissuras e de cobrimentos adequados.  Coeficientes de dilatação térmica os dois materiais apresentam valores muito próximos, evitando problemas relativos a diminuição, ou até mesmo a eliminação, da aderência entre os dois materiais. VANTAGENS materiais econômicos e disponíveis com abundância; grande facilidade de moldagem, permitindo adoção das mais variadas formas; emprego extensivo de mão-de-obra não qualificada e equipamentos simples; elevada resistência à ação do fogo e ao desgaste mecânico; grande estabilidade sob a ação de intempéries, dispensando trabalhos de manutenção; aumento de resistência à ruptura com o tempo; facilidade e economia na construção de estruturas contínuas, sem juntas. DESVANTAGENS  a maior desvantagem do concreto armado é a sua massa específica elevada (2,5 ton/m³), a utilização de agregados leves permite reduzir o peso do concreto em cerca de 40%, porém esses agregados não são geralmente disponíveis em condições competitivas. dificuldades para reformas ou demolições; baixa proteção térmica; necessidade de impermeabilização de coberturas e ou superfícies em contato permanente com água. CONCRETO PROTENDIDO Sendo concreto um material de propriedades tão diferentes à compressão e à tração, o seu comportamento pode ser melhorado aplicando-se uma compressão prévia (isto é, pré-tensão ou protensão) nas regiões onde as solicitações produzem tensões de tração. a protensão pode ser definida como um artifício de introduzir, numa estrutura, um estado prévio de tensões, de modo a melhorar sua resistência ou comportamento, sob a ação de diversas solicitações. CONCRETO SIMPLES + ARMADURA PASSIVA CONCRETO SIMPLES + ARMADURA ATIVA
  4. 4. 4 a protensão do concreto é realizada, na prática, por meio de cabos de aço de alta resistência, tracionados e ancorados no próprio concreto. Sistemas de Protensão Sistemas de Protensão  Pré-tracionado Pós-tracionado Sistemas de Protensão – Pré- tracionado Sistemas de Protensão - Pós-tracionado •as armaduras de aço (1) são esticadas entre dois encontros (2), ficando ancoradas provisoriamente nos mesmos, •o concreto (3) é colocado dentro das formas, envolvendo as armaduras, •após o concreto haver atingido resistência suficiente, soltam-se as ancoragens dos encontros (2), transferindo-se a força para a viga, por aderência (4) entre o aço e o concreto. •o concreto (3) é moldado e deixado endurecer; cabos de aço (1) são colocados no interior das bainhas (2); podendo deslocar-se no interior da viga; •após o concreto haver atingido a resistência suficiente, os cabos são esticados pelas extremidades até atingir o alongamento desejado; •os cabos são ancorados nas faces da viga com dispositivos mecânicos, aplicando um esforço de compressão no concreto.
  5. 5. 5 • NORMAS TÉCNICAS Os projetos envolvem uma série de critérios. É, altamente, desejável que eles sejam padronizados visando a uniformização do nível de qualidade da obra. Estes critérios normatizados constituem as diversas Normas de Projeto. Para o projeto de estruturas de concreto interessam, diretamente, as seguintes Normas Brasileiras:  NBR-6118 - Projeto e execução de obras de concreto armado. Fixa condições gerais que devem ser obedecidas no projeto, na execução e no controle de obras de concreto armado, excluídas aquelas em que se empregue concreto leve ou outros concretos especiais. NBR-6120 - Cargas para o cálculo de estruturas de edificações. Fixa condições exigíveis para determinação dos valores das cargas que devem ser consideradas no projeto de estrutura de edificações, qualquer que seja sua classe e destino, salvo os casos previstos em normas especiais. NBR-6123 - Forças devidas ao vento em edificações. Fixa condições exigíveis na consideração das forças devidas à ação estática do vento, para efeitos de cálculo de edificações, e aplicável exclusivamente a edificações em que o efeito dinâmico do vento pode ser desprezado  NBR-7197 - Projeto de estruturas de concreto protendido. Fixa condições gerais exigíveis no projeto e estabelece certas exigências a serem obedecidas na execução e controle de obras de concreto protendido por armadura, excluidas aquelas em que se empregue concreto leve ou outros concretos especiais. SISTEMAS DE UNIDADES Comprimento: m (cm, mm) força normal: kN = 103 N (0,1 tf) força cortante: kN, kN/m momento: kN.m; kN.m/m; kN.cm/m carga concentrada: kN carga distribuida: kN/m; kN/m2 peso específico: kN/m3 resistência, tensão: kN/cm2 , 1 MPa = 106 N/m2 = 0,1 kN/cm2 (10 gf/cm2 ) 10 MPa = 1 kN/cm2 1. CONSIDERAÇÕES PRELIMINARES 1.1. Introdução As lajes são “estruturas laminares planas solicitadas predominantemente por cargas normais ao seu plano médio” onde a espessura h é muito menor que as outras dimensões (lx, ly, onde ly  lx).
  6. 6. 6 As lajes podem ser encontradas nas mais diferentes estruturas, tais como: _ Edificações residenciais e comerciais (a); _ Galpões industriais (b); _ Pontes (c) ; _ Reservatórios; _ Estrutura de contenção de terra (muros de arrimo, contrafortes ...) (d); _ Pistas de rodovias e aeroportos (e). As lajes têm como função: _ Transmitir para as vigas as cargas de utilização, aplicadas diretamente nos pisos, no caso das estruturas convencionais do tipo laje-viga-pilar; _ Contraventar as estruturas (pórticos formados por pilares e vigas ou paredes portantes, também denominada de shear-walls), funcionando como placas infinitamente rígidas em seu plano, que distribuem as cargas horizontais atuantes; _ Trabalhar como mesas de compressão da seção T, em casos das lajes serem construídas ligadas monoliticamente às vigas. 2. CLASSIFICAÇÃO DAS LAJES 2.1. Quanto A Sua Natureza _ Lajes Maciças · São as lajes constituídas por uma placa de concreto armado ou de concreto protendido; · São as mais utilizadas nas edificações e pontes.
  7. 7. 7 _ Lajes Nervuradas · São lajes em que a zona de tração é constituída por nervuras (50 à 100cm), onde são concentradas as armaduras de tração; (b) · Entre estas nervuras pode ser colocado material inerte (blocos cerâmicos de alvenarias, blocos de concreto, de pumex, de isopor, de concreto celular e outros, sem função estrutural, de forma que a superfície externa se mantenha plana; (a) · Estas lajes possuem, obrigatoriamente, uma mesa de concreto na região comprimida, sendo o espaçamento regulamentado pela NBR 6118. · Usadas quando os vãos a vencer são grandes (10 à 12 m) até máx 15m, em prédios residenciais ou comerciais, ou em alguns casos de carregamentos especiais;
  8. 8. 8 INFORMAÇÕES DO FABRICANE DE FORMAS – ATEX FORMAS PESO DIMENSÕES ENTRE EIXOS ATEX 150 2,8 Kg Forma nervuras ortogonais com 600 mm entre eixos ATEX 180 2,7 Kg Forma nervuras ortogonais com 600 mm entre eixos ATEX 600 x 225 7,1 Kg Forma nervuras principais com 600 mm entre eixos e nervuras secundárias com 1,125 mm entre eixos ATEX 600 x 325 8,2 Kg ATEX 600 x 425 10,4 Kg ATEX 900 x 225 9,5 Kg Forma nervuras ortogonais com 900 mm entre eixos ATEX 900 x 325 11,4 Kg Ref. - Catálogo de Fabricante de Formas Atex _ Lajes Mistas _ Lajes Compostas de Vigotas E Blocos Cerâmicos São lajes compostas por nervuras(vigotas) pré-fabricadas de concreto armado, entre as quais são colocados blocos, uma malha de armadura e um capeamento de concreto, solidarizando o conjunto. Os blocos têm a função de eliminar as formas; Tem sua principal aplicação em obras residenciais de pequeno porte; Comumente usadas para vencer vãos de até 4m em caso de laje de piso e 5m nas lajes de cobertura sem acesso à público; As vigotas podem ser executadas em concreto armado ou protendido, mas as mais usuais são em concreto armado; Tem como vantagens a rapidez de execução, a economia de formas e escoramentos; Não suportam cargas de paredes diretamente sobre a laje, é necessário colocar vigas sob as paredes.
  9. 9. 9 Vãos Livres Máximos para Intereixo de 33 cm Para a montagem colocam-se as vigotas e os tijolos, escorando-se o conjunto. Antes de concretar a camada superior de concreto, devendo-se molhar intensamente o material, principalmente as lajotas, para evitar que absorvam a água do concreto. Em seguida executa-se a camada superior de concreto. Pode-se retirar o escoramento somente após a cura do concreto.
  10. 10. 10 _ Lajes Treliçadas  O sistema construtivo de lajes armadas em uma direção, com vigotas treliçadas, tem 5 componentes: vigotas treliçadas, elementos de enchimento, nervuras transversais, armaduras complementares e capa de concreto; Vãos livre de 3 à 6m para obras de médio porte; Como possuem estribos ( treliça) que absorvem o cisalhamento , podem ser utilizadas para vãos maiores, de 8 à 12m, quando projetadas com espessura maiores e armaduras adicionais;  Suportam cargas de paredes.
  11. 11. 11 _ Lajes Pré-Fabricadas  Lajes planas alveolares ; Lajes P; As lajes em painéis são produzidas em usinas, em pistas de protensão e moldadas em fôrmas metálicas ou por processo de extrusão; Vão livre na ordem de 10 à 11m; Vem crescendo no Brasil a utilização destas lajes, especialmente nas área industriais e shoppings. Ref. - Catálogo de Fabricante - Preconcretos
  12. 12. 12
  13. 13. 13 2.2 Quanto Aos Seus Apoios _ Lajes Apoiadas Sobre Alvenarias (a) ou Lajes Apoiadas Sobre Vigas (b) _ Lajes apoiadas sobre pilares Conhecida Como Lajes Cogumelos Ou Lajes Planas São lajes de concreto executada “in loco”, maciça de espessura constante, sem vigas, exceto nas bordas; Tem como vantagens: _ a rapidez de execução, podendo-se executar um pavimento por semana; _ economia de formas e mão de obra; _ junta de dilatação até 100m. Tem como desvantagens: _ mão de obra especializada, no caso de barras pretensionadas; _ puncionamento e; _ pouca rigidez do conjunto.
  14. 14. 14 O efeito do vento deve ser considerado com cuidado !!! Laje Plana de Concreto Protendido Utilizadas em prédios comerciais e de escritórios com vãos de até 12 m; São colocadas armaduras em toda a área da laje nas duas direções perpendiculares por cabos (sistema VSL). Esta armação é completada por barras de aço comum apenas nos pilares e nas bordas; A laje plana protendida é pré-tensionada para a carga permanente, eliminando assim os problemas de deformação lenta.  Laje Plana de Concreto Armado Indicado para vãos de até 6,0m a 6,5 m. Acima destes vãos são desaconselháveis pois podem ocorrer flechas excessivas devido a deformação lenta. 2.3 Quanto À Armação Considerando apenas as lajes retangulares. _ Lajes Armadas em uma só direção. Se lx / ly >2 São aquelas que apresentam solicitações importantes (momentos fletores e esforços cortantes) em uma direção apenas; Quando for suportada continuamente ao longo de 2 bordos apenas;
  15. 15. 15 _ Lajes armadas em duas direções  São aquelas que apresentam solicitações importantes em ambas as direções Se lx / ly 2 3. VÃO TEÓRICO De acordo com o subitem 14.6.2.4 da NBR 6118 o vão efetivo (l ef ) o vão efetivo (vão teórico) pode ser calculado por: lef = l0 + a1 + a2 vão teórico = l Com a1 igual ao menor valor entre (t1 e h) e a2 igual ao menor valor entre (t2 e h). (tomar o menor deles) Quando tiver 3 bordos livres (Laje em balanço) a) Apoio de vão extremo b) Apoio de vão intermediário
  16. 16. 16 Nas lajes em balanço, o comprimento teórico é o comprimento da extremidade até o centro do apoio, não sendo necessário considerar valores superiores ao comprimento livre acrescido da metade da espessura da laje junto ao apoio. Simplificação : · Vão teórico = medida de eixo a eixo de apoio; · Vão teórico (BALANÇO) = medida da extremidade ao eixo de apoio; 4. VINCULAÇÃO As lajes podem se apoiar sobre alvenaria, sobre vigas ou sobre paredes ou diretamente sobre pilares. É necessário adotar hipóteses, de forma a se estabelecer se uma laje é engastada (deslocamento vertical e rotação impedidos), ou se é simplesmente apoiada (deslocamento vertical nulo e nenhum impedimento à rotação) ao longo de um determinado bordo. O estabelecimento destas condições de apoio, tornará possível a idealização do modelo estrutural da laje, necessária para se obterem as suas solicitações e deformações. 4.1. Bordos Simplesmente Apoiados Convenção para a representação gráfica : “A extensão dos apoios extremos de uma laje, sobre alvenaria, não deve ser menor que sua espessura no meio do vão nem menor que 7cm”.          lo + b/2 lo + h/2
  17. 17. 17  Quando a laje termina sobre uma viga Quando a laje não tem continuidade no seu plano devido a um rebaixo 4.2. Bordos Engastados  Convenção para a representação gráfica : Toda a borda que há continuidade com a laje vizinha de espessura aproximadamente igual (diferença máxima 2cm) REPRESENTAÇÃO GRÁFICA (ESQUEMAS) CORTE REPRESENTAÇÃO GRÁFICA (ESQUEMAS)CORTE
  18. 18. 18   Quando o vão da menor é maior ou igual a 40% do vão maior adota-se o bordo engastado Exemplo: Caso 1 : Vão menor =3m Vão maior = 5m Caso 2 : Vão menor =1,5m Vão maior = 5m Toda a laje que tem 3 bordos livres deve ter o quarto bordo engastado. Neste bordo, mesmo que exista rebaixo é necessário criar o engaste por questão de equilíbrio Quando num bordo ocorrem duas situações de vínculo, considera-se a favor da segurança em todo o bordo apoio simples, a não ser que o trecho engastado corresponda a mais de 2/3 do bordo, podendo neste caso sem grande erro considerar a borda engastada. REPRESENTAÇÃO GRÁFICA (ESQUEMAS) CORTE
  19. 19. 19 5. ESPESSURAS 5.1. Item 13.2.4.1 Lajes Maciças, NBR 6118/2003 Nas lajes maciças devem ser respeitados os seguintes limites mínimos para a espessura : a) 5 cm para lajes de cobertura não em balanço; b) 7 cm para lajes de piso ou de cobertura em balanço; c) 10 cm para lajes que suportem veículos de peso total menor ou igual a 30 kN; d) 12 cm para lajes que suportem veículos de peso total maior que 30 kN; e) 15 cm para lajes com protensão. Sugestão: Adotar 8cm para espessura mínima. 5.2. Lajes Maciças 5.2.1. Lajes Armadas Em 2 Direções - Se lx / ly 2 Obs.: lx > ly d 0,025.l . (1- n.0,1) CASO lx > ly L ly (Vão teórico menor) 0,75.lx (Vão teórico maior) CASO lx = ly l = lx = ly n = nº de lados engastados  h = d + c + l (cm) h = d + 2 (cm) c = 1,5cm l = 0,5cm c = cobrimento h = altura da laje d = altura útil l = diâmetro da barra Usualmente: l = 0,5cm c = ver norma

×