Mi 03 integración por fracciones parciales

1,110 views

Published on

Problema resuelto paso a paso aplicando integración por fracciones parciales.

Published in: Engineering
7 Comments
0 Likes
Statistics
Notes
  • Los metodos que utilizamos de integración, se utilizan cuando no es posible realizar la integral por los métodos conocidos, como lo son con las formulas de integración, por partes, sustitución o fracciones parciales. Estos métodos son útiles para resolver cualquier tipo de integral que no nos sea posible resolver, Nos explica como podemos resolver por el método de fracciones parciales la cual nos facilita la resolución de problemas Personalmente se me facilita mas resolverlo por el método de por partes. Cada método requiere de mucha álgebra, que es lo que mas se nos dificulta, ya que en si, los métodos no son nada difíciles pero por álgebra empleada crece su dificultad. Estos métodos son de suma importancia para resolución de integrales y nos facilita un poco mas la manera de resolver.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Al poderlas realizar las integrales debemos de tomar en cuenta cómo es que es posible resolver la integral, ya sea por método común (con las fórmulas de integración) o utilizando cualquiera de los 3 métodos de integración (por partes, sustitución de variable y fracciones parciales), en este caso se explica cómo es que podemos realizarla por el método de fracciones parciales, estos métodos facilita la resolución de diferentes problemas de integración, aunque sabemos que algunos que la mayoría de los problemas de cálculo no es posible de resolverlos por su complejidad, una parte de ellos lo podemos hacer con estos métodos, estos métodos utilizan toda la parte básica del algebra, la cual será la base principal para resolver esta situación, intervienen, sumas restas, divisiones, fracciones, algebraicas, además de utilizar una parte del cálculo diferencial como lo son las derivadas, en fin son métodos muy eficientes y además fáciles de emplear poniéndolos en práctica, sin duda una excelente presentación, y demás las otras series de presentaciones complementan lo dicho. Excelente información.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • El querer resolver una integral debemos identificar por cual método será posible resolverla. El método que se explica en la presentación es el de fracciones parciales el cual se basa en sumas algebraicas, consiste en obtener el resultado de sumar dos o más fracciones. Para poder llevar a cabo este método se usa la factorización del denominador, también se efectúan operaciones algebraicas, se juntan términos semejantes, se igualan los coeficientes. Me parece que al igual que el método cambio de variable se necesita elegir bien tu variable.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • para resolver una integral, hay veces en que se podra de forma directa pero, en otras ocasiones no. en estos casos se pueden aplicar diferentes metodos tales como el cambiode variable o en este caso como lo muestra la presentación la integración por partes, ambos metodos debes saber utilizarlos, el cambio de variable mi favorito, consiste en cambiar la variable para asi luego poder sustituir y poder resolverse, para al final volver a sustituir por nuestros valores reales, en caso de la integracion por partes es un poco mas demorado en mi punto de vista. todos los metodos son efectivos pero, para esto es necesario que conozcas las formulas y el como aplicarlas, de igual manera los metodos.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Cuando se trata de realizar integrales debemos saber si será necesario el uso de algún método o podrá realizarse de manera directa, si no es así, es entonces cuando comenzamos a utilizar los diferentes métodos de integración. El método de integración por partes nos será muy útil cuando encontramos alguna variable que ''sobra'' y aquí comenzamos a ver que parte de la integral es mejor para derivar y cuál para integrar, entonces ya se comienza a sustituir la fórmula y conforme vamos desarrollando la integral podemos encontrarnos nuevamente con la estructura de una integral por partes, donde volvemos al mismo procedimiento con que empezamos. También esta el método de cambio de variable, es cuando pasamos a convertir todos nuestros datos en unos nuevos, de manera que se haga más fácil la integral, la vamos resolviendo con los nuevos datos y al final el resultado es sustituido por los valores originales, y por último tenemos el método de fracciones parciales, las integrales para este método son totalmente distintas a las anteriores, aquí estan en forma de fracción como el nombre del método lo indica, y sólo con ver fracciones las cosas se ponen un poco díficiles, aparte de que debemos recordar como factorizar, y muy importante el uso del álgebra que se usa en la mayor parte de este método, así como el despeje de fórmulas para encontrar ciertos valores y al final de todo esto, crear una nueva integral mucho más fácil de realizar aplicando las fórmulas directas del formulario.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

No Downloads
Views
Total views
1,110
On SlideShare
0
From Embeds
0
Number of Embeds
749
Actions
Shares
0
Downloads
5
Comments
7
Likes
0
Embeds 0
No embeds

No notes for slide

Mi 03 integración por fracciones parciales

  1. 1. Métodos y Técnicas de integración G. Edgar Mata Ortiz
  2. 2. El trabajo colaborativo es fundamental para aprender, requiere una actitud de compromiso de todos los integrantes del equipo.
  3. 3. Resolución individual de problemas En forma complementaria al aprendizaje colaborativo, es indispensable que el alumno haga frente, en forma individual, a los problemas de matemáticas para desarrollar sus competencias.
  4. 4. Las técnicas de integración Son un conjunto de artificios matemáticos que se aplican cuando no es posible realizar una integración directamente, ya sea porque al diferencial le faltan variables o le sobran.
  5. 5. Las técnicas de integración Son un conjunto de artificios matemáticos que se aplican cuando no es posible realizar una integración directamente, ya sea porque al diferencial le faltan variables o le sobran.
  6. 6. Las técnicas de integración En esta presentación se explica y resuelve, paso a paso, un ejemplo por el método de: Fracciones Parciales
  7. 7. Fracciones Parciales Esta técnica se basa en la suma de fracciones algebraicas. Consiste en invertir el proceso: En la operación directa se obtiene el resultado de sumar dos o más fracciones. En las fracciones parciales se conoce el resultado de la suma y se desea determinar cuáles fueron las fracciones que lo produjeron.
  8. 8. Como en los ejemplos anteriores, no existe ninguna fórmula que pueda aplicarse, directamente, a esta integración. Ejemplo: න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 =
  9. 9. Ejemplo: 𝒙 𝟑 − 𝒙 = 𝒙(𝒙 𝟐 − 𝟏) El primer paso consiste en factorizar el denominador. න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = = 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  10. 10. Ejemplo: Las fracciones parciales son: න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 Factores: 𝒙 𝒙 + 𝟏 (𝒙 − 𝟏) Los numeradores de estas fracciones no los conocemos, será necesario determinarlos.
  11. 11. Ejemplo: La fracción original debe ser igual a las fracciones parciales න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 Factores: 𝒙 𝒙 + 𝟏 (𝒙 − 𝟏) Efectuamos la suma indicada en el lado derecho del signo de igual −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  12. 12. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 𝟐 − 𝟏 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  13. 13. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 𝟐 − 𝟏 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) Vamos a tomar esta expresión para obtener los valores de A, B y C
  14. 14. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan. −𝟑𝒙 − 𝟏 = (𝒙 𝟑 − 𝒙)(𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  15. 15. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan. −𝟑𝒙 − 𝟏 = (𝒙 𝟑 − 𝒙)(𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙
  16. 16. Ejemplo: Se agrupan términos semejantes Primero los términos que tienen equis cuadrada, luego los que tienen equis, y al final los términos independientes. −𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 −𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨 Con la finalidad de igualar término por término, en este paso se considera que la expresión del lado izquierdo del signo igual, al no tener término cuadrático es cero equis cuadrada. 𝟎𝒙 𝟐 − 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨
  17. 17. Ejemplo: Se igualan los coeficientes Los coeficientes de equis cuadrada: 𝟎𝒙 𝟐 − 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨 𝑨 + 𝑩 + 𝑪 = 𝟎 Los coeficientes de equis: −𝑩 + 𝑪 = −𝟑 Los términos independientes: −𝑨 = −𝟏 Se obtiene un sistema de tres ecuaciones con tres incógnitas.
  18. 18. Sistemas de 3 ecuaciones con 3 incógnitas (3x3) Ejemplo: El sistema de ecuaciones obtenido puede resolverse por cualquiera de los numerosos métodos existentes. 𝑨 + 𝑩 + 𝑪 = 𝟎 −𝑩 + 𝑪 = −𝟑 −𝑨 = −𝟏 Explicaciones y ejemplos acerca de estos métodos pueden encontrarse en: http://licmata-math.blogspot.mx/2014/10/solving-cramers-method-determinants.html http://licmata-math.blogspot.mx/2012/10/gauss-jordan-3-ecuaciones.html http://licmata-math.blogspot.mx/2014/10/5-tips-on-cramer-method.html http://licmata-math.blogspot.mx/2013/11/linear-equation-systems-problem-solving.html http://licmata-math.blogspot.mx/2011/10/formato-gauss-jordan-3x3.html
  19. 19. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑨 + 𝑩 + 𝑪 = 𝟎 → 𝟏 + 𝑩 + 𝑪 = 𝟎 ∴ 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 −𝑨 = −𝟏 ∴ 𝑨 = 𝟏 En este caso el sistema de ecuaciones puede simplificarse gracias a que la tercera ecuación nos proporciona directamente el valor de una de las incógnitas: A. El valor de A es uno, y al sustituirla en la primera ecuación obtenemos un sistema de dos ecuaciones con dos incógnitas. Sistema de dos ecuaciones con dos incógnitas
  20. 20. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 Sistema de dos ecuaciones con dos incógnitas Los métodos empleados en la resolución de sistemas 3x3 también pueden emplearse en sistemas de 2x2, sin embargo, frecuentemente resulta más sencillo emplear otros métodos: Método de Reducción Método de Sustitución Método de Igualación Método Gráfico
  21. 21. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 Sistema de dos ecuaciones con dos incógnitas En este ejemplo, debido a los coeficientes de las ecuaciones es conveniente aplicar el: Método de Reducción o de suma y resta Se elige este método porque al sumar las dos ecuaciones, se eliminará la incógnita B, obteniéndose una sencilla ecuación de primer grado con una incógnita (C), de la que se despeja y obtiene el valor de C.
  22. 22. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 Sistema de dos ecuaciones con dos incógnitas Método de Reducción o de suma y resta 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 𝟐𝑪 = −𝟒 𝑪 = −𝟒 𝟐 ∴ Obtenemos el valor de la incógnita C 𝑪 = −𝟐
  23. 23. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. Método de Reducción o de suma y resta 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 𝟐𝑪 = −𝟒 𝑪 = −𝟒 𝟐 ∴ 𝑪 = −𝟐 El valor de la incógnita C, se sustituye en cualquiera de las dos ecuaciones que conforman el sistema de 2x2 y se despeja la incógnita faltante (B). 𝑩 + 𝑪 = −𝟏 → 𝑩 − 𝟐 = −𝟏 → 𝑩 = −𝟏 + 𝟐 𝑩 = 𝟏
  24. 24. Sistemas de 3 ecuaciones con 3 incógnitas (3x3) Ejemplo: No olvidemos que todo este proceso fue realizado para determinar los valores de las tres incógnitas que conforman el sistema original. 𝑨 + 𝑩 + 𝑪 = 𝟎 −𝑩 + 𝑪 = −𝟑 −𝑨 = −𝟏 Las soluciones fueron: 𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏
  25. 25. Sistemas de 3 ecuaciones con 3 incógnitas (3x3) Ejemplo: Significado de las soluciones del sistema de 3x3 Las soluciones fueron: 𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏 Estas soluciones son los numeradores de las fracciones parciales planteadas para descomponer la fracción propia que se desea integrar න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 =
  26. 26. Ejemplo: Ahora conocemos los numeradores de las fracciones parciales. −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏
  27. 27. Ejemplo: En lugar de integrar la fracción original, se integrarán sus fracciones parciales. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = න 1 𝑥 𝑑𝑥 + න 1 𝑥 + 1 𝑑𝑥 + න −2 𝑥 − 1 𝑑𝑥 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1
  28. 28. Ejemplo: En lugar de integrar la fracción original, se integrarán sus fracciones parciales. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = න 1 𝑥 𝑑𝑥 + න 1 𝑥 + 1 𝑑𝑥 + න −2 𝑥 − 1 𝑑𝑥 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1 = ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝑙𝑛𝐶
  29. 29. Ejemplo: Aplicando propiedades de logaritmos podemos simplificar el resultado. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝑙𝑛𝐶 = ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝑙𝑛𝐶 = ln 𝑥 𝑥 + 1 𝑥 − 1 −2 𝐶 = ln 𝐶 𝑥 𝑥 + 1 𝑥 − 1 2
  30. 30. Solución del problema: El objetivo de las fracciones parciales es expresar una fracción propia que no puede integrarse directamente, en sus fracciones parciales que sí pueden integrase con alguna de las fórmulas básicas de integración. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = ln 𝐶 𝑥 𝑥 + 1 𝑥 − 1 2

×