Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
INVERSE TRIGONOMETRY
PRINCIPAL VALUES & DOMAINS OF INVERSETRIGONOMETRIC FUNCTIONS     Function         Domain            Range     y = sin-1 x ...

EXAMPLES
PROPERTIES OF INVERSE TRIGONOMETRICFUNCTIONSProperty – A           sin (sin-1 x) = x           -1  x 1          cos (co...
EXAMPLES
Property – B           sin-1 (sin x) = x          cos-1 (cos x) = x           tan-1 (tan x) = x           cot-1 (cot x) = ...
EXAMPLES
Property – C         sin-1 (-x) = - sin-1 x         tan-1 (-x) = - tan-1 x          xR                                   ...
EXAMPLES

EXAMPLES

EXAMPLES

EXAMPLES
IDENTITIES OF ADDITION AND SUBSTRACTION                 x 1  y 2  y 1  x 2                                        ...
   x y  1  x 2   1  y2                                                                  xy     1  xy          ...
Subtraction   sin-1 x - sin-1 y = sin-1 x 1  y 2  y 1  x 2  , x  0, y  0                                         ...
EXAMPLES
SOME MORE PROPERTIES

EXAMPLE
SOME PROPERTIES OF TAN-1
SOME USEFUL GRAPHS














Upcoming SlideShare
Loading in …5
×

Inverse Trigonometry

1,303 views

Published on

  • Be the first to comment

Inverse Trigonometry

  1. 1. INVERSE TRIGONOMETRY
  2. 2. PRINCIPAL VALUES & DOMAINS OF INVERSETRIGONOMETRIC FUNCTIONS Function Domain Range y = sin-1 x - 1 x1 y = cos-1 x - 1  x1 y = tan-1 x xR y = cosec-1 x x-1or x1 y = sec-1 x x-1or x1 y = cot-1 x xR
  3. 3.
  4. 4. EXAMPLES
  5. 5. PROPERTIES OF INVERSE TRIGONOMETRICFUNCTIONSProperty – A sin (sin-1 x) = x -1  x 1 cos (cos-1 x) = x -1  x 1 tan (tan-1 x) = x xR cot (cot-1 x) = x xR sec (sec-1 x) = x x  -1, x  1 cosec (cosec-1 x) = x x  -1, x  1These functions are equal to identity function in their wholedomain which may or may not be R.
  6. 6. EXAMPLES
  7. 7. Property – B sin-1 (sin x) = x cos-1 (cos x) = x tan-1 (tan x) = x cot-1 (cot x) = x sec-1 (sec x) = x cosec-1 (cosec x) = xThese are equal to identity function for a short interval of xonly.
  8. 8. EXAMPLES
  9. 9. Property – C sin-1 (-x) = - sin-1 x tan-1 (-x) = - tan-1 x xR xRThe functions sin-1 x, tan-1 x and cosec-1 x are oddfunctions and rest are neither even nor odd.
  10. 10. EXAMPLES
  11. 11.
  12. 12. EXAMPLES
  13. 13.
  14. 14. EXAMPLES
  15. 15.
  16. 16. EXAMPLES
  17. 17. IDENTITIES OF ADDITION AND SUBSTRACTION x 1  y 2  y 1  x 2      x 1  y 2  y 1  x 2     
  18. 18.  x y  1  x 2 1  y2      xy 1  xy xy 1  xy
  19. 19. Subtraction sin-1 x - sin-1 y = sin-1 x 1  y 2  y 1  x 2  , x  0, y  0     cos-1 x - cos-1 y = cos-1 x y  1  x 1  y  ,  2 2     x  0, y  0, x  y xy tan-1 x - tan-1y = tan-1 , x  0, y  0 1  xyNote: For x < 0 and y < 0 these identities can be used withthe help of properties C i.e. change x and y to - x and - ywhich are positive.
  20. 20. EXAMPLES
  21. 21. SOME MORE PROPERTIES
  22. 22.
  23. 23. EXAMPLE
  24. 24. SOME PROPERTIES OF TAN-1
  25. 25. SOME USEFUL GRAPHS
  26. 26.
  27. 27.
  28. 28.
  29. 29.
  30. 30.
  31. 31.
  32. 32.
  33. 33.
  34. 34.
  35. 35.
  36. 36.
  37. 37.
  38. 38.
  39. 39.

×