Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Sistemas numericos

1,694 views

Published on

  • Be the first to comment

  • Be the first to like this

Sistemas numericos

  1. 1. SISTEMAS NUMERICOS<br />Lizza Acosta Bojalil<br />Prof. Santiago Mena<br />INFORMATICA Y SOCIEDAD<br /> Tema : SISTEMAS NUMERICOS <br />
  2. 2. AsiFuNciOna… <br />Sistemas Numéricos:<br />Desde tiempos remotos el hombre comenzó a desarrollar diferentes sistemas matemáticos con su correspondiente base numérica para satisfacer sus necesidades de cálculo. Los sistemas numéricos más antiguos son:<br />Babilónico<br />Romano<br />Hindú<br />Arabe<br />
  3. 3. BaBiLoNicO<br />El sistema numérico babilónico tenía base 60 y en la actualidad de éste sólo quedan en uso los grados, horas, minutos y segundos. <br />
  4. 4. RoMaNo<br />El romano, por su parte, era el más atrasado de todos. De ese sistema actualmente sólo se utilizan sus números (I, V, X, L, C, D y M) para señalar las horas en las esferas de algunos relojes, indicar los capítulos en los libros y, en otros casos para hacer referencia a un determinado año. <br />
  5. 5. HiNdU<br />Sin embargo, el sistema numérico hindú y árabe sí han llegado hasta nuestros días; es lo que conocemos como sistema numérico decimal (de base 10), siendo el de uso más extendido en todo el mundo. Tal como indica su prefijo (deci), este sistema utiliza 10 dígitos, del 0 al 9, con los cuales podemos realizar cualquier tipo de operación matemática.<br />
  6. 6. Desde el comienzo de nuestra instrucción primaria en la escuela nos enseñan las matemáticas correspondientes al sistema numérico decimal, que continuamos utilizando durante el resto de nuestras vidas para realizar lo mismo cálculos simples que complejos.<br />
  7. 7. Debido al extendido uso del sistema decimal muchas personas desconocen la existencia de otros sistemas numéricos como, por ejemplo, el binario (de base 2), el octal (de base 8) y el hexadecimal (de base 16), entre otros.<br />
  8. 8. Con el surgimiento de los ordenadores o computadoras personales (PCs), los ingenieros informáticos se vieron en la necesidad de adoptar un sistema numérico que le permitiera a la máquina funcionar de forma fiable. <br />
  9. 9. Debido a que el sistema numérico decimal resultaba complejo para crear un código apropiado, adoptaron el uso del sistema numérico binario (de base 2), que emplea sólo dos dígitos: “0” y “1”.<br />
  10. 10. Con el sistema binario los ingenieros crearon un lenguaje de bajo nivel o “código máquina”, que permite a los ordenadores entender y ejecutar las órdenes sin mayores complicaciones, pues el circuito electrónico de la máquina sólo tiene que distinguir entre dos dígitos para realizar las operaciones matemáticas y no entre diez, como hubiera sucedido de haberse adoptado el sistema numérico decimal para el funcionamiento de los ordenadores o computadoras.<br />
  11. 11. BaSe De uNSisTeMaNuMerIco<br />La base de un sistema numérico radica en la cantidad de dígitos diferentes que son necesarios para representar las cifras. Por ejemplo, a continuación se puede apreciar la cantidad de dígitos diferentes que emplea un sistema numérico en particular, de acuerdo con su correspondiente base numérica:<br />  BASE NUMÉRICADÍGITOS EMPLEADOSCANTIDAD TOTAL DE DÍGITOS Binaria(2) 0 y 1 2 Octal(8) 0, 1, 2, 3, 4, 5, 6 y 7 8 Decimal(10) 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9 10 Hexadecimal(16) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F 16<br />
  12. 12. DeSCoMpoSicIoN De uNNuMeRoEnTeRoBaSe 10<br />Para recordar como se realiza la descomposición en factores de un número entero perteneciente al sistema numérico decimal (de base 10), veamos un ejemplo con el número 235. Este número está formado por la centena 200, la decena 30 y la unidad 5, tal como se representa a continuación:235 = 200 + 30 + 5Para descomponer este número será necesario relacionar cada dígito con el factor 10 de la base numérica y con los exponentes de las potencias que corresponden al lugar específico que ocupa cada uno en la cifra, es decir, 100 para la unidad, 101 para la decena, 102 para la centena y así sucesivamente<br />
  13. 13. Descomposición en factores de un número base 2 (binario) y su conversión a un número equivalente en el sistema numérico decimal. <br />Veamos ahora cómo llevamos el número binario 101111012 a su equivalente en el sistema numérico decimal. Para descomponerlo en factores será necesario utilizar el 2, correspondiente a su base numérica  y elevarlo a la potencia que le corresponde a cada dígito, de acuerdo con el lugar que ocupa dentro de la serie numérica. Como exponentes utilizaremos el “0”, “1”, “2”, "3" y así sucesivamente, hasta llegar al "7", completando así la cantidad total de exponentes que tenemos que utilizar con ese número binario. La descomposición en factores la comenzamos a hacer de izquierda a derecha empezando por el mayor exponente<br />
  14. 14. TaBlA De suMaR De nuMeroOBiNarioOsBaSicOs<br />
  15. 15. BITS Y BYTES<br />Mediante el uso de este sistema numérico, el ordenador, que no es otra cosa que una sofisticada calculadora, es capaz de realizar no sólo sumas, sino cualquier otro tipo de operación o cálculo matemático que se le plantee, utilizando solamente los dígitos “1” y “0”.Seguramente en algún momento habrás oído mencionar las palabras “bit” y “byte”. Bit es el nombre que recibe en informática cada dígito “1” ó “0” del sistema numérico binario que permite hacer funcionar a los ordenadores o computadoras (PCs). La palabra “bit” es el acrónimo de la expresión inglesas BinaryDigIT, o dígito binario, mientras que “byte” (o también octeto) es simplemente la agrupación de ocho bits o dígitos binarios.Para que el ordenador pueda reconocer los caracteres alfanuméricos que escribimos cuando trabajamos con textos, se creó el Código ASCII (American Standard CodeforInformationInterchange – Código Estándar Americano para Intercambio de Información), que utiliza los números del 0 al 255. Cada uno de los números del Código ASCII compuestos por 8 dígitos o bits<br />

×