How Information Visualization Novices Construct Visualizations

1,980 views

Published on

Online version of slides for VisWeek 2010 presentation "How Information Visualization Novices Construct Visualizations".

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,980
On SlideShare
0
From Embeds
0
Number of Embeds
842
Actions
Shares
0
Downloads
14
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

How Information Visualization Novices Construct Visualizations

  1. 1. How Information Visualization Novices Construct Visualizations Lars Grammel, Melanie Tory and Margaret-Anne Storey University of Victoria 27-Oct-2010
  2. 2. 2 People love data. Why is not everyone using visual analytics tools?
  3. 3. 3 Can we design a data analysis user interface that everyone can just use without facing a major learning barrier?
  4. 4. 4 How do InfoVis novices* construct visualizations during visual data exploration? * InfoVis Novices: Those who are not familiar with InfoVis and visual data analysis beyond the charts and graphics encountered in everyday life. Card, Mackinlay, Shneiderman 1999
  5. 5. 5 Such a user interface exists already.
  6. 6. Study Design Exploratory study in laboratory setting 9 participants (3rd/4th year business students) Data Exploration Phase – 45 minutes – Open exploration task Follow-up Interview 6 Participant’s Workspace Mediator’s Workspace
  7. 7. Qualitative Data Analysis Videos and Screencasts – Transcription – Iterative coding – 3-5 passes – Single coder – Developed, refined and consolidated codes Interviews – Transcription – Support, Explanation Focus on construction, not insights 7 Participant’s Workspace Mediator’s Workspace
  8. 8. Findings Visualization Construction Process 3 Major Barriers Partial Specification Strong Preference for Familiar Visualizations 8
  9. 9. 9 Visual Template Selection Visual Mapping Speci- fication System displays Visualization VCC Start Data Attribute Selection
  10. 10. 10 Visual Template Selection Visual Mapping Speci- fication System displays Visualization VCC Start Data Attribute Selection
  11. 11. 11 Visual Template Selection Visual Mapping Speci- fication System displays Visualization VCC Start Data Attribute Selection
  12. 12. 12 Visual Template Selection Visual Mapping Speci- fication System displays Visualization VCC Start Data Attribute Selection
  13. 13. Visual Template Selection Visual Mapping Speci- fication System displays Visualization VCC Start Data Attribute Selection Can I see the sales per state - like this is (points to sample) – on a map - (visualization gets shown)
  14. 14. Visual Template Selection Visual Mapping Speci- fication System displays Visualization VCC Start Data Attribute Selection Can I see the sales per state - like this is (points to sample) – on a map - (visualization gets shown)
  15. 15. Visual Template Selection Visual Mapping Speci- fication System displays Visualization VCC Start Data Attribute Selection Can I see the sales per state - like this is (points to sample) – on a map - (visualization gets shown)
  16. 16. Visual Template Selection Visual Mapping Speci- fication System displays Visualization VCC Start Data Attribute Selection Can I see the sales per state - like this is (points to sample) – on a map - (visualization gets shown)
  17. 17. 17 Visual Template Selection Visual Mapping Speci- fication System displays Visualization VCC Start Data Attribute Selection
  18. 18. 18 Barriers Concepts Data Visual Representation Data Selection Visual Mapping Interpretation User Screen Computer Amar, Stasko 2005 Kobsa 2001 Lam 2008 Norman 1990
  19. 19. Partial Specification Participants omitted visual mappings, operators, visual template, data attributes for concepts, level of abstraction for time, etc. Miller 1981, Pane et al. 2001 19
  20. 20. Partial Specification Omitted information could often be inferred – Visual mappings from visualization templates – Current analysis session state – Data values implying data attributes – Matching structure and type of selected data attributes and visualization properties 20
  21. 21. Strong Preference for Familiar Visualizations 21 Ranking before study: Usage in study: 70% Subjective Preference:
  22. 22. Implications for Tool Design Suggesting visualizations Heer et al 2008, Casner 1990, Mackinlay 1986, Mackinlay, Hanrahan, Stole 2007… Supporting iterative specification Weaver et al 2006, Pretorius, van Wijk 2009 Dealing with partial specification Providing explanations and supporting learning 22
  23. 23. Dealing with Partial Specification Defaults Heer, van Ham, Carpendale, Weaver, Isenberg 2008 – From task context – From data set – From analysis session context Inference – Data values  data attributes – Semantic concepts  data attributes – Visual structure + data structure  mappings 23
  24. 24. Explanations and Learning Support What is displayed? Heer, van Ham, Carpendale, Weaver, Isenberg 2008 Why is it displayed? Enable learning. What problems might exist? Suggest solutions. 24
  25. 25. Limitations Generalizability Interaction through mediator Board of example visualizations 25
  26. 26. How do InfoVis novices construct visualizations during visual data exploration? Partial Specification Visualization Templates Preferred Familiar Visualizations Lars Grammel lars.grammel@gmail.com This research was funded by:

×