
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
The creation of values to represent incomplete information, often referred to as value invention, is central in data exchange. Within schema mappings, Skolem functions have long been used for value invention as they permit a precise representation of missing information. Recent work on a powerful mapping language called secondorder tuple generating dependencies (SO tgds), has drawn attention to the fact that the use of arbitrary Skolem functions can have negative computational and programmatic properties in data exchange. In this paper, we present two techniques for understanding when the Skolem functions needed to represent the correct semantics of incomplete information are computationally wellbehaved. Specifically, we consider when the Skolem functions in secondorder (SO) mappings have a firstorder (FO) semantics and are therefore programmatically and computationally more desirable for use in practice. Our first technique, linearization, significantly extends the Nash, Bernstein and Melnik unskolemization algorithm, by understanding when the sets of arguments of the Skolem functions in a mapping are related by set inclusion. We show that such a linear relationship leads to mappings that have FO semantics and are expressible in popular mapping languages including sourcetotarget tgds and nested tgds. Our second technique uses source semantics, specifically functional dependencies (including keys), to transform SO mappings into equivalent FO mappings. We show that our algorithms are applicable to a strictly larger class of mappings than previous approaches, but more importantly we present an extensive experimental evaluation that quantifies this difference (about 78% improvement) over an extensive schema mapping benchmark and illustrates the applicability of our results on real mappings.
Be the first to like this
Be the first to comment