Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Energy audits in action


Published on

I recently gave this presentation at the World Energy Engineering Congress In Washington DC (Oct13) and it was well received. It shows a "big picture" approach and gives plenty of real world examples.

Published in: Business
  • Login to see the comments

  • Be the first to like this

Energy audits in action

  1. 1. Session  E4:  Energy  Audi1ng   Energy  Audits  In  Ac1on   Lonnie  Russell,  CEM  
  2. 2.    Energy  Audits  in  Ac/on    by    EnergyMan  LLC  
  3. 3. Plan  of  A8ack   Building  Energy  Usage:  Non  Industrial Environmental  Control Ligh1ng 20% The goal is to try to make the biggest impact possible with little or no investment. Start with the largest electrical loads and gas users. Includes HVAC and hot water 30% 50% Other
  4. 4. Important Question: Why is this operating with no one here? Must do some of audit during non-occupied times These items were found on 24/7 during non-occupied times. Programmable thermostat in override and set to 68F in the summer Boiler 10 Air handlers with a combined horsepower of 68.5
  5. 5. This  is  equipment  in  the   cabana;  only  used   seasonally,  but  it  was  all   on;  3  refrigerators  were   empty  and  on,  stove   had  it’s  pilot  light  on   and  hot  water  heater   was    not  turned  off.  
  6. 6. The  auditorium  is  a  very  large  space  to  leave  the   HVAC  system  running  when  the  room  is  not  in  use  
  7. 7. Computer  monitors  leS  on  
  8. 8. The  current  IT  PC  policy  is  not  helping  with  PC   power  consump/on,  as  can  be  observed  by  the   hundreds  of  PC’s  that  are  leS  on  24/7.   At  an  absolute  minimum,  the  monitors  should  be  set  to  to  go  to   standby.  Leaving  these  all  on  puts  a  heavy  load  on  the  HVAC   system,  which  may  not  have  been  originally  designed  for  this  large   a  load.  
  9. 9. Cost per Year Motor Size 8 cents / kWh 11 cents / kWh 1 kW $611 $964 10 kW $7,008 $9,636 25 kW $17,520 $24,090 50 kW $35,040 $48,180 1 Hp $680 $934 10 Hp $6,796 $9,344 25 Hp $16,989 $23,360 50 Hp $33,978 $46,720 Ini/al  motor  cost  is  only  about  5%  of  the  total   lifecycle  cost,  so  always  buy  an  efficient  motor!  
  10. 10. Why  does  equipment  not  get  turned  off?:   •     Lack  of  control  of  building  during  off  hours,  especially  in  buildings  with  mul/ple  users   •       System  was  set  up  that  way  from  the  beginning  and  no  one  on  site  knows  how  to  correct  it.   •       It  has  always  been  that  way  so  no  one  no/ces.   •       We  tried  that  once  but….   •       You  can’t  turn  that  off.  It  may  not  turn  back  on  (my  personal  favorite).   This is not limited to smaller facilities. Here are some sizable loads at a large facility. Chiller and associated equipment Chiller  Primary  and  Secondary   Cooling  Tower  Pumps   pumps   Cooling  Towers  
  11. 11. Now  that  the  schedule  is  op/mized  how  do  we  make  our   HVAC  system  more  efficient?   •     Tighten  up  the  building  and  ductwork   •  Control  the  outside  air  (preferably  with  demand  controlled       ven1la1on)  and  Economize,  if  possible   •         Install  VFD’s  where  possible   •         Ligh1ng     •         Energy  efficiency  products   •         Minimize,  or  eliminate  reheat   •   Op1mize  the  set  points  (room  temp,  chill  water,  hot  water,  non-­‐ occupied,  occupied  etc…)   •       ASHRAE  states  that  80%  of  all  occupants  will  be  comfortable   at  temperatures  of  68F  to  74F  in  the  winter  and  73F-­‐78F  in  the   summer  at  no  >  60%  RH.  
  12. 12. SCGSAH  1st  year  Results  (opera/onal  changes  only!)   Natural Gas Usage Electricity Usage 16,000 350,000 2008 300,000 2009 Therms KWH 11,000 250,000 200,000 2008 150,000 6,000 Reduc/on  of  51.7%   2009 100,000 Dec Jan Feb Mar Apr May Jun Time 1,000 Dec Jan Feb Mar Apr May Jun Reduc/on  Time8.6%   of  2 Jul YTD Natural Gas Cost YTD Electricity Cost 150000 100000 YTD 50000 Dollars 150000 Dollars Jul 100000 YTD 50000 0 0 2008 2009 Time Reduc/on  of  60.4%   2008 2009 Time Reduc/on  of  18.4%  
  13. 13. Building  Envelope  Improvement   This  building  had  many  major  air  leaks  that  needed  to  be  addressed.  Major  leaks  included:   • Exhaust  fans  with  no  dampers  so  they  would  be  wide  open  when  not  running   • Overhead  doors  with  no  seals   • Bathroom  exhaust  fans  that  never  shut  off   • Large  gaps  around  fan  shrouds   • Large  louvers  that  were  open  to  the  outside   Open  Exhaust  Duct   BackdraS  Damper  Installa/ons  
  14. 14. Air infiltration repair (Overhead doors) Before   Before  (sunlight  leaking  in)   ASer   Curtain  for   frequently  used  door   Brush  seal   Brush  Seal  
  15. 15. Building Envelope and Leaky ductwork examples Faulty    Duct  Insulation Open Roof Access No floor insulation in crawl space Missing    Insulation OA damper stuck open Ductwork insulation in bad shape
  16. 16. Negative Pressure from Bathroom Exhaust Fans Bathroom  Exhaust  fans  were  on  24/7.  When  HVAC  equipment  was  shut  down,  these  fans   exhausted  2000  cfm  and  pulled  air  in  from  outside  causing  humidity  to  rise  at  night.   Fan  switches  were  hidden   and  always  leS  on   Sensors  were  installed  to  automate  the  bathroom  exhaust  fans  so   they  would  run  for  15  minutes  when  the  bathroom  became   unoccupied  and  then  shut  off.  
  17. 17. Outside  air  control  opportuni/es   Some  places,  such  as  churches  and  auditoriums,  have  high  outside  air  requirements   because  of  the  per  person  ASRAE  ven/la/on  requirements.  This  is  partly  to  prevent  the   “sick  building  syndrome”  issues  that  occurred  when  buildings  did  not  ven/late   adequately  in  the  past.   Sanctuary  Outside  Air  Intake Using  CO2  monitoring,  and  controlling  the  outside  air  intake  based  on  that,  allows  for  proper   outside  air  intake.  Otherwise,  you  could  be  bringing  in  the  outside  air  requirement  for   hundreds  of  people  no  ma8er  how  small  the  occupancy  is.  This  technique  is  called  “demand   controlled  ven/la/on”.  The  price  to  do  this  type  of  control  has  dropped  substan/ally  in  the   last  few  years,  with  CO2  sensors  now  barely  over  $100.00  and  damper  controllers  for  about   the  same.  
  18. 18. Demand  Controlled  Ven/la/on   Outside Air Dampers AHUs were initially set at 10% - 15% OA damper open at all times. Especially in the hot humid summers of South Carolina, this can unnecessarily load the system. CO2 sensors were installed and set to open the OA dampers if CO2 levels rise to levels > 1000 ppm.
  19. 19. Make  outside  air  your  friend!    Economize  (frequently  called  free  cooling)  for  your   winter  heat  loads.  Able  to  shut  down  all  but  the  air  moving  parts  of  the  HVAC   systems  (chillers,  pumps,  compressors  etc…).   Economizer  possible  for  2309  to  3961  hours.  High  bays  maybe   an  addi/onal  1000  hours.  
  20. 20. Equipment  Modifica/ons/Requirements  to  Economize   Outside  air  damper  can   only  be  open  or  closed:   cannot  be  modulated.   Installed   Modulator   Return  air  had  no   damper,  therefore   ra/o  of  return  versus   outside  air  cannot  be   controlled.   Installed   Modula/ng   Damper  
  21. 21. Advantages  of  a  Variable  Frequency  Drives  (VFD’s)   HVAC  systems  are  generally  built  for  the  10  hoYest  and  10  coolest  days  of  the  year.  There  is   generally  overcapacity  for  all  other  condi[ons.  VFD’s  offer  the  ability  to  match  the  system  to   the  load,  offering  tremendous  energy  savings  and  extending  equipment  life.     A 50% reduction in flow actually reduces horsepower requirements by 87.5%
  22. 22. Pumping  power  is  wasted  (valves  are  par/ally  closed)  making  the  pumps  good  VFD  (variable   frequency  drive)  candidates.  The  pumps  (2)  also  run  con/nuously.  
  23. 23. Variable  Frequency  Drive  HVAC  Applica/ons   40  Hp  high  bay  air  handler.   Cooling  Tower  Pump  VFD:  Since  the  small   chiller  only  needs  900  gpm  and  the   exis/ng  pump  supplies  2000  gpm,  a  VFD   was  far  more  efficient  than  a  thro8le   valve  (see  previous  slide).   30  Hp  high  bay  air  handler.     AHU’s:  Original  owner  of  Bldg.  needed  100%  OA  for  the  manufacturing  space.  New  owner  did  not  need   that  so  VFDs  were  used  to  thro8le  these  drives  down  significantly.  This  also  allowed  for  dehumidifica/on   control  (by  moving  the  air  very  slow  and  lowering  the  chill  water  temperature)  and  reduced  load  on  the   chiller  and  boiler.  
  24. 24. Reheat  Reduc/on  using  variable  airflow     Fast Airflow Slow Airflow OA damper OA 65F damper Cooling Coil RA damper Filter Air Temp Reheat Coil 50F Cooling Coil Fan Air Temp Original Line-up (simplified with no exhaust): Air moved at max CFM across the cooling coil that had 42F chilled water going through it. This dropped the temperature. This colder air was then passed across a reheat coil that had 180F water going through it. This brought the air to a normal discharge temperature of 55F – 65F. RA damper Filter Air Temp Reheat Coil Fan Air Temp New De-humidification line-up (simplified with no exhaust): Air moved at min CFM across the cooling coil that had 42F 47F chilled water going through it. This drops the temperature significantly, condensing more water therefore reducing humidity. The need for reheat is reduced or eliminated. The reduced airflow helps keep the space from getting too cold, but a little reheat may be required if that occurs. As you can see the low discharge air temperature means the supply air duct definitely has to be insulated.
  25. 25. Elimina/ng  reheat  required  the  high  bay   ductwork  to  be  insulated  because  the   discharge  air  temp  would  drop  and   swea/ng  could  occur.  This  was  an   $18,000  investment  with  a  payback  of   about  1  month!  
  26. 26. Natural  Gas  Consump/on  Results   Natural Gas Consumption 2500 2006 2007 Dekatherms 2000 2008 1500 228   CDD   1000 500 320CDD   231  CDD   0 1 2 3 4 5 6 7 8 9 10 11 12 Though  Nov08  was   very  cold,  with  a   28%  increase  in   CDD,  gas  usage  only increased  12.8%   Month Natural  gas  consump/on  has  been  the  largest  success  of  our  energy  management  efforts.  Overall  Results:   •   Dekatherms  reduced  by  87.8%   •   Cost  reduced    $239,728  for  a  cost  reduc/on  of    89.2%  
  27. 27. Domes/c  Hot  Water   •  •  •  •  •  Electronic  Timers  should  be  installed  on  electric  water  heaters.   Many  facili/es  have  water  heaters  that  are  grossly  oversized   NG  should  be  used  if  available  (Far  less  expensive  to  heat  with  than  electric  resistance)     Tankless  NG  systems  are  ideal  for  low  or  variable  occupancy  applica/ons     Heat  Pump  water  heaters  are  good  for  hot  kitchens  
  28. 28. HW  recircula/on  pumps   When  water  heaters  are  turned  off,  their  associated  recircula/on  pumps  need  to   be  turned  off  also.  If  not,  they  will  cause  the  piping  system  to  act  as  a  large   radiator,  removing  heat  from  the  hot  water  tank,  causing  the  water  heater  to  use   more  energy  on  start-­‐up  (to  reach  set  point).  This  energy  loss  is  in  addi/on  to  the   energy  use  to  operate  the  pump  
  29. 29. Vending  Misers   •  Install  Vending  Miser  on  soda  machines:     h8p://   •  Shuts  down  the  compressor  and  lights  when  people  are  not  in  the   area   •  Can  have  a  payback  of  less  than  one  year   •  Simple  to  install  requiring  li8le  technical  skills   •  Some/mes  soda  vendor  will  supply  for  free   •  Soda  s/ll  stays  cold  
  30. 30. Many  opportuni/es  for  vending  and  cooler  misers    
  31. 31. Many  drink  coolers   have  very  bad  seal   leaks   “`   A  vendor  supplies  these  coolers  to  this  golf  resort,  but  the  resort  s/ll  has  to  pay  the   u/lity  bill!    These  are  basically  opera/ng  with  the  door  leS  open.  
  32. 32. Refrigerated  Water  Fountains   Use  of  a   programmable   receptacle  can   reduce  water   fountain    power   use  by  30%  
  33. 33. The  hood  should  overhang  6”  over  the  cooking    equipment.  Either   the  equipment  needs  pushed  back  a  li8le  more  or  extensions  need   installed  on  the  hood.  
  34. 34. Dishwasher  sani/zing  heaters,  such  as  these  two  36  kW  models,  can   consume  up  to  30%  of  a  restaurants  total  power  use.  Should  consider   a  NG  unit  or  a  chemical  dishwasher  
  35. 35. Dishwasher  exhaust  is  on    when   dishwasher  is  not  opera/ng.  Best  fix  is   an  interlock  
  36. 36. Pilot  lights  should  be     shut  off  whenever   possible   Idle  /me  needs  to  be  reduced   whenever  possible  
  37. 37. Pilot  lights  are  leS  on  con/nuously   Assume  1,250  BTUs  for  commercial  pilot.  This  is  a  two-­‐fold  savings:  natural  gas  or   propane  to  fuel  the  pilot  and  the  electricity  saved  by  not  having  to  remove  the  heat  with   the  HVAC  system.  A  4  burner  stove  (they  are  usually  larger)  would  require  10  tons  of   cooling  to  remove  the  heat  from  the  pilots!  
  38. 38. Walk-­‐Ins     No  curtains     Example  of   a  plas/c   curtain  that   would  work   well  in  the   walk-­‐in   coolers  and   freezers  
  39. 39. Ligh/ng  Opportuni/es   Incandescent  Auditorium  Lights   Too  much  aisle  light   Most  painless  energy   project!  Replace   incandescent  exit  signs   with  LED  signs.  About  a  6   month  payback  and  no   complaints!   500  T12  lights  on  at  0100  in  the  morning  in  a  large  library  
  40. 40. Many  /mes  hallways  are  over-­‐illuminated.  Rarely  should  a  4  bulb   fixture  be  used  in  a  hallway.  The  Illumina/ng  Engineering  Society  of   North  America  (IESNA)  maintains  that  10-­‐20  fc  is  adequate  for   hallways  and  aisles.  These  were  50  fc  or  higher.  
  41. 41. Reduced  Ligh/ng  Plan  on  the  cheap   This  is  an  inexpensive  way  to  secure  ligh/ng  that  does  not  have  switches.  This  example  is  for  high  bay   ligh/ng  (uses  much  more  energy  than  office  ligh/ng).  The  breakers  we  labeled  and  security  was  trained   to  turn  them  off  when  they  are  not  needed.  This  reduced  the  off-­‐shiS  load  by  35  –  50  KW  with  no  capital   required,  just  labeling  and  a  procedure.  The  lifespan  of  the  breakers  was  inves/gated  and  it  was  found   that  they  should  last  over  11  years  if  they  are  cycled  twice  a  day.  
  42. 42. Ligh/ng  Upgrades   This  hi  bay  was  converted  from  250w  HPS  to  T8  fluorescent.  32  fixtures  were  replaced  with  16  4’s  and  16   6’s.  This  reduced  wa8age  by  3,242  wa8s  and  HVAC  by  1902  tons.  This  project  was  done  in  conjunc/on   with  installing  switches  that  allowed  for  all  but  6  lights  to  be  off  when  the  space  was  not  in  use.  This   allowed  for  a  1.4  yr  payback  and  allowed  for  a  much  be8er  work  environment.  The  5000K  ligh/ng  made   reading  prints  and  assembly  work  much  easier  than  the  yellowish  HPS.     It  helps  to  sell  a  ligh/ng  retrofit  if  switches  can  be  added  in.  Also,  do   not  forget  to  calculate  the  HVAC  savings,  which  can  be  substan/al.   New  ligh/ng  can  be  “brighter”  but  the  foot  candle  readings  may  be   lower;  be  more  concerned  about  the  recep/on  of  the  ligh/ng.  
  43. 43. IE&H%&$)..V&E%"C*H !"#$%&%' +1234 +1232 +734 466.=#%%. >? (#%%#)* +,%#-./(0 WB*C#%&$).G,H% 156 8 42 152 5; 11: 789:;: 1912: 1196<6 K169244 K1:8 K19217 1; 4;4 1:9:;: K19<51 1169526 +,%#- K1:9:7< PC,B,H*O.$*=.D&E%"C*H !"#$%&%' +732 +732 +732 +73; +732 +73; (#%%#)* 156 8 42 1; 8; 8; 8; 221 /(0 ;;9:87 <9664 M,--#CH K<9;:1 K5:5 U#T&$)H +,%#<:9:;2 K796<6 G,NA&$*O.P#'A#J/.Q&$.'*#CHR +,%#-./(0 @*A#%*.B*C.D&E%"C* F*%.G,H%.I#J0 289646 ;88 89864 ;9:85 K::L52 K16L66 K14L1; K;6L76 S$&%&#-. S$T*H%N*$% P#'A#J/.Q'*#CHR 6L28 2L76 K1951; K29;2< K49844 6L8; This  spreadsheet  is  a  very  handy  tool  in  obtaining  buy-­‐ in  for  ligh/ng  projects.  Be  sure  to  research  any   available  rebates:  they  can  be  very  lucra/ve.   K4L67 K27L66 K2:L74 K1;4L26
  44. 44. U/lity  Bill  Analysis  Findings   These  2  graphs  (water  and  sewer)  track  together  very  closely,  but  they  should  not.     Sewage  should  only  be  charged  for  water  that  goes  down  the  drain,  not  water  for   irriga/on  or,  in  this  case,  water  that  is  being  evaporated  in  a  cooling  tower.  For   the  small  price  of  installing  an  irriga/on  meter  ($340.00)  the  sewer  bill  will  drop   at  least  50%.  
  45. 45. Water  and  Sewer   The  sewer  bill  at  this  facility  is  based  on  water  consump/on.  At  one  /me,  when  the  previous   owner  had  the  plant,  the  water  used  for  the  cooling  tower  and  the  irriga/on  system  was   deducted  from  the  total  (since  this  water  never  went  to  sewage).  The  meters  below  were  read   by  the  County  Water  and  Sanita/on  Department  monthly  so  the  values  could  be  deducted   from  the  usage  amount  reported  by  the  City  Water  System.   These  had  not  been  read  since  the  new  owner  had  purchased  the  building.  You  can  see  this  by  looking  at   the  huge  increases  occurring  during  the  summer  months,  when  the  irriga/on  and  cooling  tower  load  were   at  their  max.  When  the  Sewer  Department  was  contacted,  they  did  not  want  to  do  the  readings  again  and   offered  to  compromise  with  a  flat  rate.  This  resulted  in  an  annual  savings  of  over  $20,000.00.  
  46. 46. This  school  district’s  newer  elementary  school  was  using  more  than  40%  more   energy  than  the  state  average,  and  far  more  than  older  schools  in  the  same  district.   Met  with  the  Energy  Management  System  contractor  and  spent  the  day  watching   this  system  operate  in  detail.  
  47. 47. 60    Hp  Boiler  (2)   250  Ton  Chiller   50  Ton  Chiller   •  Chillers  were  operated  by  a  flow  calcula/on  that  did  a  very  poor  job.  The  small  chiller   never  ran  at  all.     •  No  low  OA  lock-­‐out  for  chiller  and  high  OA  lock-­‐out  for  boiler.  Large  chiller  came  on  when   it  was  47F  outside   •  Only  one  call  for  heat  would  turn  on  the  whole  hea/ng  system   •  Set-­‐points  need  to  be  variable   •  Simultaneous  hea/ng  and  cooling  needs  to  be  eliminated  or              greatly  reduced  
  48. 48. 30  Hp  CHW  Pumps   CHW  Pump  Control  Pkg.    CHW  Pump  VSDs  (different  speeds?)   Pumps  had  their  own  control  package:  they  were  not   controlled  by  the  EMS.  Pumps  would  not  shut  down  and  ran   at  different  speeds  at  the  same  /me.   10  Hp  HW  Pumps  
  49. 49. Air  Handler   Blower  Coil  Units   •  Though  EMS  showed  units  to  be  scheduled  off,  many  were  s/ll  opera/ng   due  to  hardware  communica/on  issues.   •  OA  should  be  minimized;  why  run  dedicated  systems  when  the  building  is   unoccupied   •  Thermostat  set  points  were  way  too  loose.  Need  to  use                ASHRAE  standard  
  50. 50. EMS  (or  BAS)  U/liza/on   Many  /mes  an  EMS  is  used  for  nothing  more  than  a  fancy  /me-­‐   clock.  This  is  a  missed  opportunity  and  waste  of  money.  Control   strategies  can  reduce  energy  use  significantly.  Examples:   •  Op/mum  Start/Stop   •  SA/DA  reset   •  Sta/c  reset   •  HW  reset   •  CHW  reset   •  Demand  Controlled  Ven/la/on   •  OA  lockouts   •  Humidity  control  strategies   •  Advanced  scheduling   •  Variable  override  /mers  
  51. 51. Poor  Installa/on   The  heat  from  the  walk  in  refrigerator  and  freezer   condensers  ejects  right  into  the  HVAC  condensers.    
  52. 52. Condensers  are  much  to  close  to  each  other  and  to  the  walls.  There   is  very  li8le  room  for  them  to  dissipate  heat  effec/vely.  
  53. 53. Improper  Valve  posi/on  Example   This  valve  was  opened  a  few  years  ago  to  compensate  for  a  “water  hammer”  issue  that   occurred  by  accident.  Power  readings  taken  on  the  pump  with  this  valve  open  and  closed   showed  an  increase  from  66KW  to  82KW.  The  pump  consumed  16  more  KW  with  this  valve   open.  Shuung  this  valve  saved  $7,140.00  a  yr.  
  54. 54. Single  Point  Bulle/ns   A  good  tool  to  drive  energy  awareness  
  55. 55. Man-­‐fan  example   This  man-­‐fan  was  running  24/7  though  the  area  was  only  occupied  about  90   hours  a  week.  This  equates  to  just  over  $300.00  a  year.  Remember  man-­‐fans  do   not  lower  the  room  temperature,  they  are  only  helpful  if  you  are  there  to  feel   their  benefit.  How  many  of  these  have  you  seen  running  in  a  non-­‐occupied  space?   Many  man-­‐fans  at  this  facility  use  more  power  than  this  one.  
  56. 56. Compressed  Air  Leak  examples   Let’s  assume  these  leaks  add  up  to  a  1/8”  leak  (probably  very  conserva/ve).  A   con/nuous    1/8”  leak  costs  and  unbelievable  $7,000.00  a  year.  This  is  totally   preventable.  Maintenance  usually  repairs  these  within  one  day  if  they  are  no/fied.   The  next  /me  you  hear  the  hissing  sound,  remember  it  sounds  like  money!  
  57. 57. Ligh/ng  example   If  the  ligh/ng  override  is  used,  it  should  be  turned  off  when  no  longer  needed  and   not  allowed  to  /me  out.  Some  of  these  /mers  are  2  hours  and  some  of  these  zones   can  cost  up  to  $15.00  for  just  one  hour  of  opera/on.    Knowing  your  zone  helps   prevent  the  waste  associated  with  turning  every  zone  on,  just  to  make  sure  you  get   the  right  one  (this  does  happen).    
  58. 58. Exhaust  fan  example   This  exhaust  fan  can  cost  over  $50.00  a  month  to  operate,  not  to  men/on  the  cost  of   the  condi/oned  air  that  is  being  pumped  outside  the  building.  This  fan  was  not   turned  off  when  produc/on  ended.  
  59. 59. Space  Heaters   !"#$%&'%#(%)*&#)%&-+$#(%.&(')+,5'+,(&('%&3#$4-4M%*& 9'4*&2#*&3+,/.&4/&#/&+L$%& •       !"#$%&'%#(%)*&*'+,-.&/%0%)&1%&#--+2%.&3+)&('%&3+--+24/5&)%#*+/*6&& They  are  a  fire  hazard   78  9'%:&#)%&#&;)%&'#<#).& •       =8 hey  consume  very  large  amounts  of  energy   T 9'%:&$+/*,>%&-#)5%&#>+,/(*&+3&%/%)5:& •  ?8  9'%:&#@%$(&+('%)&%>"-+:%%*&$+>3+)(&1:&$#,*4/5&('%&ABCD&*:*(%>&(+&2+)E&'#).%)&4/&('%& They  affect  other  employees  comfort  by  causing  the  HVAC  system  to      work   *,>>%)&F>#E4/5&4(&$+-.%)&3+)&('+*%&24('+,(&('%&'%#(%)*G&#/.&-%**&4/&('%&24/(%)&F'#04/5&#& harder  in  the  summer  (making  it  colder  for  those  without  the  heaters)  and  less   ('%)>+*(#(&>%%(&(%>"%)#(,)%&2'%/&('%&2'+-%&)++>&>#:&/+(&1%&2#)>G8& & in  the  winter  (having  a  thermostat  meet  temperature  when  the  whole  room   H%)*+/#-&3#/*I&+/&('%&+('%)&'#/.I&.+&/+(&$'#/5%&1,4-.4/5&(%>"%)#(,)%I&J,*(&#4)K+2I&#/.&.+& may  not  be  warm).   /+(&,*%&>,$'&%-%$()4$4(:8& Personal  fans,  on  the  other  hand,  do  not  change  building  temperature,    just  airflow,  and  do  not  use  much  electricity.  
  60. 60. To  sell  an  energy  project,  think  like  a  life  insurance   salesman,  only  backwards!   When  selling  a  policy  for  $275.00  a  year  it  is  presented  as  cos/ng  only  $.75  a  day.   When  working  with  energy  and  jus/fying  a  project,  think  the  opposite  (annually)!         This  is  especially  easy  when  looking  at  loads  that  run  24/7,  such  as  an  exit  sign.   40  wa8s  –  4  wa8s  =  36  wa8s  *  8760  hrs  (hours  in  a  year)  =  315360/1000  (wa8s  in  a   kilowa8)  =  315.4  kWH  *  $.11  (price  per  kilowa8  hour)  =  $34.69  a  yr  in  savings   Doesn’t  that  sound  be8er  than  saving  9.50  cents  a  day?  
  61. 61. Ques/ons?