Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Activity 1 1-golden ratio jan 2018

987 views

Published on

La razón áurea y la serie de Fibonacci
The golden ratio and the Fibonacci numbers

Published in: Education

Activity 1 1-golden ratio jan 2018

  1. 1. Geometría y Trigonometría Actividad 1.1 La razón de oro y la serie de Fibonacci G. Edgar Mata Ortiz
  2. 2. Geometría y Trigonometría La razón de oro y la serie de Fibonacci http://licmata-math.blogspot.mx/ 1 La geometría es considerada la primera disciplina científica propiamente hablando; se desarrolló a partir de necesidades prácticas, pero se formalizó y se organizó con base en el método axiomático deductivo desde el siglo III a. C. Actualmente se ha abandonado su estudio para dar paso a formas de aprendizaje orientadas a las aplicaciones y no a su fundamentación teórica, no obstante, algunos temas se siguen estudiando con el enfoque planteado por Euclides en Los Elementos. Contenido Introducción .............................................................................................................................................................2 Otra forma de calcular las medidas de los segmentos.........................................................................................3 La cultura y las artes.............................................................................................................................................3 El rectángulo áureo. .................................................................................................................................................4 Aplicaciones del rectángulo áureo. ......................................................................................................................5 La serie de Fibonacci.................................................................................................................................................6 Desarrollo de la serie de Fibonacci.......................................................................................................................7 Relación de la serie de Fibonacci con la proporción áurea..................................................................................7 Uso de Excel para obtener el valor de .............................................................................................................7 Observaciones y conclusiones..................................................................................................................................8 Bibliografía................................................................................................................................................................9 A la izquierda una página del libro “Los Elementos” de Euclides. A la derecha, una página del libro de Apolonio, “Las cónicas”
  3. 3. Geometría y Trigonometría La razón de oro y la serie de Fibonacci http://licmata-math.blogspot.mx/ 2 Introducción “Los Elementos” de Euclides es un conjunto de 13 libros, escritos en griego, que contienen el desarrollo de la geometría a partir de 5 postulados y, mediante proposiciones lógicas, demuestra otras afirmaciones llamadas teoremas. En el libro 6, la proposición 30, plantea dividir un segmento en extrema y media razón, lo cual significa dividir un segmento en dos partes de tal forma que la división del segmento completo entre la parte mayor, sea igual a la división de la parte mayor entre la menor. Geométricamente: Dado un segmento AB: Encontrar un punto C sobre ese segmento que tenga la propiedad: 𝐴𝐵 𝐴𝐶 = 𝐴𝐶 𝐵𝐶 El procedimiento geométrico es interesante, sin embargo, por ahora, es preferible “convertir” este problema geométrico a uno algebraico. Vamos a considerar la longitud total del segmento como una unidad, es decir: 𝐴𝐵 = 1 Y tomaremos como incógnita la longitud del segmento AC: 𝐴𝐶 = 𝑥 Por lo tanto, la longitud del segmento BC debe ser: 𝐵𝐶 = 1 − 𝑥 Sustituyendo estos valores en la proporción queda: 𝐴𝐵 𝐴𝐶 = 𝐴𝐶 𝐵𝐶 ∴ 𝟏 𝒙 = 𝒙 𝟏 − 𝒙 Resuelve la expresión algebraica obtenida, anota e interpreta el resultado en el siguiente espacio: Expresión algebraica simplificada: _____________________________________ Resultado: ________________________________________________________ Interpretación: ____________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ La Geometría La Geometría y su origen Todas las antiguas civilizaciones desarrollaron conceptos matemáticos, generalmente relacionados con necesidades prácticas. Sin embargo, el pueblo griego, desarrolló una forma de hacer matemáticas que era diferente a todos los demás; se basó en el razonamiento lógico y transformó radicalmente y para siempre el significado de esta ciencia. La referencia más confiable que tenemos de la matemática griega es el libro: “Los Elementos” escrito por Euclides alrededor de 300 a. C. Este libro desarrolla los conceptos geométricos mediante el método axiomático deductivo. Es el libro científico más editado de todos los tiempos. La razón de oro y la serie de Fibonacci A B A BC
  4. 4. Geometría y Trigonometría La razón de oro y la serie de Fibonacci http://licmata-math.blogspot.mx/ 3 Otra forma de calcular las medidas de los segmentos. Cambio de estrategia algebraica. ¿Qué sucede si ahora consideramos que el segmento BC = 1, y tomamos como incógnita (x), la medida del segmento AC? Resuelve e interpreta el resultado en las siguientes líneas. ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ La cultura y las artes. La cultura griega ha tenido una fuerte influencia en las obras de numerosos artistas, un ejemplo interesante de este hecho es la pintura de Raphael, “La Escuela de Atenas”. En ella se encuentran representados los más importantes filósofos y científicos de la antigüedad clásica. Elabora una síntesis de, al menos, 1500 palabras, en la que indiques quiénes son estos personajes, así como sus aportaciones a nuestra civilización. Puedes encontrar más información en la siguiente dirección: http://www.authorstream.com/Presentation/licmata-3018126-golden-ratio/
  5. 5. Geometría y Trigonometría La razón de oro y la serie de Fibonacci http://licmata-math.blogspot.mx/ 4 El rectángulo áureo. El rectángulo áureo se caracteriza porque la razón del lado mayor, al menor, es igual al número áureo:  = 1.618033… En el reverso de esta hoja, o en una hoja adicional, construye un rectángulo áureo utilizando solamente una regla no graduada y un compás, conforme a la figura siguiente: 1. Traza un cuadrado ABCD de cualquier medida 2. Localiza el punto medio M de la base AB de dicho cuadrado 3. Utiliza el compás con una abertura igual a la distancia desde el punto medio de la base (M) hasta uno de los vértices del lado opuesto, C o D. 4. Utiliza la prolongación de la base AB y traza un arco de círculo tomando centro en M y señalando el punto P sobre la prolongación del lado AB.
  6. 6. Geometría y Trigonometría La razón de oro y la serie de Fibonacci http://licmata-math.blogspot.mx/ 5 5. Con una abertura del compás igual a la distancia AP, y con centro en el punto D, traza un arco en dirección al punto P. 6. Con una abertura del compás igual a la distancia AB, y con centro en el punto P, traza un arco que corte al arco trazado en el paso anterior en el punto Q. 7. Une los puntos P y Q. 8. Prolonga el lado CD hasta el punto Q. 9. El rectángulo APQD es un rectángulo áureo. 10. Al dividir la medida del lado AP entre la medida del lado AD debe ser igual a 1.618033 Aplicaciones del rectángulo áureo. Por mucho tiempo se ha afirmado que las proporciones de este rectángulo son “armoniosas” por naturaleza y que, cualquier diseño que esté basado en el valor de  = 1.618033…, será visualmente atractivo. Es posible que estas afirmaciones carezcan de bases científicas sólidas, pero, debido a la popularidad de estas creencias, numerosos diseñadores modernos utilizan estas proporciones en sus creaciones, de modo que podremos encontrar diversos diseños de logotipos, páginas web, portadas de libros y revistas, entre muchos otros productos, que están elaborados con base en el rectángulo áureo y/o el valor de .
  7. 7. Geometría y Trigonometría La razón de oro y la serie de Fibonacci http://licmata-math.blogspot.mx/ 6 Entre los argumentos más importantes para afirmar que las proporciones del rectángulo áureo son “naturalmente” atractivas, se dice que estas proporciones son comunes en la naturaleza; de alguna forma se afirma que la naturaleza “utiliza” estas proporciones en el diseño de los seres vivos. Algunos investigadores consideran que todas estas afirmaciones carecen de fundamento, por ejemplo: George Markowski, en “Misconceptions about the Golden Ratio”, señala, uno por uno, los conceptos erróneos que las personas emplean para justificar sus afirmaciones. Este documento se encuentra en la siguiente dirección: https://goldennumber.net/wp-content/uploads/George-Markowsky-Golden-Ratio-Misconceptions-MAA.pdf Elabora un ensayo de 2400 palabras acerca de los argumentos a favor, y en contra, de la creencia en la armonía del rectángulo áureo, incluye dos ejemplos del uso de dicho rectángulo; uno de ellos en la antigüedad, y otro actual. La serie de Fibonacci. Leonardo de Pisa es el nombre real de “El hijo de Bonaccio” = Filis Bonaccio = Fibonacci. Nació en Pisa alrededor de 1175 d. C. Debido al trabajo de su padre, Fibonacci vivió su niñez en el norte de África, donde aprendió el sistema de numeración arábigo y, en 1202, ya de regreso en Italia, publicó el libro; “Liber Abaci” o Libro del Ábaco, en el que explica el sistema de numeración arábigo e incluye un problema que, posteriormente, se volvió famoso: el problema de la reproducción de dos conejos. Este problema, es el que da lugar a la serie de Fibonacci, que, por muchos años, pasó desapercibida, hasta que el matemático Edouard Lucas, en los últimos años del siglo XIX, redescubrió este problema y lo atribuyó a su autor original. Investiga y anota en las siguientes líneas la redacción del problema de la reproducción de los dos conejos: ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ En el siguiente espacio, explica el proceso de solución del problema de los dos conejos: ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________
  8. 8. Geometría y Trigonometría La razón de oro y la serie de Fibonacci http://licmata-math.blogspot.mx/ 7 Desarrollo de la serie de Fibonacci. La regla para construir la serie es muy sencilla, comienza con 1, 1, y los siguientes elementos se obtienen sumando los dos términos anteriores, es decir, 1+1=2, por lo que la serie queda: 1, 1, 2. El siguiente término se obtiene de la suma 1+2=3, obteniéndose: 1, 1, 2, 3, y así sucesivamente. Continúa la serie en el espacio siguiente: 1, 1, 2, 3, 5, 8, 13, 21, 34, ______________________________________________________________________ ___________________________________________________________________________________________ Relación de la serie de Fibonacci con la proporción áurea. Estos dos conocimientos, uno de geometría que se encuentra en “Los Elementos” escrito en el siglo III a. C. y otro de aritmética, desarrollado en el siglo XII d. C. están relacionados: La división de dos números consecutivos de la serie de Fibonacci tiende al valor de  = 1.618033… En la siguiente tabla, anota los valores de las divisiones indicadas, observa que los resultados se van aproximando, cada vez más, al valor de  Uso de Excel para obtener el valor de  Elabora una hoja de cálculo en Excel, en la que obtengas los primeros 200 elementos de la sucesión de Fibonacci y efectúa las divisiones de cada pareja de números consecutivos para observar cuál es el mejor valor de  que podemos obtener de mediante este procedimiento. 1 34 34/21 = 1597 1597/987 = 1 1/1 = 55 55/34 = 2584 2584/1597 = 2 2/1 = 89 89/55 = 4181 4181/2584 = 3 3/2 = 144 144/89 = 6765 6765/4181 = 5 5/3 = 233 233/144 = 10946 10946/6765 = 8 8/5 = 377 377/233 = 17711 17711/10946 = 13 13/8 = 610 610/377 = 28657 28657/17711 = 21 21/13 = 987 987/610 = 46368 46368/28657 =
  9. 9. Geometría y Trigonometría La razón de oro y la serie de Fibonacci http://licmata-math.blogspot.mx/ 8 Compara las siguientes figuras; la primera es la espiral áurea, y la segunda, se construye con cuadrados cuyas medidas de los lados se toman de la serie de Fibonacci. Investiga cómo se construyen, trázalas utilizando AutoCAD y explica sus diferencias y semejanzas. Observaciones y conclusiones. El conocimiento científico, cuando no se comprende con claridad, puede dar lugar a interpretaciones o generalizaciones erróneas o sin fundamento. Es necesario comprender claramente los conceptos en estudio para facilitar su aplicación. La geometría es una antigua disciplina científica; se consolidó con base en el método axiomático desde el siglo III a. C. y constituye la base sobre la cual se han desarrollado otras ramas de la matemática. Las necesidades prácticas dan lugar a la generación de conocimiento empírico que, posteriormente, es validado y fundamentado para consolidarse como un conjunto de leyes científicas las cuales, a partir de ese momento, podrán aplicarse a otras situaciones con la confianza de que se ha verificado su validez. Explicación de las semejanzas y diferencias geométricas de las figuras.
  10. 10. Geometría y Trigonometría La razón de oro y la serie de Fibonacci http://licmata-math.blogspot.mx/ 9 La supuesta armonía del rectángulo áureo no puede considerarse conocimiento científico, ya que existen argumentos a favor y en contra de su validez y no se dispone de evidencia suficiente para afirmar o refutar estas afirmaciones. Bibliografía

×