Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Successfully reported this slideshow.

Like this presentation? Why not share!

No Downloads

Total views

2,080

On SlideShare

0

From Embeds

0

Number of Embeds

2

Shares

0

Downloads

0

Comments

0

Likes

8

No embeds

No notes for slide

- 1. DETERMINANT
- 2. DEFINITION
- 3. EXPANSION OF DETERMINANT
- 4. MINORS
- 5. COFACTORCofactor of the element aij is Cij = (–1 )i+j. Mij ; where i & jdenotes the row & column in which the particular elementlies.Note that the value of a determinant of order three in termsof ‘Minor’ & ‘Cofactor’ can be written as: D = a11M11 – a12M12 + a13M13 or D = a11C11 + a12C12 + a13C13 & so on.
- 6. TRANSPOSE OF A DETERMINANT
- 7. SYMMETRIC, SKEW-SYMMETRIC, ASYMMETRICDETERMINANTSI. A determinant is symmetric if it is identical to its transpose. Its ith row is identical to its ith column i.e. aij = aji for all values of i and j II. A determinant is skew-symmetric if it is identical to its transpose having sign of each element inverted i.e. aij = – aji for all values of i and j . A skew-symmetric determinant has all elements zero in its principal diagonal.III. A determinant is asymmetric if it is neither symmetric nor skew-symmetric.
- 8. PROPERTIES OF DETERMINANTS
- 9.
- 10.
- 11.
- 12. EXAMPLES
- 13. USE OF FACTOR THEOREM TO FIND THE VALUE OFDETERMINANTIf by putting x = a the value of a determinant vanishes then(x – a) is a factor of the determinant.
- 14. EXAMPLES
- 15. MULTIPLICATION OF TWO DETERMINANTS
- 16. EXAMPLES
- 17. SUMMATION OF DETERMINANTS
- 18. EXAMPLES
- 19. INTEGRATION OF A DETERMINANT
- 20. EXAMPLES
- 21. DIFFERENTIATION OF DETERMINANT
- 22. EXAMPLES
- 23. CRAMERS RULE: SYSTEM OF LINEAR EQUATIONS
- 24.
- 25. Consistency of a system of Equations i. If D 0 and alteast one of D1, D2, D3 0, then the given system of equations are consistent and have unique non trivial solution. ii. If D 0 & D1 = D2 = D3 = 0, then the given system of equations are consistent and have trivial solution only. iii. If D = D1 = D2 = D3 = 0, then the given system of equations have either infinite solutions or no solution.
- 26.
- 27. EXAMPLES Find the nature of solution for the given system of equations. x + 2y + 3z = 1 2x + 3y + 4z = 3 3x + 4y + 5z = 0 Ans. No Solution Solve the following system of equations x + 2y + 3z = 1 2x + 3y + 4z = 2 3x + 4y + 5z = 3 Ans. x = 1 + t y = –2t z = t where t R
- 28. EXAMPLES Solve the following system of equations x + 2y + 3z = 0 2x + 3y + 4z = 0 x–y–z=0 Ans. x = 0, y = 0, z = 0 Let 2x + 3y + 4 = 0 ; 3x + 5y + 6 = 0, 2x2 + 6xy + 5y2 + 8x + 12y + 1 + t = 0, if the system of equations in x and y are consistent then find the value of t. Ans. t = 7
- 29. APPLICATION OF DETERMINANTS
- 30.

No public clipboards found for this slide

Be the first to comment