Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Clipping 22

1,491 views

Published on

ll

Published in: Technology, Art & Photos
  • Be the first to comment

Clipping 22

  1. 1. Drawing with Thick Primitives<br />Drawing with Thick Primitives<br />• How do we thicken<br />the line stroke width?<br />• Ideas:<br />– Place the center of<br />the circular “brush” on<br />the pixel<br />– Place the upper<br />corner of the square<br />“marker” on the pixel<br />(issues of orientation)<br />– Then do scan<br />conversion algorithm<br />
  2. 2. Why Clip?<br />Rasterization is very expensive<br />Approximately linear with number of fragments created<br />Math and logic per pixel<br />If we only rasterize what is actually viewable, we can save a lot<br />A few operations now can save many later<br />
  3. 3. Clipping Primitives<br />Different primitives can be handled in different ways<br />Points<br />Lines<br />Polygons<br />
  4. 4. 159.235<br />Graphics<br />4<br />Viewing & Clipping - Outline<br />Viewing in 2D<br />Clipping in 2D<br />Cohen-Sutherland Algorithm<br />Cyrus & Beck Algorithm<br />Clipping Polygons<br />Sutherland-Hodgman Algorithm<br />
  5. 5. 159.235<br />Graphics<br />5<br />Viewing in 2D - Viewport<br />250<br />45<br />Window in world coordinates.<br />250 x 250<br />Pixels.<br />Viewport in<br />Device coords<br />
  6. 6. 159.235<br />Graphics<br />6<br />Clipping in 2D<br />Need to clip primitives (eg lines) against the sides of the viewing window<br />e.g lines or polygons<br />We only see what is inside the window<br />
  7. 7. 159.235<br />Graphics<br />7<br />Trivial Clipping Acceptance<br />If all a line’s vertices lie inside box we “accept” it<br />
  8. 8. 159.235<br />Graphics<br />8<br />Trivial Vertex Rejection<br />All line vertices lie outside and on same side  reject.<br />
  9. 9. 159.235<br />Graphics<br />9<br />This is an efficient method of accepting or rejecting lines that do not intersect the window edges.<br />Assign a binary 4 bit code to each vertex :<br />First bit : above top of window, y > ymax<br />Second bit : below bottom, y < ymin<br />Third bit : to right of right edge, x > xmax<br />Fourth bit : to left of left edge, x < xmin<br />4-bit code called: Outcode<br />Cohen-Sutherland Clipping Algorithm<br />
  10. 10. Cohen-Sutherland Line Clipping<br />Divide 2D space into 3x3 regions.<br />Middle region is the clipping window.<br />Each region is assigned a 4-bit code.<br />Bit 1 is set to 1 if the region is to the left of the clipping window, 0 otherwise. Similarly for bits 2, 3 and 4.<br />4<br />3<br />2<br />1<br />Top Bottom Right Left<br />
  11. 11. Cohen-Sutherland Line Clipping<br />1010<br />1000<br />1001<br />0000<br />0010<br />0001<br />0100<br />0110<br />0101<br />
  12. 12. 159.235<br />Graphics<br />12<br />Cohen-Sutherland Algorithm<br />1001<br />1000<br />1010<br />0000<br />0001<br />0010<br />0100<br />0110<br />0101<br /> Both endpoint codes 0000, trivial acceptance, else:<br /> Do logical AND of Outcodes (reject if non-zero)<br />
  13. 13. Cohen-Sutherland Line Clipping<br />For those lines that we cannot immediately determine, we successively clip against each boundary.<br />Then check the new endpoint for its region code.<br />How to find boundary intersection: To find y coordinate at vertical intersection, substitute x value at the boundary into the line equation of the line to be clipped.<br />Other algorithms:<br />Faster: Cyrus-Beck<br />Even faster: Liang-Barsky<br />Even faster: Nichol-Lee-Nichol<br />
  14. 14. 159.235<br />Graphics<br />14<br />Clipping Polygons<br />Clip polygons by clipping successively against 4 sides.<br />
  15. 15. 159.235<br />Graphics<br />15<br />Clipping Polygons<br />Clip polygons by clipping successively against all 4 sides<br />Can implement as pipelined algorithm (ie special hardware can do the work)<br />Recursively test each edge.<br />Form new edge with next vertex<br />Call with new edge<br />
  16. 16. 159.235<br />Graphics<br />16<br />Four cases of polygon clipping:<br />Inside<br />Outside<br />Inside<br />Outside<br />Inside<br />Outside<br />Inside<br />Outside<br />Output<br />Intersection<br />Second<br />Output<br />Case 3<br />No output.<br />Case 1<br />Case 2.<br />Case 4<br />Sutherland-Hodgman Clipping Algorithm<br />First<br />Output<br />Output<br />Vertex<br />
  17. 17. 159.235<br />Graphics<br />17<br />Sutherland-Hodgman Algorithm<br />Loop round vertices, test each against all 4 clipping planes in sequence<br />Call algorithm again with new edge formed by next vertex -re-entrant<br />No storage requirement between stages<br />Easy to implement in hardware<br />
  18. 18. 18<br />Viewing & Clipping - Summary<br />Window and Viewport<br />Clipping cuts out what we do not “see”<br />Also reduces unnecessary computation<br />Can be done at various levels<br />Java 2D system does a lot of the clipping for us if we use that rendering pipeline<br />

×