Matematicas aplicadas

15,289 views

Published on

0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
15,289
On SlideShare
0
From Embeds
0
Number of Embeds
854
Actions
Shares
0
Downloads
258
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Matematicas aplicadas

  1. 1. Mtra. Alma Elsa Retureta Alvarez <ul><li>MATEMATICAS </li></ul><ul><li>APLICADAS </li></ul>UNIVERSIDAD VERACRUZANA
  2. 2. MATEMÀTICAS APLICADAS <ul><li>25. Saberes </li></ul><ul><li>Funciones, Gráficos y Límites. </li></ul><ul><li>Cálculo Diferencial </li></ul><ul><li>Cálculo Integral </li></ul>UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIO <ul><li>Modalidad : Curso taller. </li></ul><ul><li>Horas: 2hrs. Teóricas </li></ul><ul><li>2hrs prácticas </li></ul>
  3. 3. <ul><li>26. Estrategias Metodológicas </li></ul><ul><li>Búsqueda de fuentes de información </li></ul><ul><li>Consulta, lectura, síntesis e interpretación </li></ul><ul><li>Opinión acerca del uso y valor del conocimiento. </li></ul><ul><li>27. Apoyos educativos . </li></ul><ul><li>* Antologías, Libros, Artículos publicados, revistas especializadas, programas de computo. </li></ul>UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS
  4. 4. UNIVERSIDAD VERACRUZANA 29. Evaluación del desempeño * Ejercicios planteados en clase. * Ejercicios extra clase. * Tres exámenes parciales ** Entrega oportuna. ** Presentación ** Claridad del proceso MATEMÀTICAS APLICADAS
  5. 5. UNIVERSIDAD VERACRUZANA 31. Fuentes de Información : * ARYA, Jagdish C. Lardner. Robin W. Matemáticas Aplicada * Haeussler, Ernest F. Jr. Matemáticas para administración, Eco.. * Miller, Charles D. Heeren Matemática, Razonamiento y Aplicación MATEMÀTICAS APLICADAS
  6. 6. UNIVERSIDAD VERACRUZANA CALENDARIO DE EXPERIENCIAS <ul><li>AGOSTO </li></ul><ul><li>PRESENTACIÓN EE . e </li></ul><ul><li>INDUCCIÓN A LA FORMA DE TRABAJO </li></ul><ul><li>28 INTRODUCCIÓN TEMA I- EJEMPLOS </li></ul><ul><li>Y EJERCICIOS EN CLASE. </li></ul><ul><li>SEPTIEMBRE </li></ul><ul><li>INVESTIGACIÒN TEORICA y EXPOSICIÒN RESOLUCION EJERCICIOS </li></ul><ul><li>EJERCICIOS Y RESOLUCION </li></ul><ul><li>18 EXAMEN </li></ul><ul><li>INTRODUCCIÓN TEMA II- EJEMPLOS </li></ul><ul><li>Y EJERCICIOS EN CLASE </li></ul>MATEMÀTICAS APLICADAS <ul><li>OCTUBRE </li></ul><ul><li>INVESTIGACIÒN TEORICA y EXPOSICIÓN </li></ul><ul><li>RESOLUCIÓN EJERCICIOS </li></ul><ul><li>EJERCICIOS Y RESOLUCION. </li></ul><ul><li>23 EXAMEN </li></ul><ul><li>30 INTRODUCCIÓN TEMA III- EJEMPLOS </li></ul><ul><li>NOVIEMBRE </li></ul><ul><li>INVESTIGACIÒN TEORICA y EXPOSICIÓN </li></ul><ul><li>RESOLUCIÓN DE EJERCICIOS </li></ul><ul><li>20 EJERCICIOS Y RESOLUCIÓN. </li></ul><ul><li>27 EXAMEN. </li></ul><ul><li>DICIEMBRE </li></ul><ul><li>EVALUACIÓN DE INSTRUMENTOS . </li></ul><ul><li>FIN DE CURSO </li></ul>
  7. 7. UNIVERSIDAD VERACRUZANA PORCENTAJE DE CALIFICACIÒN (en cada uno de los parciales) 20% Entrega oportuna, contenido y análisis de las Investigaciones. 20% Entrega oportuna, resolución 100%, y orden/limpieza de ejercicios extra clase. 10% Exposición del tema en PP (por equipo). 50% Examen MATEMÀTICAS APLICADAS
  8. 8. UNIVERSIDAD VERACRUZANA UNIDAD I FUNCIONES, GRÀFICOS Y LÌMITES MATEMÀTICAS APLICADAS
  9. 9. UNIVERSIDAD VERACRUZANA FUNCIONES, GRÀFICOS Y LÌMITES MATEMÀTICAS APLICADAS
  10. 10. UNIVERSIDAD VERACRUZANA   Una función, en matemáticas , es el término usado para indicar la relación o correspondencia entre dos o más cantidades. “ Dos variables X y Y están asociadas de tal forma que al asignar un valor a X entonces, por alguna regla o correspondencia, se asigna automáticamente un valor a Y, se dice que Y es una función (unívoca) de X.  La variable X, a la que se asignan libremente valores , se llama variable independiente, mientras que la variable Y, cuyos valores dependen de la X, se llama variables dependientes.  Los valores permitidos de X constituyen el dominio de definición de la función y los valores   que toma Y constituye su recorrido&quot;. ¿Qué son las funciones? MATEMÀTICAS APLICADAS
  11. 11. <ul><li>¿Dónde se ocupan? </li></ul><ul><li>Las funciones matemáticas pueden referirse a situaciones cotidianas y Generalmente  se hace uso de las funciones reales, aún cuando el ser humano no se  da cuenta. </li></ul><ul><li>  Las funciones son de mucho valor y utilidad para resolver problemas de la vida diaria en cualquier área donde haya que relacionar variables. </li></ul><ul><li>tales como : </li></ul><ul><li>*El valor del consumo mensual de agua potable que depende del número de metros cúbicos consumidos en el mes. </li></ul><ul><li>* El costo de una llamada telefónica que depende de su duración. </li></ul><ul><li>*La estatura de un niño que depende de su edad, etc. </li></ul>UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS
  12. 12. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS POLINOMICAS ALGEBRAICAS RACIONALES RADICALES FUNCIONES EXPONENCIALES TRASCENDENTES LOGARITMICAS TRIGONOMETRICAS TIPOS DE FUNCIONES
  13. 13. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación Las funciones algebraicas pueden ser: Funciones explícitas Si se pueden obtener las imágenes de x por simple sustitución. f(x) = 5x - 2 Funciones implícitas Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones. 5x - y - 2 = 0 Funciones Algebraicas
  14. 14. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS Funciones Algebraicas Función lineal:             L a función lineal (función polinomial de primer grado) es de la forma   y = f (x) = ax + b ; a y b son números dados; el dominio y contradominio es el conjunto de todos los números reales. La gráfica de cualquier función lineal es una línea recta. La a representa la pendiente de la recta y b , el intercepto con el eje y (u ordenada en el origen). Como ya mencionamos antes, el intercepto con el eje y , es b ; para hallar el intercepto con el eje x (o abscisa en el origen),  se iguala la ecuación de la función a 0 y se despeja el valor respectivo para x .  
  15. 15. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS Funciones Lineales 1.   y = x . S o l u c i ó n : 2. y = -2x S o l u c i ó n : 3.   y = x + 2 S o l u c i ó n : 4.   y = x - 3 S o l u c i ó n :
  16. 16. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS Funciones polinómicas : Son las funciones que vienen definidas por un polinomio. f(x) = a 0 + a 1 x + a 1 x² + a 1 x³ +··· + a n x n Su dominio es R , es decir, cualquier número real tiene imagen. Funciones constantes: El criterio viene dado por un número real. f(x)= k La gráfica es una recta horizontal paralela a al eje de abscisas.
  17. 17. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS <ul><li>Funciones racionales </li></ul><ul><li>Una función racional es aquella que puede expresarse como el cociente de dos funciones polinomiales. </li></ul><ul><li>Esto es, una función racional es de la forma los números reales excepto los valores de x que anulan el denominador, Q ( x ) = 0. </li></ul><ul><li>             </li></ul><ul><li>Funciones radicales </li></ul><ul><li>El criterio viene dado por la variable x bajo el signo radical. </li></ul><ul><li>El dominio de una función irracional de índice impar es R. </li></ul><ul><li>El dominio de una función irracional de índice par está formado por todos los valores que hacen que el radicando sea mayor o igual que cero. </li></ul>
  18. 18. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS <ul><li>Funciones trascendentes </li></ul><ul><li>La variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría. </li></ul><ul><li>Función exponencial Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia a x se llama función exponencial de base a y exponente x . </li></ul><ul><li>Funciones logarítmicas </li></ul><ul><li>La función logarítmica en base a es la función inversa de la exponencial en base a. </li></ul>
  19. 19. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS Función cuadrática
  20. 20. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS S o l u c i o n e s                                                                                                                                                
  21. 21. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS S o l u c i o n e s                                                                                                                                                                                                                                                                                                                                      
  22. 22. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS <ul><li>Funciones trigonométricas </li></ul><ul><li>Función seno </li></ul><ul><li>f(x) = sen x </li></ul><ul><li>Función coseno </li></ul><ul><li>f(x) = cosen x </li></ul><ul><li>Función tangente </li></ul><ul><li>f(x) = tg x </li></ul><ul><li>Función cosecante </li></ul><ul><li>f(x) = cosec x </li></ul><ul><li>Función secante </li></ul><ul><li>f(x) = sec x </li></ul><ul><li>Función cotangente </li></ul><ul><li>f(x) = cotg x </li></ul>
  23. 23. UNIVERSIDAD VERACRUZANA ¿Cuándo una gráfica no corresponde a una función? De las dos gráficas que se muestran a continuación, la de la izquierda corresponde a una función y la derecha no. En ésta a cada valor de la variable independiente X, le corresponde un único valor imagen de la variable dependiente Y   En ésta hay algunos valores de la variable X a los que corresponden más de un valor de la variable Y. Lo que contradice la definición de función. MATEMÀTICAS APLICADAS
  24. 24. UNIVERSIDAD VERACRUZANA Dominio Se llama dominio de definición de una función f , y se designa por Dom f , al conjunto de valores de x para los cuales existe la función, es decir, para los cuales podemos calcular y = f (x).   En la función que tiene por expresión algebraica y = 2x +1 podemos dar a la variable x el valor que queramos y con ello obtener un correspondiente valor de y. ( EVALUAR ) Decimos que en este caso dicha función está definida en todo R (conjunto de los números reales).  MATEMÀTICAS APLICADAS
  25. 25. UNIVERSIDAD VERACRUZANA Sin embargo la función y = 1/x no permite calcular el correspondiente valor de y para todos los valores de x. En este caso el valor x=0 no puede ser del dominio de la función. ( EVALUAR ) Cuando una función se nos presenta a través de su gráfica, simplemente con proyectar sobre el eje de abscisas dicha gráfica conseguimos el dominio de definición . Esto es porque cualquier valor de x del dominio tiene su correspondiente imagen y por ello le corresponde un punto de la gráfica. Y éste punto es el que al proyectar la misma sobre el eje Ox nos incluye ese valor dentro del dominio. MATEMÀTICAS APLICADAS
  26. 26. UNIVERSIDAD VERACRUZANA En el ejemplo vemos coloreado de azul el dominio.   En este caso tenemos que Dom f = (-∞, 2) U (2, 7] MATEMÀTICAS APLICADAS
  27. 27. SISTEMAS COMPUTACIONALES UNIVERSIDAD VERACRUZANA EJEMPLOS FUNCIONES POLINÓMICAS: Son aquellas cuya expresión algebraica es un polinomio; es decir, las funciones polinómicas , tienen como dominio de definición todo el conjunto de los números reales: R f( x )= 3x 5 - 8x + 1;   D(f) = R g( x )= 2x + 3;   D(g) = R h( x)=½ ;   D(h) = R
  28. 28. UNIVERSIDAD VERACRUZANA FUNCIONES RACIONALES: Si la función es racional, esto es que su expresión es un cociente de dos polinomios, nos va a plantear el problema de tener que excluir del dominio las raíces del polinomio denominador . Por ejemplo: I) Resolvemos la ecuación x 2 - 9 = 0; y obtenemos x 1 = +3  y   x 2 = -3.         Por lo tanto D(f) = R {+3, -3} MATEMÀTICAS APLICADAS
  29. 29. UNIVERSIDAD VERACRUZANA II) Resolvemos la ecuación x 2 + 1 = 0; y nos encontramos que no tiene solución. No se han encontrado valores que anulen el denominador. y por lo tanto no tenemos que excluirlos del dominio.              Por lo tanto D(f) = R. MATEMÀTICAS APLICADAS
  30. 30. UNIVERSIDAD VERACRUZANA FUNCIONES IRRACIONALES: Funciones irracionales son las que vienen expresadas a través de un radical que lleve en su radicando la variable independiente . Si el radical tiene índice impar, entonces el dominio será todo el conjunto R de los números reales porque al elegir cualquier valor de x siempre vamos a poder calcular la raíz de índice impar de la expresión que haya en el radicando. Si el radical tiene índice par, para los valores de x que hagan el radicando negativo no existirá la raíz y por tanto no tendrán imagen . MATEMÀTICAS APLICADAS
  31. 31. UNIVERSIDAD VERACRUZANA I) Resolvemos la inecuación x +1 > 0; ==> x > -1;                                            x+1 es una expresión positiva si x pertenece al intervalo [-1, +∞).                                         Por lo tanto D(f) = [-1, +∞). II) Resolvemos la inecuación x 2 - 25 > 0; y obtenemos (x + 5)·(x - 5) > 0 R nos queda dividido en tres zonas y probamos en cuál de ellas se da que el signo del radicando sea positivo.   Por lo tanto D(g) = (-∞, -5] U [+5, +∞) MATEMÀTICAS APLICADAS
  32. 32. UNIVERSIDAD VERACRUZANA III) Resolvemos la inecuación x 2 - 2x - 8 > 0; y obtenemos (x + 2)·(x - 4) >0; Observar que la inecuación se plante con desigualdad estricta, esto es porque el radicando está en un denominador y por lo tanto no puede valer 0. ¿En que se traduce esto? En tener que excluir de las zonas donde el radicando sea positivo los extremos -2 y +4. Por lo que: R nos queda dividido en tres zonas. Y estudiando el signo del radicando obtenemos el dominio:        D(h) = (-∞, -2) U (+4, +∞) MATEMÀTICAS APLICADAS
  33. 33. UNIVERSIDAD VERACRUZANA E J E R C I C I O S MATEMÀTICAS APLICADAS
  34. 34. UNIVERSIDAD VERACRUZANA Obtén el dominio de definición de los gráficos MATEMÀTICAS APLICADAS
  35. 35. UNIVERSIDAD VERACRUZANA <ul><ul><ul><ul><li>Calcula el dominio de las funciones que se dan a continuación: </li></ul></ul></ul></ul>MATEMÀTICAS APLICADAS
  36. 36. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS LIMITE MATEMATICO En matemáticas, se usa el concepto del límite para describir la tendencia de una sucesión o una función. La idea es que en una sucesión o una función, al hablar de límite, decimos que tiene uno si se puede acercar a un cierto número (o sea, el límite) tanto como queramos. Se usa el límite en cálculo (por lo que también se usa en el análisis real y matemático) para definir convergencia, continuidad, derivación, integración, y muchas otras cosas.
  37. 37. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS <ul><li>Límite de una función </li></ul><ul><li>Informalmente, decimos que el límite de la función f ( x ) es L cuando x tiende a p , y escribimos </li></ul><ul><li>Esta definición se llama frecuentemente la definición épsilon-delta del límite. </li></ul>
  38. 38. UNIVERSIDAD VERACRUZANA Variaciones de una función.   Crecimiento-Decrecimiento de la función y Máximos y mínimos. 1.Crecimiento y Decrecimiento.   Un determinado parásito se reproduce dividiéndose en dos cada segundo. La función que determina el número de parásitos que hay en cada segundo de tiempo que transcurre es la representada a la derecha.   Al aumentar el valor de la variable x, también aumenta el valor de la variable y. Esto es una función es estrictamente creciente.     Si x 1 <x 2   =>   f (x 1 )< f (x 2 ) MATEMÀTICAS APLICADAS
  39. 39. UNIVERSIDAD VERACRUZANA   Al aumentar el valor de la variable x, ahora disminuye el valor de la variable y o imagen. Esto es que la función es estrictamente decreciente.                                          Si x 1 <x 2   =>   f (x 1 )> f (x 2 ) MATEMÀTICAS APLICADAS
  40. 40. UNIVERSIDAD VERACRUZANA El estudio del crecimiento-decrecimiento de una función, lo haremos por intervalos del dominio, indicando en cuáles es creciente y en cuáles decreciente.   A partir de la gráfica se ve claro el crecimiento-decrecimiento de una manera intuitiva, pero siempre mirándola de izquierda a derecha que es como va aumentando la variable independiente x. MATEMÀTICAS APLICADAS
  41. 41. UNIVERSIDAD VERACRUZANA 2.Máximos y mínimos relativos.   Debido a cambios que vemos en algunas funciones, que en determinados puntos del eje de abscisas pasan de crecer a decrecer o viceversa nos aparecen los extremos relativos (máximos relativos y mínimos relativos). Una función f tiene un máximo relativo en el punto x 0 del eje de abscisas si la función pasa de ser creciente a la izquierda de x 0 a ser decreciente a la derecha de x 0 . Es decir, f tiene en x 0 un máximo relativo si   f (x 0 ) > f (x) para cualquier x de un entorno cercano a x 0 . MATEMÀTICAS APLICADAS
  42. 42. UNIVERSIDAD VERACRUZANA La función representada tiene en 2; un máximo relativo. Una función f tiene un mínimo relativo en el punto x 0 del eje de abscisas si la función pasa de ser decreciente a la izquierda de x 0 a ser creciente a la derecha de x 0 . Es decir, f tiene en x 0 un mínimo relativo si   f (x 0 ) < f (x) para cualquier x de un entorno cercano a x 0 . MATEMÀTICAS APLICADAS
  43. 43. UNIVERSIDAD VERACRUZANA Aquí vemos que en x=2 hay un mínimo relativo, la función pasa de ser decreciente a creciente Una función puede tener varios extremos relativos, de entre ellos, si existe, llamaremos máximo absoluto al valor x 0 que cumpla f (x 0 ) >   f (x)  para cualquier x del dominio, y análogamente llamaremos mínimo absoluto , si existe, al valor x 0 que cumpla f (x 0 ) <   f (x)  para cualquier x del dominio. MATEMÀTICAS APLICADAS
  44. 44. UNIVERSIDAD VERACRUZANA Observa en esta gráfica que el número de viajeros en una línea de autobuses ha ido en aumento entre las 6y las 8 de la mañana. CONTESTA: *El crecimiento de la función es igual entre las 6 y las 7 que entre las 7 y las 8? *Indica los tramos en los que la función es decreciente y los tramos en los que es creciente. *¿En qué tramo no hay variación en el número de viajeros?¿Cómo dirías que es la función en ese tramo? *¿En qué momento hubo un número máximo de viajeros? MATEMÀTICAS APLICADAS
  45. 45. UNIVERSIDAD VERACRUZANA La siguiente gráfica nos muestra el nivel de ruido que se produce en un cruce de grandes avenidas de una ciudad: CONTESTA *¿Cuándo crece el nivel de ruido? *¿Cuándo decrece? *Indica los instantes de tiempo en los cuales la intensidad del ruido es máxima o mínima MATEMÀTICAS APLICADAS
  46. 46. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS Simetrías   Observa la gráfica .  La parte de la curva a la izquierda del eje Oy es la imagen reflejada de la que está a la derecha del eje.   Esto es que la función es simétrica respecto del eje Oy o simétrica par.   Una función es simétrica respecto al eje Oy (eje de ordenadas) si cumple que f (x) = f (-x) para cualquier x del dominio. Esto se conoce como simetría par de la función f .   La función aquí representada es y = x 2 . Es obvio que x 2 = (-x) 2 .
  47. 47. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS En cambio ésta muestra como la rama de la izquierda del eje vertical es el reflejo de la de la derecha, pero no respecto a este eje, sino respecto al origen de coordenadas.  Ahora la función es simétrica respecto al origen, o sea, simetría impar.   Una función es simétrica respecto al origen de coordenadas si cumple que f (x) = - f (-x) para cualquier x del dominio. Esto se conoce como simetría impar de la función f .   Ahora la función representada es y = x 3 +x;     (-x) 3 +(-x) = - x 3 -x
  48. 48. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS Continuidad   Para que nos hagamos una idea, una función continua en todo su dominio sería aquella que se puede dibujar de un sólo trazo sin levantar el lápiz del papel. Por ejemplo la dibujada a continuación: Pero la mayoría de las funciones van a presentar discontinuidades, o sea, van a ser continua sólo en algunos &quot;trozos&quot; de su dominio y en los límites de éstos presentarán discontinuidades
  49. 49. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS Discontinuidad de salto finito.     Se presentará una discontinuidad de salto finito en un valor x = a, cuando en la gráfica observemos una separación o salto entre dos trozos de la función que pueda medirse . Esto es debido a que la tendencia de la función a la izquierda del punto x = a es diferente de la que tiene a la derecha. 
  50. 50. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS Discontinuidad de salto infinito .   Cuando en un punto de la curva observamos que la tendencia a la izquierda o a la derecha (o ambas) es a alejarse al infinito (más infinito o menos infinito), entonces nos encontramos con una discontinuidad de salto infinito en el punto a.
  51. 51. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS Discontinuidad evitable.   Si nos encontramos que la continuidad de la gráfica se interrumpe en un punto donde no hay imagen , o la imagen está desplazada del resto de la gráfica, tendremos una discontinuidad evitable en el punto a.   Aquí la tendencia de la función a la izquierda de a y a la derecha de a sí coincide, sin embargo es f (a) el valor que no coincide con dicha tendencia o que ni siquiera existe.
  52. 52. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS ACTIVIDADES: 1. Analiza la simetría de estas funciones: y = x y = 2x + 1 y = x 3 y = x 4 2. Indica si; en alguna de las funciones que se presentan a continuación existe algún tipo simetría, continuidad, etc….
  53. 53. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS
  54. 54. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS Otras características de las funciones. Concavidad-convexidad.   Diremos que una función es CÓNCAVA si su gráfica queda por encima de las rectas tangentes a cada uno de sus puntos. Diremos que una función es CONVEXA si su gráfica queda por debajo de las rectas tangentes a cada uno de sus puntos
  55. 55. UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS Cuando tengan tramos de una clase y de otra. Los puntos del dominio donde se produzcan esos cambios de concavidad a convexidad o viceversa serán los que llamaremos PUNTOS DE INFLEXIÓN: Como puedes comprobar, la curva se repite cada cierto intervalo del eje de abscisas, a esto llamamos periodicidad.

×