At Netflix, we try to provide the best personalized video recommendations to our members. To do this, we need to adapt our recommendations for each contextual situation, which depends on information such as time or device. In this talk, I will describe how state of the art Contextual Recommendations are used at Netflix. A first example of contextual adaptation is the model that powers the Continue Watching row. It uses a feature-based approach with a carefully constructed training set to learn how to adapt to the context of the member. Next, I will dive into more modern approaches such as Tensor Factorization and LSTMs and share some results from deployments of these methods. I will highlight lessons learned and some common pitfalls of using these powerful methods in industrial scale systems. Finally, I will touch upon system reliability, choice of optimization metrics, hidden costs, risks and benefits of using highly adaptive systems.