Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Mi 02 integration by parts 01

419 views

Published on

Integración por partes
Integration by parts

Published in: Engineering
  • Be the first to like this

Mi 02 integration by parts 01

  1. 1. Métodos y Técnicas de integración G. Edgar Mata Ortiz
  2. 2. El trabajo colaborativo es fundamental para aprender, requiere una actitud de compromiso de todos los integrantes del equipo.
  3. 3. Resolución individual de problemas En forma complementaria al aprendizaje colaborativo, es indispensable que el alumno haga frente, en forma individual, a los problemas de matemáticas para desarrollar sus competencias.
  4. 4. Las técnicas de integración Son un conjunto de artificios matemáticos que se aplican cuando no es posible realizar una integración directamente, ya sea porque al diferencial le faltan variables o le sobran.
  5. 5. Las técnicas de integración Son un conjunto de artificios matemáticos que se aplican cuando no es posible realizar una integración directamente, ya sea porque al diferencial le faltan variables o le sobran.
  6. 6. Las técnicas de integración En esta presentación se explica y resuelve, paso a paso, un ejemplo por el método de: Integración por partes
  7. 7. Como en el ejemplo anterior, podemos observar que no existe ninguna fórmula que pueda aplicarse, directamente, a esta integración. Ejemplo: න 𝑥𝑒2𝑥 𝑑𝑥 =
  8. 8. Ejemplo: 𝒖 = 𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = Tomaremos como variable u, la equis; y el resto como diferencial de v. 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥
  9. 9. Ejemplo: 𝒖 = 𝒙 ∴ 𝒅𝒖 = 𝒅𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = Derivando la variable u, obtendremos du; e integrando el dv, obtendremos v. 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥 𝑣 = න 𝑒2𝑥 𝑑𝑥 Para efectuar la integración del du es necesario completar el diferencial agregando un 2 que se compensa con un medio fuera de la integral.
  10. 10. Ejemplo: 𝒖 = 𝒙 ∴ 𝒅𝒖 = 𝒅𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = Derivando la variable u, obtendremos du; e integrando el dv, obtendremos v. 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥 𝑣 = 𝟏 𝟐 න 𝑒2𝑥 𝟐𝑑𝑥 𝑣 = 1 2 𝑒2𝑥 + 𝐶 Para efectuar la integración del du es necesario completar el diferencial agregando un 2 que se compensa con un medio fuera de la integral.
  11. 11. Ejemplo: 𝒖 = 𝒙 ∴ 𝒅𝒖 = 𝒅𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = Derivando la variable u, obtendremos du; e integrando el dv, obtendremos v. 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥 𝑣 = 𝟏 𝟐 න 𝑒2𝑥 𝟐𝑑𝑥 𝑣 = 1 2 𝑒2𝑥 + 𝐶 Para efectuar la integración del du es necesario completar el diferencial agregando un 2 que se compensa con un medio fuera de la integral. La constante de integración se anotará hasta el final del proceso.
  12. 12. Ejemplo: 𝒖 = 𝒙 𝒅𝒖 = 𝒅𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = 𝒙 ∙ 1 2 𝑒2𝑥 − න 1 2 𝑒2𝑥 𝒅𝒙 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥 𝑣 = 𝟏 𝟐 න 𝑒2𝑥 𝟐𝑑𝑥 𝑣 = 1 2 𝑒2𝑥 + 𝐶 Sustitución de los valores calculados න 𝒖 𝒅𝒗 = 𝒖 ∙ 𝒗 − න 𝒗 𝒅𝒖
  13. 13. Ejemplo: 𝒖 = 𝒙 𝒅𝒖 = 𝒅𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = 𝒙 ∙ 1 2 𝑒2𝑥 − න 1 2 𝑒2𝑥 𝒅𝒙 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥 𝑣 = 𝟏 𝟐 න 𝑒2𝑥 𝟐𝑑𝑥 𝑣 = 1 2 𝑒2𝑥 + 𝐶 Sustitución de los valores calculados න 𝒖 𝒅𝒗 = 𝒖 ∙ 𝒗 − න 𝒗 𝒅𝒖
  14. 14. Ejemplo: 𝒖 = 𝒙 𝒅𝒖 = 𝒅𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = 𝒙 ∙ 1 2 𝑒2𝑥 − න 1 2 𝑒2𝑥 𝒅𝒙 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥 𝑣 = 𝟏 𝟐 න 𝑒2𝑥 𝟐𝑑𝑥 𝑣 = 1 2 𝑒2𝑥 + 𝐶 Sustitución de los valores calculados න 𝒖 𝒅𝒗 = 𝒖 ∙ 𝒗 − න 𝒗 𝒅𝒖
  15. 15. Ejemplo: 𝒖 = 𝒙 𝒅𝒖 = 𝒅𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = 𝒙 ∙ 1 2 𝑒2𝑥 − න 1 2 𝑒2𝑥 𝒅𝒙 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥 𝑣 = 𝟏 𝟐 න 𝑒2𝑥 𝟐𝑑𝑥 𝑣 = 1 2 𝑒2𝑥 + 𝐶 Sustitución de los valores calculados න 𝒖 𝒅𝒗 = 𝒖 ∙ 𝒗 − න 𝒗 𝒅𝒖
  16. 16. Ejemplo: 𝒖 = 𝒙 𝒅𝒖 = 𝒅𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = 𝒙 ∙ 1 2 𝑒2𝑥 − න 1 2 𝑒2𝑥 𝒅𝒙 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥 𝑣 = 𝟏 𝟐 න 𝑒2𝑥 𝟐𝑑𝑥 𝑣 = 1 2 𝑒2𝑥 + 𝐶 = 1 2 𝒙𝑒2𝑥 − 1 2 න 𝑒2𝑥 𝒅𝒙
  17. 17. Ejemplo: 𝒖 = 𝒙 𝒅𝒖 = 𝒅𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = 𝒙 ∙ 1 2 𝑒2𝑥 − න 1 2 𝑒2𝑥 𝒅𝒙 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥 𝑣 = 𝟏 𝟐 න 𝑒2𝑥 𝟐𝑑𝑥 𝑣 = 1 2 𝑒2𝑥 + 𝐶 = 1 2 𝒙𝑒2𝑥 − 1 2 න 𝑒2𝑥 𝒅𝒙 = 1 2 𝒙𝑒2𝑥 − 1 2 ∙ 𝟏 𝟐 න 𝑒2𝑥 𝟐𝒅𝒙
  18. 18. Ejemplo: 𝒖 = 𝒙 𝒅𝒖 = 𝒅𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = 𝒙 ∙ 1 2 𝑒2𝑥 − න 1 2 𝑒2𝑥 𝒅𝒙 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥 𝑣 = 𝟏 𝟐 න 𝑒2𝑥 𝟐𝑑𝑥 𝑣 = 1 2 𝑒2𝑥 + 𝐶 = 1 2 𝒙𝑒2𝑥 − 1 2 න 𝑒2𝑥 𝒅𝒙 = 1 2 𝒙𝑒2𝑥 − 1 2 ∙ 𝟏 𝟐 න 𝑒2𝑥 𝟐𝒅𝒙 = 1 2 𝒙𝑒2𝑥 − 1 4 𝑒2𝑥 + 𝐶
  19. 19. Solución: 𝒖 = 𝒙 𝒅𝒖 = 𝒅𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = 𝒙 ∙ 1 2 𝑒2𝑥 − න 1 2 𝑒2𝑥 𝒅𝒙 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥 𝑣 = 𝟏 𝟐 න 𝑒2𝑥 𝟐𝑑𝑥 𝑣 = 1 2 𝑒2𝑥 + 𝐶 = 1 2 𝒙𝑒2𝑥 − 1 2 න 𝑒2𝑥 𝒅𝒙 = 1 2 𝒙𝑒2𝑥 − 1 2 ∙ 𝟏 𝟐 න 𝑒2𝑥 𝟐𝒅𝒙 = 1 2 𝒙𝑒2𝑥 − 1 4 𝑒2𝑥 + 𝐶
  20. 20. Solución: 𝒖 = 𝒙 𝒅𝒖 = 𝒅𝒙 න 𝒙𝑒2𝑥 𝑑𝑥 = 𝒙 ∙ 1 2 𝑒2𝑥 − න 1 2 𝑒2𝑥 𝒅𝒙 𝑑𝑣 = 𝑒2𝑥 𝑑𝑥 𝑣 = 𝟏 𝟐 න 𝑒2𝑥 𝟐𝑑𝑥 𝑣 = 1 2 𝑒2𝑥 + 𝐶 = 1 2 𝒙𝑒2𝑥 − 1 2 න 𝑒2𝑥 𝒅𝒙 = 1 2 𝒙𝑒2𝑥 − 1 2 ∙ 𝟏 𝟐 න 𝑒2𝑥 𝟐𝒅𝒙 = 1 2 𝒙𝑒2𝑥 − 1 4 𝑒2𝑥 + 𝐶 = 1 2 𝑒2𝑥 𝑥 − 1 2 + 𝐶
  21. 21. Solución del problema: El objetivo de la integración por partes es reducir la integral original que no se puede resolver mediante las fórmulas básicas; a una expresión que contenga una integral directa. න 𝑥𝑒2𝑥 𝑑𝑥 = 1 2 𝑒2𝑥 𝑥 − 1 2 + 𝐶

×