APLIMAT<br />
Matrix<br />Matrix is defined as a rectangular array of numbers<br />A table of number or set of number<br />The numbers i...
Matrix<br />Column<br />A<br />Row<br />2 X 2<br />Column<br />Row<br />X<br />5 X 2<br />
Matrix (Addition & Subtraction)<br />B<br />A<br />+<br />A<br />B<br />-<br />A<br />B<br />
Matrix (Multiplication)<br />x<br />Solution:<br />
Matrix (Multiplication)<br />x<br />
Identity Matrix<br />Multiplying a matrix to its inverse will give the following matrices:<br />
Inverse Matrix (Part 1)<br />Formula:<br />A<br />1<br />A<br />-1<br />___________________<br />ad - bc<br />
Inverse Matrix (Part 1)<br />A<br />ad - bc<br />1<br />A<br />-1<br />___________________<br />A<br />
Inverse Matrix (Part 1)<br />B<br />-1<br />1<br />B<br />___________________<br />(3*-5)-(-4*2)<br />
Inverse Matrix (Part 1)<br />-1<br />B<br />x<br />OR<br />
Inverse Matrix (Part 2)<br />A<br />Matrix of Minor<br />
Inverse Matrix (Part 2)<br />Apply the signs<br />Matrix of Cofactors<br />Adjecate(A) <br />=<br />The diagonal stays the...
Inverse Matrix (Part 2)<br />A<br />1*1 + 0*1 + 1*-2<br />A<br />-1<br />-1<br />A<br />
Upcoming SlideShare
Loading in …5
×

Matrixes (Addition, subtraction, inverse part 1)

1,710 views

Published on

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,710
On SlideShare
0
From Embeds
0
Number of Embeds
10
Actions
Shares
0
Downloads
37
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Matrixes (Addition, subtraction, inverse part 1)

  1. 1. APLIMAT<br />
  2. 2. Matrix<br />Matrix is defined as a rectangular array of numbers<br />A table of number or set of number<br />The numbers inside the matrix is called elements or entries.<br />
  3. 3. Matrix<br />Column<br />A<br />Row<br />2 X 2<br />Column<br />Row<br />X<br />5 X 2<br />
  4. 4. Matrix (Addition & Subtraction)<br />B<br />A<br />+<br />A<br />B<br />-<br />A<br />B<br />
  5. 5. Matrix (Multiplication)<br />x<br />Solution:<br />
  6. 6. Matrix (Multiplication)<br />x<br />
  7. 7. Identity Matrix<br />Multiplying a matrix to its inverse will give the following matrices:<br />
  8. 8. Inverse Matrix (Part 1)<br />Formula:<br />A<br />1<br />A<br />-1<br />___________________<br />ad - bc<br />
  9. 9. Inverse Matrix (Part 1)<br />A<br />ad - bc<br />1<br />A<br />-1<br />___________________<br />A<br />
  10. 10. Inverse Matrix (Part 1)<br />B<br />-1<br />1<br />B<br />___________________<br />(3*-5)-(-4*2)<br />
  11. 11. Inverse Matrix (Part 1)<br />-1<br />B<br />x<br />OR<br />
  12. 12. Inverse Matrix (Part 2)<br />A<br />Matrix of Minor<br />
  13. 13. Inverse Matrix (Part 2)<br />Apply the signs<br />Matrix of Cofactors<br />Adjecate(A) <br />=<br />The diagonal stays the same.<br />
  14. 14. Inverse Matrix (Part 2)<br />A<br />1*1 + 0*1 + 1*-2<br />A<br />-1<br />-1<br />A<br />

×