Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

The Evolution of Disaster Early Warning Systems in the TRIDEC Project

877 views

Published on

The TRIDEC project (Collaborative, Complex, and Critical Decision Processes in Evolving Crises) focuses on real-time intelligent information management in the Earth management domain and its long-term applications. It is funded under the European Union’s seventh Framework Programme (FP7). The TRIDEC software framework is applied in two application environments, which include industrial subsurface drilling (ISD) and natural crisis management (NCM).
For each domain, three consecutive demonstrators with extended capabilities are developed and field-tested during the projects lifespan. This article focuses on the technical advances achieved by the light-, mid- and heavyweight NCM demonstrators for Tsunami Early Warning.

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

The Evolution of Disaster Early Warning Systems in the TRIDEC Project

  1. 1. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Collaborative, Complex, and Critical Decision Processes in Evolving Crises   •TRIDEC is a IT Research Project in the European Union’s Framework Programme  (FP7)  •New approaches and technologies for intelligent information management in collaborative, complex and critical decision processes in earth management. •This presentation focuses on the architecture  developed for natural crisis management (NCM) and the light-, mid- and heavyweight demonstrators for Tsunami Early Warning.  
  2. 2. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Tsunami Early Warning Systems (TEWS) TEWS are distributed software and hardware systems supporting – reliable detection of imminent tsunami hazards,  – rapid situation assessment, and the  – targeted dissemination of customised warning messages.  TEWS infrastructures consist of   •national (National Tsunami Warning  Centre: NTWC); and  •regional warning centres (Regional  Tsunami Watch Centre:RTWC). 
  3. 3. ISOPE-2013 Anchorage ISOPE-2013 Anchorage ICT Research and Development Strategy Information and Communication Technology (ICT) view of Tsunami Early Warning Systems: •integrated software- and hardware systems for  •data acquisition,  •decision making and  •information dissemination, which  •support the detection and analyses of imminent hazards and the  dissemination of customised related warnings. 
  4. 4. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Predecessor Projects 2005 – 2011 2007 – 2010 2010 – 2013
  5. 5. ISOPE-2013 Anchorage German Indonesian Tsunami Early Warning System (GITEWS)  Focus: Sensor data integration  Duration: 2006 – 2011 Funding: German Ministry for Education and  Research (BMBF) Distant Early Warning System (DEWS) Focus: Information logistics  Duration: 2007-2010 Funding: EU (FP6) Predecessor Projects
  6. 6. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Key components •A communication infrastructure of interoperable services •A robust and scalable service infrastructure •A knowledge-based service framework  •An adaptive framework for collaborative decision making
  7. 7. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Architectures and Application Development • Concept and Design of a reference architecture for tsunami warning  systems based on the TRIDEC service infrastructure • Application Development – Establishing a service orchestration platform to support sustainable  crisis management and collaboration workflows – Specification and implementation of adaptive, autonomous and  intelligent information management 7
  8. 8. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Spiral Model for Demonstrator Evolution 8 Y1 – Y2 – Y3 – Each yearly cycle comprises requirement analysis, design and development activities followed by test phases to validate the results repeatedly against the requirements. Year 1: Light weight Demonstrator Year 2: Middle weight Demonstrator Year 3: Heavy weight Demonstrator
  9. 9. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Design of Reference Architecture for Crisis Management Systems • Specification of Information Model • Identification of System Components • Specification of Interaction Scenarios, Tasks, Choreographies and Business Processes • System-of-Systems (SoS) design 10
  10. 10. ISOPE-2013 Anchorage ISOPE-2013 Anchorage TRIDEC Architecture Overview • The generic TRIDEC architecture describes a common layout for the sub-systems of a System of Systems to interact via a communication infrastructure. • A communication infrastructure based on a Message-oriented middleware (MOM) enables distributed applications and distributed systems in heterogeneous environments to communicate by message exchange. Red triangles: SoS sub-systems with their own data.
  11. 11. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Generic Architecture Components Display of the identified generic components for a generic decision support system.
  12. 12. ISOPE-2013 Anchorage Architecture for Natural Crisis Management 13 Decide & Act Downstream •Generation of customized warning information •Dissemination via different channels •Control actuators Decide & Act •Decision finding based on context analysis •Evaluation of alternatives •Initiation of warnings Upstream •Sensor data •Context information •Dynamic analysis
  13. 13. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Natural Crisis Management System Architecture – Concept 14
  14. 14. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Upstream / Decide and Act Architecture 15
  15. 15. ISOPE-2013 Anchorage Upstream / Decide & Act: Light weight and middle-weight systems 16 Year 1 Year 2
  16. 16. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Decide and Act / Downstream Architecture 17
  17. 17. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Service Oriented Architecture for Sensor Integration (Upstream)
  18. 18. ISOPE-2013 Anchorage ISOPE-2013 Anchorage End User Use Cases Natural Crises Management
  19. 19. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Collaboration for Natural Crises Management
  20. 20. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Roles and Tasks in the TRIDEC System of Systems
  21. 21. ISOPE-2013 Anchorage Tasks, Roles, and Conversations (Collaboration Model and Business Processes) 22
  22. 22. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Choreography Example
  23. 23. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Tsunami Workflow Example
  24. 24. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Remaining Work • Extension of the System-of-Systems character (federation of distributed components, international communication of systems) • Integrate non-traditional tsunami signal detection approaches • Leverage intelligent information management 25
  25. 25. ISOPE-2013 Anchorage ISOPE-2013 Anchorage The road ahead / ICT Megatrends •Ubiquitous sensing, •integration of Earth Observation (EO) systems, •volunteered geographic information (VGI), and •cloud computing However, for any kind of early warning system, it will be critical to prove that the range of functions can also be reliably offered as cloud-based software services.
  26. 26. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Conclusion • Information and communication technology (ICT) has become the driving factor for Tsunami Early Warning Systems (TEWS). • IT concepts such as service-based architecture (SOA), system of systems (SoS), middleware and semantic services enable standards-based software infrastructures for national and regional TEWS. • The TRIDEC software framework is used for local TEWS instances in the North East Atlantic / Mediterranean (NEAM) region to be connected in a system of systems.
  27. 27. ISOPE-2013 Anchorage ISOPE-2013 Anchorage Thank you for your attention

×