Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Plein gaz : enjeux et perspectives sur la valorisation du CO2 | LIEGE CREATIVE, 10.12.2019

1,011 views

Published on

La réduction des émissions de CO2 est une priorité dans la transition énergétique mondiale.

Parmi les pistes envisagées, la capture et réutilisation du CO2 offre d’intéressants avantages tels que la flexibilité de ses solutions et la maturité technique élevée pour plusieurs d’entre elles.

Vu le faible coût du carbone en Europe, le déploiement de ces technologies reste lent mais la valorisation du CO2 comme matière première peut améliorer leur rentabilité.

Capturer, stocker et utiliser le CO2 représentent de nombreux enjeux ! Pour répondre à ces défis, la plateforme FRITCO2T (Federation of Researchers in Innovative Technologies for CO2 Transformation) a vu le jour à l'Université de Liège en regroupant les expertises complémentaires de 4 laboratoires actifs dans des secteurs aussi divers que la pharmacie, les matériaux de construction, les polymères ou le génie chimique.

Cette soirée a eu pour but de présenter les activités de la plateforme qui propose une offre de recherche et développement pour la ré-utilisation de CO2 via de nombreuses voies : synthèse de carburants ou de plastiques, utilisation de CO2 comme solvant notamment dans le secteur pharma, carbonatation de matériaux de construction…

Des applications concrètes de telles solutions dans le monde industriel ont été illustrées et, les exposés seront suivis d'un échange avec un panel animé par Damien Dallemagne (CO2 Value Europe).

Published in: Environment
  • Login to see the comments

  • Be the first to like this

Plein gaz : enjeux et perspectives sur la valorisation du CO2 | LIEGE CREATIVE, 10.12.2019

  1. 1. Plein gaz : enjeux et perspectives sur la valorisation du CO2 Panel d’intervenants
  2. 2. Delphine Buchet Coordination Générale, LIEGE CREATIVE
  3. 3. Plein gaz : enjeux et perspectives sur la valorisation du CO2 Panel d’intervenants
  4. 4. Grégoire Léonard Chargé de cours au Département Chemical Engineering, Faculté des Sciences Appliquées (ULiège)
  5. 5. 5 Plein gaz : enjeux et perspectives de la valorisation du CO2
  6. 6. Before talking of CO2… Steffen W. et al. (2015), Science 347 (6223), 1259855. 6
  7. 7. Budget CO2 7 IPCC, SR15 (2018). 1010 500 299 36 1850-1999 2000-2015 Carbon budget 1-year emissions
  8. 8. 8 M. Meinshausen, Australian-German Climate & Energy College, The University of Melbourne, climatecollege.unimelb.edu.au Are we on the right track?
  9. 9. European policy so far 9 0% 20% 40% 60% 80% 100% 0 1000 2000 3000 4000 5000 1990 2000 2010 2020 GHGEmissions(Mt CO2eq/y) GHG Emissions - EU-28 Eurostat, 2017. Greenhouse gas emission statistics - emission inventories
  10. 10. 10 Boden et al., 2010; EC-JRC/PBL, 2009; European Commission COM(2011) 112; EEA, 2015 Ambitious objectives for EU 0 1000 2000 3000 4000 5000 1750 1800 1850 1900 1950 2000 2050 MtCO2/year 2010 Power and heat Industry Other
  11. 11. Belgian position ?? n http://www.fabi.be 11 La Libre Belgique, 16/10/19
  12. 12. Trias Energica Lysen E., The Trias Energica, Eurosun Conference, Freiburg, 1996 12
  13. 13. CO2, waste or feedstock? 13 Global CCS Institute. Global Status of CCS 2016: Summary Report. Koytsumpa et al, 2016. https://doi.org/10.1016/j.supflu.2017.07.029
  14. 14. There is C in CO2 14 Source: CO2Chem
  15. 15. Large potential for CO2 re-use! n Up to 18 Gt CO2/y by 2050 15 Hepburn et al., 2019. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87-97. https://doi.org/10.1038/s41586-019-1681-6
  16. 16. 16 Synthetic Fuels Mono/Polymers, Composite and Biomaterials Mineralization ChemicalTransformation PhysicalUse Pharmaceutics & Cosmetology Direct CO2 use (solvent, foaming…) Process sustainability (LCA and economics) Sourcing Capture & Purification Transversal The FRITCO2T Platform www.chemeng.uliege.be/FRITCO2T
  17. 17. Success stories n More than 40 research projects in the last 20 years n About 12 M€ funding achieved, > 3 M€ unique equipment available n > 200 publications, patents, communications… 17 From lab to pilot scale High performance analytical tools CO2-assisted processes
  18. 18. Missions of the FRITCO2T Platform n Market needs, fundamentals push q Many fundamental problems to be tackled q Accelerate climbing of the TRL scale n Lead large-scale research projects q From regional to european projects n Support technological developments q From rationals to new ideas q Support for operational issues q Holistic view: Circular economy and life cycle thinking 18 Industrialisation Pre- Industrialisation Applied Research Fundamental Research
  19. 19. Contacts n CO2 Capture, Power-to-fuels, LCA - TEA q DCE (G.Léonard, A.Léonard) n Mono/Polymers, Composite and Biomaterials, CO2 foaming & sCO2 processes q CERM (Ch. Detrembleur, B. Grignard) n Mineralization q UEE (L. Courard) n Pharmaceutics & Cosmetology q LTPB (B. Evrard) 19 www.chemeng.uliege.be/FRITCO2T
  20. 20. 20 CO2 Capture
  21. 21. Purity of sources varies between 0.04% and almost 100% 21 CO2 capture = fluid separation
  22. 22. Post-combustion capture n Usually absorption-regeneration with chemical solvents 22
  23. 23. Post-combustion capture n Boundary Dam, Saskatchewan (2014) q Coal power plant 160 MWe q 2700 tCO2/day => Flue gas: 180 Nm³/s ; Solvent: 550 L/s 23
  24. 24. Post-combustion capture n Focus: research at ULiège q Modeling and energy optimization of industrial systems 24 IC: -4% Split flow: -4% LVC: -14% Léonard et al., 2014&2015. DOI:10.1021/ie5036572, DOI: 10.1016/j.compchemeng.2015.05.003
  25. 25. Post-combustion capture n Focus: research at ULiège q Stability of chemical solvents 25 VOC emissions CAPEX (corrosion) OPEX: viscosity, altered properties… Léonard et al., 2014&2015. DOI:10.1021/ie5036572, DOI: 10.1016/j.compchemeng.2015.05.003
  26. 26. Natural gas sweetening n Process multi-objective optimization 26
  27. 27. CO2 market n CO2 price reaches 25 €/t for large point-source emitters 27 https://markets.businessinsider.com/commodities/co2-emissionsrechte
  28. 28. Luc Courard Professeur, Département ArGEnCo – Unité de Recherche Urban and Environmental Engineering, Faculté des Sciences Appliquées (ULiège)
  29. 29. CO2 capture for aggregates and concrete L. Courard, S. Grigoletto, Z. Zhao Liege Creative, Colonster December 10th, 2019
  30. 30. Principles n [C3S (alite) – C2S (belite)] + [H2O] → [C3S2H3 (tobermorite) + [Ca(OH)2 (portlandite)] n Ca(OH)2 + CO2 → CaCO3 + H2O n Effects q Compressive strength↑ q Porosity ↓: Ca(OH)2 → CaCO3 with ↑ volume 11% q pH ↓ due to consumption of Ca(OH)2 30
  31. 31. Introduction n Carbonation can improve specific properties n If judicious choice of aggregates q recycled aggregates q bio-sourced aggregates zero ► Biomass: zero impact on the carbon footprint H.Nallet 31
  32. 32. Objectives n Study the opportunity of the capture of CO2 in concrete blocks with miscanthus mineralized aggregates (insulation) and/or recycled aggregates q Mineralization process q Production of blocks for CO2 capture by means of accelerated carbonation q Production of concrete with carbonated RCA 32
  33. 33. Materials n When mixed to inorganic binder: complex interactions q Absorption of water (up to 70%) and deformation q Degradation in alkalin medium q Chemical reactions with carbohydrates affecting setting mineralization q transfers aggregates/environment ↘ q durability ↗ q rigidity ↗ q absorption ↘ 33 Photo PREFER
  34. 34. Materials Quantity (g) Quantity (wt %) Miscanthus aggregates 1000 31.12 Cement CEM I 52.5 N 1050 32.68 Water 900 28.01 Superplasticizer 3 0.09 Silica Fume 250 7.78 CaCl2 10 0.31 Figure 8c - Miscanthus after mineralization Fi af n Fibers soaked in a mineral solution 34
  35. 35. Concrete blocks preparation Quantity (%) Quantity (g/block) Mineralized miscanthus aggregates 49.18 1335 Cement CEM I 52.5 N 29.51 803 Water 21.31 577 n Composition n Mixing procedure 1. Mineralized miscanthus aggregates + dampening water 2. Cement 3. Mixing water ► Vibration procedure Vibration table + mass of 8kg, in two times 35
  36. 36. n Curing q Mineralized miscanthus aggregates: Ambient environment (20°C, 60% R.H.) Incubator (20% CO2) – 7 hours q Concrete blocks: Wet climatic room (21°C, 95% R.H.) Incubator (20% CO2) Concrete blocks preparation 48 hours 7 hours V.Parmentier 36
  37. 37. Results and discussions n Properties of carbonated concrete blocks Compressive strength (N/mm²) CO2 mass gain (%) Test Wet Curing CO2 Curing Miscanthus aggregates 1 0.0091 0.0522 1.49 2 0.0091 0.0689 1.14 3 - 0.0546 1.36 Average 0.0091 0.0586 1.33 Carbonated miscanthus aggregates 1 0.0275 0.202 1.43 2 0.0285 0.209 1.23 3 0.0314 0.205 1.37 Average 0.0290 0.205 1.34 x 6 to 7 x 3 to 4 37
  38. 38. C&DW deposit evaluation n Production C&DW (Belgium - Wallonia): 22 Mt/year n Cement (CEM I type): 800 kg CO2 for 1 T cement (60% CO2 from decarbonation of limestone CaCO3 = 500kg/T cement n Capture: 150 kg de CO2/T Recycled Concrete Aggregates n Preliminary tests (IFFSTAR): 50 kg de CO2/T RCA (natural process). 38
  39. 39. Testing program n Components q CEM I 52,5 – SN (EN196-1) - SR q SR carbonated : 3% [CO2] (1 month for BL & HO) (7 days for LAB ) n References q REF: 100% SN q SR X BL: x% substitution by Recycled Sand block q SRC Y HO: y% substitution by Carbonated Recycled Sand SRC beam q BL = block – HO = beam – LAB = Labocrete 39
  40. 40. Water absorption recycled aggregates • Treatment: 3% [CO2], 60% RH, 23+/-1°C • fraction ⇒ [cement paste] ⇒ WA Concrete Cement (kg/m³) Block 200 (CEM III/A 42,5) Hourdis (beam) 320 (CEM I 52,5) Lab 350 (CEM I 52,5) 4 Durée de carbonatation 40
  41. 41. • carbonation time ⇒ WA Mortar Relative WA decreasing (14 days) GR LAB 0/2 -51,2% GR LAB 2/6,3 -31,6% GR HO 0/2 -44,1% GR HO 2/6,3 -1% GR BL 0/2 -92,9% GR BL 2/6,3 -47,1% 5 • After 28 days : • GR HO 0/2 : -50,5% • GR BL 0/2 : -76,9% Water absorption recycled aggregates Durée de carbonatation 41
  42. 42. Compressive strength 42 25 % 50 % SR BL 28j +6 % -5 % SRC BL 28j +4 % +3 % SR BL 56j +6 % +4 % SRC BL 56j +4 % +3 % 25 % 50 % SR HO 28j -8 % -20 % SRC HO 28j -4 % -5 % SR HO 56j -10 % -16 % SRC HO 56j +1 % -3 %
  43. 43. Conclusions n Use of bio sourced materials like miscanthus requires a mineralization process; n Mineralization induces a better resistance to abrasion; n Carbonation of bio sourced aggregates can increase concrete blocks performances in terms of compressive strength; n Carbonation induces a decrease of RCA absorption; n Carbonation helps to limit decrease of mechanical performances of mortars/concrete with RCA. 43
  44. 44. References n CO2 capture for mineralized miscanthus aggregates. S. Grigoletto, L. Courard, Z. Zhao, F. Michel. International Workshop CO2 Storage in Concrete CO2STO2019. 24-26 June 2019, Marne la vallée, France (http://hdl.handle.net/2268/234401) n Improving properties of recycled concrete aggregates by accelerated carbonation. Z. Zhao, S. Remond, D. Damidot, L. Courard, F. Michel. ICE Construction materials. Volume 171 Issue 3, June, 2018, 26-132 (http://dx.doi.org/10.1680/jcoma.17.00015) n Carbonated miscanthus mineralized aggregates for reducing environmental impact of concrete blocks. L. Courard, V. Parmentier. Sustainable buildings, 2 (3) (2017), 9p. (https://doi.org/10.1051/sbuild/2017004) n Carbonated concrete blocks for CO2 captation. L. Courard, V. Parmentier, F. Michel. Materialy Budowlane, 10, 2015, p116-118 (DOI 10.15199/33.2015.10.35) 44
  45. 45. ERA-MIN Appel 2019 – 12 mars 2020 n Construction materials – Industrial minerals n Min 3 partners from 2 different countries n Processing, Production and Remanufacturing q Increase resource efficiency in resource intensive production processes q Increase resource efficiency through recycling of residues or remanufacturing of used products and components n Recycling and Re-use of End-of-Life Products q End-of-life products collection and (reverse) logistics q End-of-life products pre-processing: pre-treatment, dismantling, sorting, characterization, q Recovery of raw materials from End-of-life products 45
  46. 46. Brigitte Evrard Professeure, Département de Pharmacie Pharmacie Galénique, Centre Interdisciplinaire de Recherche sur le Médicament (ULiège) Bruno Grignard Associé de Recherche, Département de Chimie/CERM (ULiège)
  47. 47. 47 Pharmacie et cosmétologie
  48. 48. Introduction 48 CO2 73 bars 31°C Properties of both liquids and gases
  49. 49. Interesting economic and ecological properties 49
  50. 50. Pharmaceutical applications • Drug extraction 50
  51. 51. Sativex® Prostaserene® Marketed products 51
  52. 52. Pharmaceutical applications • Drug extraction • Impregnation • Sterilization 52
  53. 53. n Supercritical CO2 sterilisation of de méthylprednisolone acetate for Depo- Medrol® manufacturing. Marketed products 53
  54. 54. Pharmaceutical applications • Drug extraction • Impregnation • Sterilization • Particles design • Analytical method: • Supercritical Fluid Chromatography • Drug formulation 54
  55. 55. SC CO2 for increasing bioavailability n All drugs go through five stages: liberation, absorption, distribution, metabolism, and excretion (ADME). 55 Liberation Absorption Distribution Metabolism Excretion
  56. 56. Pharmaceutical applications • Drug formulation: • Solid dispersions • Impregnation 57
  57. 57. Impregnation on mesoporous silica 58
  58. 58. Pharmaceutical applications • Drug formulation: • Solid dispersions • Impregnation • Cyclodextrins complexation • Liposomal formulations 59
  59. 59. Patented processes n CD complexation n Solid dispersions 60
  60. 60. 62 Chimie fine et matériaux
  61. 61. CERM key expertise 63 Macromolecular engineering (Tools, processes, green chemistry, CO2 utilization, LCFP polymers) Medicine & therapeutics (Biomaterials, drug delivery systems, implants & scaffolds, diagnosis) (Smart) materials (Composites, coatings & adhesives, responsive/shape memory materials) Energy storage & saving (Organic cathodes, solid electrolytes for Li-ion batteries, insulation) Environment (Degradable/reusable polymers, air/water depollution, EMI shielding)
  62. 62. CO2 processes in polymers science 64 q Use of supercritical CO2 to make (industrial) processes greener and/or new products! BiomaterialsExtrusion - Foaming Extraction Green solvent
  63. 63. CO2 conversion into monomers/chemical 65 q Catalyst design & optimization q Upscaling (multi-kg)
  64. 64. CO2 conversion into polyurethanes (PU) 66 q A C1 building block for polyurethanes with reduced carbon footprint Shoes mattress Sport flooring CardyonTM 5,000 ton/year Elastic fibers
  65. 65. CO2 conversion into polyurethanes 67 q New conceptual routes to (isocyanate-free) polyurethanes
  66. 66. CO2 conversion into polyurethanes 68 Hydrogels Insulation foams λ < 50 W/m.k Self-blowing foams Ink for 3D printing Coatings Anti-corrosion Adhesives > 24 MPa q New conceptual routes to (isocyanate-free) polyurethanes
  67. 67. CO2 conversion into polycarbonates (PC) 69 q Polycarbonates with reduced carbon footprint by a phosgene-free process 1,000 ton/year Organic glasses
  68. 68. CO2 conversion into polycarbonates (PC) 70 q An avenue for innovative sustainable materials: poly(carbonate)s
  69. 69. CO2 conversion into polycarbonates (PC) 71 q An avenue for innovative sustainable materials: poly(carbonate)s Energy storage High ionic conductivity at r.t. (3.72 ×10-5 S. cm-1) Cycling: Up to 400 cycles D Li+ or Na+
  70. 70. CO2 conversion into polycarbonates (PC) 72 q An avenue for innovative sustainable materials: poly(carbonate)s Energy storage High ionic conductivity at r.t. (3.72 ×10-5 S. cm-1) Cycling: Up to 400 cycles D Li+ or Na+ Tissue engineering Cells growth No cytotoxicity In-vivo testing Tissue engineering
  71. 71. 73 CO2 to fuels
  72. 72. CO2 to fuels n C is a fantastic support for energy storage! 74 Methanol Batteries Pb Coal Ethanol Diesel H2 (1 bar)CH4 (1 bar) H2 (700 bar) H2 liquid Gasoline 0 5 10 15 20 25 30 35 40 45 0 25 50 75 100 125 150 Volumedensity(MJ/L) Mass density (MJ/Kg) H2 composite Batteries Li-Ion CH4 (250 bar)
  73. 73. CO2 to fuels n Power-to-liquid, power-to-gas 75 => Sustainability is possible with carbonated fuels!
  74. 74. Research at system scale n Energy model with 100% variable renewables + storage for electricity grid: q Based on historical belgian data for load and capacity factors q Vary the installed capacity to minimize system costs and avoid black-outs 76 Bortolini E., 2019.
  75. 75. Research at system scale n Energy model with 100% variable renewables + storage for electricity grid: 77 Bortolini E., 2019.
  76. 76. Research at process scale n Process design q Electrolysis, CO2 capture and fuel synthesis q Integration raises efficiency from 40.1 to 53.0% ! 78 Léonard et al., 2016. Computer aided chemical engineering 38, 1797. DOI: 10.1016/B978-0-444-63428-3.50304-0
  77. 77. Research at process scale n Reactor design q Compact, safe and flexible 79 ACM Reactor Distillation column
  78. 78. Daniel Marenne Energy Solution Architect (Engie)
  79. 79. Liège Creative Hydrogen & CCU Dec 10th 2019
  80. 80. 1 Why ENGIE? 2 Why Hydrogen? 3 Why CCU? 0 0
  81. 81. Why ENGIE?
  82. 82. 84 8 BE WORLD LEADER IN THE ZERO-CARBON TRANSITION “AS A SERVICE” Faster growth, higher value, better impact OUR AMBITION
  83. 83. 85
  84. 84. Why Hydrogen ?
  85. 85. 87 0 500 1000 1500 2000 2500 3000 1-janv 1-févr 1-mars 1-avr 1-mai 1-juin 1-juil 1-août 1-sept 1-oct 1-nov 1-déc Production + Consumption Consommation (GWh/week) Solar installed 50GWp Wind installed 9 GWp 50GWp solar + 9GWp éolien Example: what if electricity production in Belgium would be 100% renewable 80 TWh/year: • Shortage of electricity in winter period • Excess of electricity in summer period Shortage of electricity Shortage of electricity Excess of electricity à Need of H2 to store electricity FINAL ENERGY DEMAND TWh 2015 Final Energy Demand 396 Solids 18 Oil 166 Natural gas and derived gases 105 Electricity 81 Distributed heat 6 Renewable energy forms 20 Source federal Planning Bureau Rem Electricity represents 20% of Belgian energy demand è The challenge is much bigger than only renewable electricity
  86. 86. 88 • Synergies of the large scale electrolyser with power plants q Grid connection allows additional offtake (e.g. 300 MW) q Safety Culture and O&M skills adapted to the presence of high voltage equipment and explosive media q Knowhow on water chemistry (feedstock equivalent to demin water) and buffering q Proven experience with 24/7 remote operations (Air Liquide also operates remotely) q Availability of sufficient cooling. q Having green hydrogen production coupled with traditional Power station brings a lot flexibilities, from – P (electrolyser) until + P (Power station)! • Business Unit “Hydrogen”: focussing on new projects q Economy of scale to reduce the Capex cost of the electrolyser q 1 MW at 1000 €/kW à 100 MW at 700 €/kW à 400 MW @ 600 €/kW à so, focus on large scale electrolyser (or projects that could be scaled up)
  87. 87. 89
  88. 88. Why Carbon Capture & Use?
  89. 89. 91 Belgian final fossil energy demand Coal : 18 TWh Gas: 106 TWh Oil : 166 TWh Ø 100TWh Road transport Ø 20 TWh Aviation transport Ø 46 TWh Water, Railway transport and other Source federal Planning Bureau Realistic alternatives Ø Synthetic CH4 (SNG) can replace Coal & Gas Ø Electricity (20TWh) and H2 (40TWh) can replace Transport Oil * Ø Synthetic kerosene can replace Aviation fuel Ø Synthetic methanol can replace other transport fuels. * 50% of transport oil replaced by Electricity an 50% by H2 SNG: Oil Mobility: Aviation: Methanol: Total need including electricity: Need of green Power: 120 TWh/55% = 218 TWh 20 TWh + 40TWh/65% = 81,5 TWh 20 TWh / 48% = 42 TWh 46 TWh / 55% = 84 TWh 500 TWh green electricity. Belgium needs to import renewable energy!
  90. 90. Solar PV Water xx m³/hr Electrolyzer Liquefaction Ship Storage Liq H2Storage Liq H2 Pressurization + Evaporation Ø Electricity needs to produce H2 (50 kWh/kg) Ø Electricity needs to liquify H2 (13 kWh/kg) Ø Total need of electricity 227 TWh Ø Total installed power of solar in Sahara 75 GW Ø Total need of demin water 32,5 MT/year. (50 kWh / tH2) Not existing technology New assets Marginal cost* H2 before storage 28,6 €/MWh * Price of green electricity 15€/MWh H2 way
  91. 91. Solar PV Ship Hydrogenation * + liquefaction. Storage LSNG Water xx m³/hr Electrolyzer Storage LSNG Pressurization + Evaporation New assets Ø Electricity needs to produce CH4 (218 TWh) Ø Electricity needs to liquify CH4 (7 TWh) Ø CO2 needs 20 Mt/year Ø Electricity need to produce CO2 from DAC 13,5 TWh (no extra need of heat)* Ø Total Excess water => 4 MT/year ( DAC and CH4 produce water)* Ø Total need of electricity 238.5 TWh Ø Total installed power of solar in Sahara 79 GW Marginal cost** LSNG before existing infra 29,75 €/MWh Marginal revenues of Water not taken into account.. Direct Air Capture (DAC) CO2 *based on current Climworks data ** Price of green electricity 15€/MWh SNG way using CO2 as H2 carrier (CO2 looping) Existing assets
  92. 92. 1500 km² = 40% of province
  93. 93. 95 In March ENGIE entered into a Joint Development Agreement to further develop a pilot project (2,5 - 5MWe) in the Port of Antwerp together with its partners: • Indaver • Oiltanking • Vlaamse Milieu Holding • Port of Antwerp
  94. 94. 96 • H2 production at Rodenhuize power plant site (50-300 MWe) • CO2 capture from steel gases at Knippegroen site (up to 500000 tons/year) • Production of green methanol at Knippegroen site – to be used locally in Port of Ghent • Current situation: offtaker and investor for methanol plant to be found
  95. 95. 97 Renewable Water CO2 Electrolyzer Project goals: 1. Be the world first large scale green hydrogen producer (150 MW). 2. Industrialize a Walloon technology of CO2 looping ( Capture but also transport & utilization). 3. Industrialize a biological process of conversion of H2 and CO2 to methane. Challenge: Ø Find offtaker willing to pay the cost of green fuel: Ø Cost of renewable electricity / 55% + 20% (Capex & opex) = (50 /55%) x1,2 = 110 €/MWh CH4 mobility Industry
  96. 96. daniel.marenne@engie.com
  97. 97. Confidential & Proprietary 99 ENGIE has developed into a global end-to- end energy services provider 160,000 employees globally 70 countries €61Bn revenues €182M R&D spend +100 University partners 24.8 GW installed renewable capacity 1st globally in cold distribution networks 1st globally in micro-grids 1st independent power producer in the world 2nd globally in electric vehicle charging stations 2nd global supplier of technical installation services 12€Bn investments in energy transition over 2019-2021 4th globally in hot distribution network 7-9% annual average growth by 2021 of net recurring income group share €166M investment in innovative start-ups +1,000 Researchers & experts in 11 R&D centers
  98. 98. Damien Dallemagne Secretary General (CO2 Value Europe)
  99. 99. CO2 Value Europe Building the Carbon Capture & Utilization (CCU) industry 10 décembre 2019
  100. 100. 1 Carbon Capture & Utilisation… the time is now !
  101. 101. 2 5 November 2019 Rotterdam Carbon Capture & Utilisation… the time is now !
  102. 102. 3 CCU… the time is now !
  103. 103. 4 , October 2018, Virgin Atlantic and Lanzatech CCU industry is moving – 10 recent key CCU events First power-to-gas plant in residential building, project in Augsburg: when green electricity is stored as natural gas Feb 2019, Cityworks Augsburg und EXYTRON
  104. 104. 5 May 2019 August 2019 May 2019 2 Oct 2019 - REUTERS. Sunfire and French oil major Total said they will team up on a pilot project to produce methanol from renewables and carbon dioxide at the Leuna refinery in Germany. CCU industry is moving – 10 recent key CCU events
  105. 105. The only European association dedicated to CO2 Utilisation and bringing together partners from the complete value chain CO2 Value Europe integrates stakeholders from the complete CCU value chain across industries Multinational Companies, SMEs, Regional Clusters, Research Institutions, Universities 6
  106. 106. 7 Our vision: make CCU a key pillar of the transition to a sustainable economy Replacing fossil carbon by utilization of CO2 as a feedstock for the chemicals, materials and fuels industries Renewable feedstock Net reduction of global CO2 emissions from the process industry and from the transportation sectors (road, air, maritime) Climate mitigation Process efficiency Renewables Hydrogen CCS CCU Electrification Biomass Components of a sustainable economy
  107. 107. 8 Our mission: create a scalable carbon recycling industry Our official mission statement Promote the development and market deployment of sustainable industrial solutions that convert CO2 into valuable products, in order to contribute to the net reduction of global CO2 emissions and to the diversification of the feedstock base. We want to create a CCU industry sector with scalable business models for real impact of carbon recycling.
  108. 108. 18 Multinational Industry Leaders Albioma, Carmeuse, CRH, DEME, Drax, EEW, Engie, HeidelbergCement, Indaver, Keppel Seghers, Lhoist, Saipem, Solvay, Suez, Terega, Total, Uniper, Veolia 19 4 26 Clusters Axelera, e-PURE, GreenWin, Port of Antwerp Research Organisations ACIB, CEA, DIFFER, EPFL, Fraunhofer, ICIQ, IFP-EN, KIT, LEAP, LEITAT, Nova Institute, NOVA.ID.FCT, Sotacarbo, Swerim, Tecnalia, TNO, U Bologna, UC Louvain, U Gent, U Liège, U Mons, U Sevilla, U Sheffield, U Surrey, VITO, VTT CO2 Value Europe – the community of CCU pioneers 9 Facts & Figures ✓ Founded: Nov 2017 ✓ 67 members and growing ✓ Seen by EU authorities as legitimate rep. of CCU community ✓ Attracting interest from all over the globe ✓ Creating a completely new business, turning CO2 into real products Specialised SMEs ACP, AirCapture, Atmostat, Avantium, Carbon8, Carbon Clean Solutions, Climeworks, CRI, Econic, EnviroAmbient, Hydrogenics, Hysytech, IC2R, IDENER, Inventys, Nordic Blue Crude, Orbix, Sunfire, Zeton
  109. 109. 10 Our members
  110. 110. www.co2value.eu Contact Damien Dallemagne Secretary General damien.dallemagne@CO2value.eu +32 488 366 231 www.CO2value.eu
  111. 111. Véronique Graff Directrice Générale (Greenwin) Bernard Mathieu Consultant indépendant en Durabilité, Spécialiste Industrie du Ciment et Béton (HOP3 Consulting)
  112. 112. 200 membres > 30 GE > 110 PME > 16 CRA-W > 5 Univ. Portefeuille de 42 projets collaboratifs = +110 Mio € 800 contacts dans le monde 5 projets européens SCOT (CCU - utilisation du CO2 pour les GE et PMES émettrices de CO2 et innovantes) CO2 Value Europe : création AISBL indus. LCIP (ACV pour les PMEs) AGRICHEMWHEY et FERTIMANURE (pilote indust. GE + PME en économie biosourcée ) En moyenne/an: 6 projets labellisés/an 16 Mio € budget/an pour les projets 2019 +/- 75% entreprises = 15.000 ETP 42% 43% 15% Chimie Construction Performances & croissance hors norme: > Emplois : +20% > Valeur ajoutée: +40% ©PôleGreenWinasbl-2019 L’énergie d’un réseau pour concrétiser vos rêves d’innovation industrielle durable #BecauseTheFuturIsNow
  113. 113. Ongoing missions for 2 cement and 1 lime company A Belgian consultancy with extensive experience in sustainability and innovation strategies, roadmaps and management processes within the industry, NGOs and associations at regional, national and international level www.hop3.eu bernard.mathieu@hop3.eu
  114. 114. Plein gaz : enjeux et perspectives sur la valorisation du CO2 Panel d’intervenants
  115. 115. LIEGE CREATIVE, en partenariat avec :
  116. 116. Et aussi :

×