Events Processing and Data Analysis with Lucidworks Fusion: Presented by Kiran Chitturi, Lucidworks
O C T O B E R 1 3 - 1 6 , 2 0 1 6 • A U S T I N , T X
Event Processing and Data Analytics with Lucidworks Fusion
Kiran Chitturi
Software Engineer, Lucidworks
3
• How to capture/record user events ?
• How to use events/signals for recommendations ?
• How to produce reports/analytics from user events ?
• What type of recommendations can be generated for different user
types?
Problem Statement
4
• Library to collect user events from client-side tier of websites and apps (https://
github.com/snowplow/snowplow-javascript-tracker)
• Open source equivalent for enterprise analytics
• Sends events using tracking pixel
• Signals API acts as a collector for Snowplow events
• Tracks page views, page pings, links and any custom configured events
• https://github.com/snowplow/snowplow/wiki/javascript-tracker
Event collection - Snowplow JS tracker
6
• Examples:
• page-view, query, search-click, add-to-cart, rating
• Signals Schema:
• required fields: type
• additional properties can be specified in ‘params’ map
• Special treatment for fields ‘docId’, ‘userId’, ‘query’, ‘filterQueries’, ‘collection’,
‘weight’, ‘count’
• Processing logic in ‘_signals_ingest’ pipeline
Event collection - JSON payloads
21
• Calculate Co-occurence matrix for tuples based on sessions
• Example: (userId, query, docId)
• Construct DAG from matrix data
• Recommendations are powered from Graph at query time
• Increases diversity in recommendations
• See https://lucidworks.com/blog/2015/08/31/mining-events-
recommendations/
Event Miner aggregation