Managing multi tenant resource toward Hive 2.0

Kai Sasaki
Kai SasakiSoftware engineer - Treasure Data
Managing multi tenant
resource toward Hive 2.0
Kai Sasaki
Treasure Data Inc.
About Me
• Kai Sasaki (佐々木 海)
• @Lewuathe (Twitter)
• Software Engineer 

at Treasure Data Inc.
• Maintaining and develop 

Hadoop/Presto infrastructure
Topic
• Treasure Data infrastructure
• Hive 2.0 change
• Migration architecture
• Resource management for multi tenancy
• Performance comparison
• Live Data Management Platform
• Original creator of Fluentd/Embulk/Digdag
• 70+ integrations with
• BI tools
• Mobile/IoT
• Cloud Storage
• and more
Managing multi tenant resource toward Hive 2.0
• Hive/Pig/Presto data processing interface
• 40000+ Hive queries / day
• 130000+ Presto queries / day
• Plazma Cloud Storage
• 450000+ records/sec imported
Hive 1.x Hive 2.x
Any change?
Hive 2.0
• Include major new features
• Fixed 600+ bugs
• 140+ improvements or new features
• Backward compatible as much as possible
• Hive 1.x stable line
• 2.1.0 is available from June 20th, 2016
http://www.slideshare.net/HadoopSummit/apache-hive-20-sql-speed-scale
Hive 2.0
• HPLSQL
• LLAP
• HBase metastore
• Improvements of Hive on Spark
• CBO improvements
http://www.slideshare.net/HadoopSummit/apache-hive-20-sql-speed-scale
HPLSQL
• Procedural SQL like Oracle’s PL/SQL
• Cursor
• loops (WHILE, FOR, LOOP)
• branches (IF)
• External library which communicates through JDBC
• http://www.hplsql.org/doc
http://www.slideshare.net/HadoopSummit/apache-hive-20-sql-speed-scale
LLAP
• Sub-second Queries in Hive
• Save JVM container launch time
• Data caching
• Fit to Adhoc or interactive use case
• Beta in 2.0
http://hortonworks.com/wp-content/uploads/2014/09/Screen-Shot-2014-09-02-at-5.03.47-PM.png
LLAP
• Sub-second Queries in Hive
http://hortonworks.com/wp-content/uploads/2014/09/Screen-Shot-2014-09-02-at-5.03.47-PM.png
HBase metastore
• Use HBase as metastore of Hive
• Fetching thousands of partitions
• Limitation of concurrent connection
• Will support transaction with Apache Omid
• Alpha in Hive 2.0
http://hortonworks.com/wp-content/uploads/2014/09/Screen-Shot-2014-09-02-at-5.03.47-PM.png
Many fixes
and 

Cutting edge features
That’s all?
• Operation cost of migration
• Manage multiple cluster
• Test and verify multiple packages
• Difference of configuration and parameter
That’s all?
• Operation cost of migration
• Manage multiple cluster
• Test and verify multiple packages
• Difference of configuration and parameter
• Need to reduce operation cost at the same time
Now migration
Challenge
• NO DOWNTIME
• NO HARMFUL OPERATION
• Change package easily
• Separate from other components (Micro service)
• NO DEGRADATION
• Automatic query test and validation
NO DOWNTIME
• Hadoop cluster Blue-Green deployment
• Reliable queue system separated from Hadoop
→ PerfectQueue
• Reliable storage system separated from Hadoop
→ Plazma
PerfectQueue
• Distributed queue built on top of RDBMS
• At-least-once semantics
• Graceful and live restarting
• State consistency by transaction
• https://github.com/treasure-data/perfectqueue
Plazma
• Distributed cloud-based storage
• PostgreSQL + S3/Riak CS
• Enable time-index push down for Hive/Pig/Presto
• Column-oriented IO (mpc1)
• Data consistency with transactional API
Plazma
x
PQ
PQ
App
request
Plazma
x
PQ
PQ
App
request
pull
submit
Plazma
x
PQ
PQ
App
request
pull
submit fetch
Plazma
x
PQ
PQ
App
request
pull
submit fetch
disposable
components
Plazma
x
PQ
PQ
App
request
pull
submit fetch
v1
v2
Plazma
x
PQ
PQ
App
request
pull
submit
fetch
v1
v2
Plazma
PQ
PQ
App
request
pull
submit
fetch
v2
NO HARMFUL OPS
• Automatic package version up
• Chef server specifies the version
• Hadoop package repository
• S3 remote package repository
• Hadoop as a REST service
• elephant-server
elephant-server
• Hadoop as REST service
• Pluggable executor
• Hive
• Pig
• Embulk MapReduce executor
• Distributed on-memory queue (Hazelcast)
PQ
PQ
App
request
pull REST
elephant
server
PQ
PQ
App
request
pull REST
elephant
server
elephant
server
elephant
server
PQ
PQ
App
request
pull REST
elephant
server
hazelcast
elephant
server
elephant
server
PQ
PQ
App
request
pull REST
elephant
server
hazelcast
elephant
server
elephant
server
service
discovery
PQ
PQ
App
request
pull REST
elephant
server
hazelcast
elephant
server
elephant
server
service
discovery x
x
PQ
PQ
App
request
pull REST
elephant
server
hazelcast
elephant
server
elephant
server
service
discovery
package
distribution
S3
x
x
PQ
PQ
App
request
pull REST
elephant
server
hazelcast
elephant
server
elephant
server
request
x
x
fetch submit
service
discovery
package
distribution
S3
NO DEGRADATION
• Validation in
• Parameter difference
• Query result difference
• Performance deterioration
• Automatic testing and persistent result tables
PQ
PQ
App
request
pull REST
elephant
server
S3
1. upload param 

and configurations
PQ
PQ
App
request
pull REST
elephant
server
S3
1. upload param 

and configurations
x
submit
v1
PQ
PQ
App
request
pull REST
elephant
server
S3
1. upload param 

and configurations
2. upload query result
Plazma
x
submit
v1
3. send metrics
PQ
PQ
App
request
pull REST
elephant
server
S3
1. upload param 

and configurations
2. upload query result
Plazma
x
submit
v1
3. send metrics
S3 Plazma
x
v2
elephant
server
S3
1. upload param 

and configurations
2. upload query result
Plazma
x
submit
v1
3. send metrics
S3 Plazma
x
v2
Verification between 

persistent result set
PQ
PQ
App
request
pull REST
Resource management
• Define 1 resource per 1 account
• Workload type of an account varies
• Batch, Adhoc, BI tool…
• Require high level resource management 

across clusters
• An account can have multiple resource pools
• For service and internal purpose
request
queue1
queue2
cluster1
cluster2
cluster1
cluster2
Hadoop
queue A
Hadoop
queue B
Hadoop
queue A
Hadoop
queue B
Hadoop
queue A
Hadoop
queue B
Hadoop
queue A
Hadoop
queue B
request
queue1
queue2
cluster1
cluster2
cluster1
cluster2
Hadoop
queue A
Hadoop
queue B
Hadoop
queue A
Hadoop
queue B
Hadoop
queue A
Hadoop
queue B
Hadoop
queue A
Hadoop
queue B
Enables us to define
which resource the request can use
PQ
PQ
App
request
REST
elephant
server
x
PQ
PQ
App
request
REST
elephant
server
PQ
PQ
x
1. multiple job queue
PQ
PQ
App
request
REST
elephant
server
x
x
PQ
PQ
1. multiple job queue 2. multiple Hadoop cluster
PQ
PQ
App
request
REST
elephant
server
x
q1
q2
q3
x
PQ
PQ
q1
q2
q3
1. multiple job queue 2. multiple Hadoop cluster
3. multiple Hadoop queue
Briefly
performance comparison
130GB+ 70B+ records
Elapsedtime(sec)
0
200
400
600
800
COUNT
Hive 1.x + MapReduce
Hive 2.x + Tez + Vectorization
130GB+ 70B+ records
Elapsedtime(sec)
0
250
500
750
1000
GROUP BY
Hive 1.x + MapReduce
Hive 2.x + Tez + Vectorization
130GB+ 70B+ records
Elapsedtime(sec)
0
275
550
825
1100
JOIN
Hive 1.x + MapReduce
Hive 2.x + Tez + Vectorization
Recap
• Hadoop architecture in Treasure Data 

for Hive 2.0 and beyond
• Resource management for multi tenancy
We’re hiring!
1 of 56

Recommended

C* Summit 2013: Time for a New Relationship - Intuit's Journey from RDBMS to ... by
C* Summit 2013: Time for a New Relationship - Intuit's Journey from RDBMS to ...C* Summit 2013: Time for a New Relationship - Intuit's Journey from RDBMS to ...
C* Summit 2013: Time for a New Relationship - Intuit's Journey from RDBMS to ...DataStax Academy
29.3K views14 slides
Maintainable cloud architecture_of_hadoop by
Maintainable cloud architecture_of_hadoopMaintainable cloud architecture_of_hadoop
Maintainable cloud architecture_of_hadoopKai Sasaki
4.3K views60 slides
Optimizing Apache HBase for Cloud Storage in Microsoft Azure HDInsight by
Optimizing Apache HBase for Cloud Storage in Microsoft Azure HDInsightOptimizing Apache HBase for Cloud Storage in Microsoft Azure HDInsight
Optimizing Apache HBase for Cloud Storage in Microsoft Azure HDInsightHBaseCon
2.8K views32 slides
Mining AWR V2 - Trend Analysis by
Mining AWR V2 - Trend AnalysisMining AWR V2 - Trend Analysis
Mining AWR V2 - Trend AnalysisMaris Elsins
1.3K views84 slides
HBaseCon 2012 | HBase, the Use Case in eBay Cassini by
HBaseCon 2012 | HBase, the Use Case in eBay Cassini HBaseCon 2012 | HBase, the Use Case in eBay Cassini
HBaseCon 2012 | HBase, the Use Case in eBay Cassini Cloudera, Inc.
6.1K views13 slides
October 2016 HUG: Architecture of an Open Source RDBMS powered by HBase and ... by
October 2016 HUG: Architecture of an Open Source RDBMS powered by HBase and ...October 2016 HUG: Architecture of an Open Source RDBMS powered by HBase and ...
October 2016 HUG: Architecture of an Open Source RDBMS powered by HBase and ...Yahoo Developer Network
1.2K views42 slides

More Related Content

What's hot

Migrating and Running DBs on Amazon RDS for Oracle by
Migrating and Running DBs on Amazon RDS for OracleMigrating and Running DBs on Amazon RDS for Oracle
Migrating and Running DBs on Amazon RDS for OracleMaris Elsins
3K views63 slides
Kafka to the Maxka - (Kafka Performance Tuning) by
Kafka to the Maxka - (Kafka Performance Tuning)Kafka to the Maxka - (Kafka Performance Tuning)
Kafka to the Maxka - (Kafka Performance Tuning)DataWorks Summit
6.4K views66 slides
Mesosphere and Contentteam: A New Way to Run Cassandra by
Mesosphere and Contentteam: A New Way to Run CassandraMesosphere and Contentteam: A New Way to Run Cassandra
Mesosphere and Contentteam: A New Way to Run CassandraDataStax Academy
2.4K views57 slides
DatEngConf SF16 - Apache Kudu: Fast Analytics on Fast Data by
DatEngConf SF16 - Apache Kudu: Fast Analytics on Fast DataDatEngConf SF16 - Apache Kudu: Fast Analytics on Fast Data
DatEngConf SF16 - Apache Kudu: Fast Analytics on Fast DataHakka Labs
978 views50 slides
Kafka and Hadoop at LinkedIn Meetup by
Kafka and Hadoop at LinkedIn MeetupKafka and Hadoop at LinkedIn Meetup
Kafka and Hadoop at LinkedIn MeetupGwen (Chen) Shapira
3.9K views25 slides
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,... by
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...Data Con LA
369 views30 slides

What's hot(20)

Migrating and Running DBs on Amazon RDS for Oracle by Maris Elsins
Migrating and Running DBs on Amazon RDS for OracleMigrating and Running DBs on Amazon RDS for Oracle
Migrating and Running DBs on Amazon RDS for Oracle
Maris Elsins3K views
Kafka to the Maxka - (Kafka Performance Tuning) by DataWorks Summit
Kafka to the Maxka - (Kafka Performance Tuning)Kafka to the Maxka - (Kafka Performance Tuning)
Kafka to the Maxka - (Kafka Performance Tuning)
DataWorks Summit6.4K views
Mesosphere and Contentteam: A New Way to Run Cassandra by DataStax Academy
Mesosphere and Contentteam: A New Way to Run CassandraMesosphere and Contentteam: A New Way to Run Cassandra
Mesosphere and Contentteam: A New Way to Run Cassandra
DataStax Academy2.4K views
DatEngConf SF16 - Apache Kudu: Fast Analytics on Fast Data by Hakka Labs
DatEngConf SF16 - Apache Kudu: Fast Analytics on Fast DataDatEngConf SF16 - Apache Kudu: Fast Analytics on Fast Data
DatEngConf SF16 - Apache Kudu: Fast Analytics on Fast Data
Hakka Labs978 views
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,... by Data Con LA
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Data Con LA369 views
HBaseCon 2015: State of HBase Docs and How to Contribute by HBaseCon
HBaseCon 2015: State of HBase Docs and How to ContributeHBaseCon 2015: State of HBase Docs and How to Contribute
HBaseCon 2015: State of HBase Docs and How to Contribute
HBaseCon3.3K views
HBaseCon 2015- HBase @ Flipboard by Matthew Blair
HBaseCon 2015- HBase @ FlipboardHBaseCon 2015- HBase @ Flipboard
HBaseCon 2015- HBase @ Flipboard
Matthew Blair7.6K views
Hive spark-s3acommitter-hbase-nfs by Yifeng Jiang
Hive spark-s3acommitter-hbase-nfsHive spark-s3acommitter-hbase-nfs
Hive spark-s3acommitter-hbase-nfs
Yifeng Jiang4.7K views
January 2015 HUG: Using HBase Co-Processors to Build a Distributed, Transacti... by Yahoo Developer Network
January 2015 HUG: Using HBase Co-Processors to Build a Distributed, Transacti...January 2015 HUG: Using HBase Co-Processors to Build a Distributed, Transacti...
January 2015 HUG: Using HBase Co-Processors to Build a Distributed, Transacti...
Cassandra Community Webinar: Apache Spark Analytics at The Weather Channel - ... by DataStax Academy
Cassandra Community Webinar: Apache Spark Analytics at The Weather Channel - ...Cassandra Community Webinar: Apache Spark Analytics at The Weather Channel - ...
Cassandra Community Webinar: Apache Spark Analytics at The Weather Channel - ...
DataStax Academy5.6K views
HBaseCon 2013: Using Coprocessors to Index Columns in an Elasticsearch Cluster by Cloudera, Inc.
HBaseCon 2013: Using Coprocessors to Index Columns in an Elasticsearch Cluster HBaseCon 2013: Using Coprocessors to Index Columns in an Elasticsearch Cluster
HBaseCon 2013: Using Coprocessors to Index Columns in an Elasticsearch Cluster
Cloudera, Inc.7.5K views
Zero-downtime Hadoop/HBase Cross-datacenter Migration by Scott Miao
Zero-downtime Hadoop/HBase Cross-datacenter MigrationZero-downtime Hadoop/HBase Cross-datacenter Migration
Zero-downtime Hadoop/HBase Cross-datacenter Migration
Scott Miao1.4K views
HBaseCon 2013:High-Throughput, Transactional Stream Processing on Apache HBase by Cloudera, Inc.
HBaseCon 2013:High-Throughput, Transactional Stream Processing on Apache HBase HBaseCon 2013:High-Throughput, Transactional Stream Processing on Apache HBase
HBaseCon 2013:High-Throughput, Transactional Stream Processing on Apache HBase
Cloudera, Inc.4.6K views
HBaseCon 2015: HBase and Spark by HBaseCon
HBaseCon 2015: HBase and SparkHBaseCon 2015: HBase and Spark
HBaseCon 2015: HBase and Spark
HBaseCon8.7K views
Best Practices for NoSQL Workloads on Amazon EC2 and Amazon EBS - February 20... by Amazon Web Services
Best Practices for NoSQL Workloads on Amazon EC2 and Amazon EBS - February 20...Best Practices for NoSQL Workloads on Amazon EC2 and Amazon EBS - February 20...
Best Practices for NoSQL Workloads on Amazon EC2 and Amazon EBS - February 20...
Amazon Web Services2.5K views
Oracle Databases on AWS - Getting the Best Out of RDS and EC2 by Maris Elsins
Oracle Databases on AWS - Getting the Best Out of RDS and EC2Oracle Databases on AWS - Getting the Best Out of RDS and EC2
Oracle Databases on AWS - Getting the Best Out of RDS and EC2
Maris Elsins3.7K views
October 2016 HUG: The Pillars of Effective Data Archiving and Tiering in Hadoop by Yahoo Developer Network
October 2016 HUG: The Pillars of Effective Data Archiving and Tiering in HadoopOctober 2016 HUG: The Pillars of Effective Data Archiving and Tiering in Hadoop
October 2016 HUG: The Pillars of Effective Data Archiving and Tiering in Hadoop

Viewers also liked

分析のビジネス展開を考える―状態空間モデルを例に @TokyoWebMining #47 by
分析のビジネス展開を考える―状態空間モデルを例に @TokyoWebMining #47分析のビジネス展開を考える―状態空間モデルを例に @TokyoWebMining #47
分析のビジネス展開を考える―状態空間モデルを例に @TokyoWebMining #47horihorio
12.7K views48 slides
Multi-tenant, Multi-cluster and Multi-container Apache HBase Deployments by
Multi-tenant, Multi-cluster and Multi-container Apache HBase DeploymentsMulti-tenant, Multi-cluster and Multi-container Apache HBase Deployments
Multi-tenant, Multi-cluster and Multi-container Apache HBase DeploymentsDataWorks Summit
8.2K views37 slides
Kernel ext4 by
Kernel ext4Kernel ext4
Kernel ext4Kai Sasaki
1.6K views23 slides
ベイクドGPU Kernel/VM北陸1 by
 ベイクドGPU Kernel/VM北陸1 ベイクドGPU Kernel/VM北陸1
ベイクドGPU Kernel/VM北陸1nkawahara
14.6K views78 slides
Spark Summit - Watson Analytics for Social Media: From single tenant Hadoop t... by
Spark Summit - Watson Analytics for Social Media: From single tenant Hadoop t...Spark Summit - Watson Analytics for Social Media: From single tenant Hadoop t...
Spark Summit - Watson Analytics for Social Media: From single tenant Hadoop t...Behar Veliqi
379 views42 slides
セグメンテーションの考え方・使い方 - TokyoR #44 by
セグメンテーションの考え方・使い方 - TokyoR #44セグメンテーションの考え方・使い方 - TokyoR #44
セグメンテーションの考え方・使い方 - TokyoR #44horihorio
8.2K views37 slides

Viewers also liked(20)

分析のビジネス展開を考える―状態空間モデルを例に @TokyoWebMining #47 by horihorio
分析のビジネス展開を考える―状態空間モデルを例に @TokyoWebMining #47分析のビジネス展開を考える―状態空間モデルを例に @TokyoWebMining #47
分析のビジネス展開を考える―状態空間モデルを例に @TokyoWebMining #47
horihorio12.7K views
Multi-tenant, Multi-cluster and Multi-container Apache HBase Deployments by DataWorks Summit
Multi-tenant, Multi-cluster and Multi-container Apache HBase DeploymentsMulti-tenant, Multi-cluster and Multi-container Apache HBase Deployments
Multi-tenant, Multi-cluster and Multi-container Apache HBase Deployments
DataWorks Summit8.2K views
Kernel ext4 by Kai Sasaki
Kernel ext4Kernel ext4
Kernel ext4
Kai Sasaki1.6K views
ベイクドGPU Kernel/VM北陸1 by nkawahara
 ベイクドGPU Kernel/VM北陸1 ベイクドGPU Kernel/VM北陸1
ベイクドGPU Kernel/VM北陸1
nkawahara 14.6K views
Spark Summit - Watson Analytics for Social Media: From single tenant Hadoop t... by Behar Veliqi
Spark Summit - Watson Analytics for Social Media: From single tenant Hadoop t...Spark Summit - Watson Analytics for Social Media: From single tenant Hadoop t...
Spark Summit - Watson Analytics for Social Media: From single tenant Hadoop t...
Behar Veliqi379 views
セグメンテーションの考え方・使い方 - TokyoR #44 by horihorio
セグメンテーションの考え方・使い方 - TokyoR #44セグメンテーションの考え方・使い方 - TokyoR #44
セグメンテーションの考え方・使い方 - TokyoR #44
horihorio8.2K views
Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016 by StampedeCon
Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016
Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016
StampedeCon4.3K views
Embulk makes Japan visible by Kai Sasaki
Embulk makes Japan visibleEmbulk makes Japan visible
Embulk makes Japan visible
Kai Sasaki4.3K views
How to ensure Presto scalability 
in multi use case by Kai Sasaki
How to ensure Presto scalability 
in multi use case How to ensure Presto scalability 
in multi use case
How to ensure Presto scalability 
in multi use case
Kai Sasaki4.2K views
Rigorous and Multi-tenant HBase Performance by Cloudera, Inc.
Rigorous and Multi-tenant HBase PerformanceRigorous and Multi-tenant HBase Performance
Rigorous and Multi-tenant HBase Performance
Cloudera, Inc.2.8K views
STAC Summit 2014 - Building a multitenant Big Data infrastructure by Gord Sissons
STAC Summit 2014 - Building a multitenant Big Data infrastructureSTAC Summit 2014 - Building a multitenant Big Data infrastructure
STAC Summit 2014 - Building a multitenant Big Data infrastructure
Gord Sissons1K views
統計と会計 - Zansa#19 by horihorio
統計と会計 - Zansa#19統計と会計 - Zansa#19
統計と会計 - Zansa#19
horihorio6.1K views
ext3からext4への更新概要 by Moriwaka Kazuo
ext3からext4への更新概要ext3からext4への更新概要
ext3からext4への更新概要
Moriwaka Kazuo25.3K views
Multi tier, multi-tenant, multi-problem kafka by Todd Palino
Multi tier, multi-tenant, multi-problem kafkaMulti tier, multi-tenant, multi-problem kafka
Multi tier, multi-tenant, multi-problem kafka
Todd Palino5.6K views
Presto, Zeppelin을 이용한 초간단 BI 구축 사례 by Hyoungjun Kim
Presto, Zeppelin을 이용한 초간단 BI 구축 사례Presto, Zeppelin을 이용한 초간단 BI 구축 사례
Presto, Zeppelin을 이용한 초간단 BI 구축 사례
Hyoungjun Kim14.8K views
Harmonizing Multi-tenant HBase Clusters for Managing Workload Diversity by HBaseCon
Harmonizing Multi-tenant HBase Clusters for Managing Workload DiversityHarmonizing Multi-tenant HBase Clusters for Managing Workload Diversity
Harmonizing Multi-tenant HBase Clusters for Managing Workload Diversity
HBaseCon4.8K views
Running Fast, Interactive Queries on Petabyte Datasets using Presto - AWS Jul... by Amazon Web Services
Running Fast, Interactive Queries on Petabyte Datasets using Presto - AWS Jul...Running Fast, Interactive Queries on Petabyte Datasets using Presto - AWS Jul...
Running Fast, Interactive Queries on Petabyte Datasets using Presto - AWS Jul...

Similar to Managing multi tenant resource toward Hive 2.0

Distributed Kafka Architecture Taboola Scale by
Distributed Kafka Architecture Taboola ScaleDistributed Kafka Architecture Taboola Scale
Distributed Kafka Architecture Taboola ScaleApache Kafka TLV
792 views30 slides
Agile infrastructure by
Agile infrastructureAgile infrastructure
Agile infrastructureTarun Rajput
20 views22 slides
Tokyo Azure Meetup #7 - Introduction to Serverless Architectures with Azure F... by
Tokyo Azure Meetup #7 - Introduction to Serverless Architectures with Azure F...Tokyo Azure Meetup #7 - Introduction to Serverless Architectures with Azure F...
Tokyo Azure Meetup #7 - Introduction to Serverless Architectures with Azure F...Tokyo Azure Meetup
1.4K views48 slides
Webinar: What's new in CDAP 3.5? by
Webinar: What's new in CDAP 3.5?Webinar: What's new in CDAP 3.5?
Webinar: What's new in CDAP 3.5?Cask Data
900 views26 slides
OpenStack and Windows by
OpenStack and WindowsOpenStack and Windows
OpenStack and WindowsAlessandro Pilotti
10.1K views70 slides
HadoopCon- Trend Micro SPN Hadoop Overview by
HadoopCon- Trend Micro SPN Hadoop OverviewHadoopCon- Trend Micro SPN Hadoop Overview
HadoopCon- Trend Micro SPN Hadoop OverviewYafang Chang
1.3K views31 slides

Similar to Managing multi tenant resource toward Hive 2.0(20)

Distributed Kafka Architecture Taboola Scale by Apache Kafka TLV
Distributed Kafka Architecture Taboola ScaleDistributed Kafka Architecture Taboola Scale
Distributed Kafka Architecture Taboola Scale
Apache Kafka TLV792 views
Tokyo Azure Meetup #7 - Introduction to Serverless Architectures with Azure F... by Tokyo Azure Meetup
Tokyo Azure Meetup #7 - Introduction to Serverless Architectures with Azure F...Tokyo Azure Meetup #7 - Introduction to Serverless Architectures with Azure F...
Tokyo Azure Meetup #7 - Introduction to Serverless Architectures with Azure F...
Tokyo Azure Meetup1.4K views
Webinar: What's new in CDAP 3.5? by Cask Data
Webinar: What's new in CDAP 3.5?Webinar: What's new in CDAP 3.5?
Webinar: What's new in CDAP 3.5?
Cask Data900 views
HadoopCon- Trend Micro SPN Hadoop Overview by Yafang Chang
HadoopCon- Trend Micro SPN Hadoop OverviewHadoopCon- Trend Micro SPN Hadoop Overview
HadoopCon- Trend Micro SPN Hadoop Overview
Yafang Chang1.3K views
Modern MySQL Monitoring and Dashboards. by Mydbops
Modern MySQL Monitoring and Dashboards.Modern MySQL Monitoring and Dashboards.
Modern MySQL Monitoring and Dashboards.
Mydbops4.3K views
First Look at Azure Logic Apps (BAUG) by Daniel Toomey
First Look at Azure Logic Apps (BAUG)First Look at Azure Logic Apps (BAUG)
First Look at Azure Logic Apps (BAUG)
Daniel Toomey738 views
How Serverless Changes DevOps by Richard Donkin
How Serverless Changes DevOpsHow Serverless Changes DevOps
How Serverless Changes DevOps
Richard Donkin729 views
Apache Hadoop YARN State of the Union by Weiwei Yang
Apache Hadoop YARN State of the UnionApache Hadoop YARN State of the Union
Apache Hadoop YARN State of the Union
Weiwei Yang75 views
Architectures, Frameworks and Infrastructure by harendra_pathak
Architectures, Frameworks and InfrastructureArchitectures, Frameworks and Infrastructure
Architectures, Frameworks and Infrastructure
harendra_pathak464 views
TXLF: Chef- Software Defined Infrastructure Today & Tomorrow by Matt Ray
TXLF: Chef- Software Defined Infrastructure Today & TomorrowTXLF: Chef- Software Defined Infrastructure Today & Tomorrow
TXLF: Chef- Software Defined Infrastructure Today & Tomorrow
Matt Ray1.5K views
Webinar - DreamObjects/Ceph Case Study by Ceph Community
Webinar - DreamObjects/Ceph Case StudyWebinar - DreamObjects/Ceph Case Study
Webinar - DreamObjects/Ceph Case Study
Ceph Community 1.7K views
12 Factor App Methodology by laeshin park
12 Factor App Methodology12 Factor App Methodology
12 Factor App Methodology
laeshin park2.3K views
Bringing Streaming Data To The Masses: Lowering The “Cost Of Admission” For Y... by confluent
Bringing Streaming Data To The Masses: Lowering The “Cost Of Admission” For Y...Bringing Streaming Data To The Masses: Lowering The “Cost Of Admission” For Y...
Bringing Streaming Data To The Masses: Lowering The “Cost Of Admission” For Y...
confluent2.2K views
Chef + Azure = Awesome by Matt Stratton
Chef + Azure = AwesomeChef + Azure = Awesome
Chef + Azure = Awesome
Matt Stratton1.1K views
Hadoop Migration from 0.20.2 to 2.0 by Jabir Ahmed
Hadoop Migration from 0.20.2 to 2.0Hadoop Migration from 0.20.2 to 2.0
Hadoop Migration from 0.20.2 to 2.0
Jabir Ahmed960 views

More from Kai Sasaki

Graviton 2で実現する
コスト効率のよいCDP基盤 by
Graviton 2で実現する
コスト効率のよいCDP基盤Graviton 2で実現する
コスト効率のよいCDP基盤
Graviton 2で実現する
コスト効率のよいCDP基盤Kai Sasaki
2.1K views27 slides
Infrastructure for auto scaling distributed system by
Infrastructure for auto scaling distributed systemInfrastructure for auto scaling distributed system
Infrastructure for auto scaling distributed systemKai Sasaki
1.5K views33 slides
Continuous Optimization for Distributed BigData Analysis by
Continuous Optimization for Distributed BigData AnalysisContinuous Optimization for Distributed BigData Analysis
Continuous Optimization for Distributed BigData AnalysisKai Sasaki
1.2K views38 slides
Recent Changes and Challenges for Future Presto by
Recent Changes and Challenges for Future PrestoRecent Changes and Challenges for Future Presto
Recent Changes and Challenges for Future PrestoKai Sasaki
1.3K views32 slides
Real World Storage in Treasure Data by
Real World Storage in Treasure DataReal World Storage in Treasure Data
Real World Storage in Treasure DataKai Sasaki
543 views67 slides
20180522 infra autoscaling_system by
20180522 infra autoscaling_system20180522 infra autoscaling_system
20180522 infra autoscaling_systemKai Sasaki
1.2K views33 slides

More from Kai Sasaki(20)

Graviton 2で実現する
コスト効率のよいCDP基盤 by Kai Sasaki
Graviton 2で実現する
コスト効率のよいCDP基盤Graviton 2で実現する
コスト効率のよいCDP基盤
Graviton 2で実現する
コスト効率のよいCDP基盤
Kai Sasaki2.1K views
Infrastructure for auto scaling distributed system by Kai Sasaki
Infrastructure for auto scaling distributed systemInfrastructure for auto scaling distributed system
Infrastructure for auto scaling distributed system
Kai Sasaki1.5K views
Continuous Optimization for Distributed BigData Analysis by Kai Sasaki
Continuous Optimization for Distributed BigData AnalysisContinuous Optimization for Distributed BigData Analysis
Continuous Optimization for Distributed BigData Analysis
Kai Sasaki1.2K views
Recent Changes and Challenges for Future Presto by Kai Sasaki
Recent Changes and Challenges for Future PrestoRecent Changes and Challenges for Future Presto
Recent Changes and Challenges for Future Presto
Kai Sasaki1.3K views
Real World Storage in Treasure Data by Kai Sasaki
Real World Storage in Treasure DataReal World Storage in Treasure Data
Real World Storage in Treasure Data
Kai Sasaki543 views
20180522 infra autoscaling_system by Kai Sasaki
20180522 infra autoscaling_system20180522 infra autoscaling_system
20180522 infra autoscaling_system
Kai Sasaki1.2K views
User Defined Partitioning on PlazmaDB by Kai Sasaki
User Defined Partitioning on PlazmaDBUser Defined Partitioning on PlazmaDB
User Defined Partitioning on PlazmaDB
Kai Sasaki1.4K views
Deep dive into deeplearn.js by Kai Sasaki
Deep dive into deeplearn.jsDeep dive into deeplearn.js
Deep dive into deeplearn.js
Kai Sasaki2.9K views
Optimizing Presto Connector on Cloud Storage by Kai Sasaki
Optimizing Presto Connector on Cloud StorageOptimizing Presto Connector on Cloud Storage
Optimizing Presto Connector on Cloud Storage
Kai Sasaki2.4K views
Presto updates to 0.178 by Kai Sasaki
Presto updates to 0.178Presto updates to 0.178
Presto updates to 0.178
Kai Sasaki1.3K views
図でわかるHDFS Erasure Coding by Kai Sasaki
図でわかるHDFS Erasure Coding図でわかるHDFS Erasure Coding
図でわかるHDFS Erasure Coding
Kai Sasaki4.8K views
Spark MLlib code reading ~optimization~ by Kai Sasaki
Spark MLlib code reading ~optimization~Spark MLlib code reading ~optimization~
Spark MLlib code reading ~optimization~
Kai Sasaki835 views
How I tried MADE by Kai Sasaki
How I tried MADEHow I tried MADE
How I tried MADE
Kai Sasaki1.2K views
Reading kernel org by Kai Sasaki
Reading kernel orgReading kernel org
Reading kernel org
Kai Sasaki817 views
Reading drill by Kai Sasaki
Reading drillReading drill
Reading drill
Kai Sasaki1.1K views
Kernel bootstrap by Kai Sasaki
Kernel bootstrapKernel bootstrap
Kernel bootstrap
Kai Sasaki1.3K views
HyperLogLogを用いた、異なり数に基づく
 省リソースなk-meansの
k決定アルゴリズムの提案 by Kai Sasaki
HyperLogLogを用いた、異なり数に基づく
 省リソースなk-meansの
k決定アルゴリズムの提案HyperLogLogを用いた、異なり数に基づく
 省リソースなk-meansの
k決定アルゴリズムの提案
HyperLogLogを用いた、異なり数に基づく
 省リソースなk-meansの
k決定アルゴリズムの提案
Kai Sasaki2K views
Kernel resource by Kai Sasaki
Kernel resourceKernel resource
Kernel resource
Kai Sasaki1.8K views
Kernel overview by Kai Sasaki
Kernel overviewKernel overview
Kernel overview
Kai Sasaki1.7K views
AutoEncoderで特徴抽出 by Kai Sasaki
AutoEncoderで特徴抽出AutoEncoderで特徴抽出
AutoEncoderで特徴抽出
Kai Sasaki37.7K views

Recently uploaded

BushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports by
BushraDBR: An Automatic Approach to Retrieving Duplicate Bug ReportsBushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports
BushraDBR: An Automatic Approach to Retrieving Duplicate Bug ReportsRa'Fat Al-Msie'deen
8 views49 slides
SAP FOR TYRE INDUSTRY.pdf by
SAP FOR TYRE INDUSTRY.pdfSAP FOR TYRE INDUSTRY.pdf
SAP FOR TYRE INDUSTRY.pdfVirendra Rai, PMP
28 views3 slides
Introduction to Gradle by
Introduction to GradleIntroduction to Gradle
Introduction to GradleJohn Valentino
5 views7 slides
Copilot Prompting Toolkit_All Resources.pdf by
Copilot Prompting Toolkit_All Resources.pdfCopilot Prompting Toolkit_All Resources.pdf
Copilot Prompting Toolkit_All Resources.pdfRiccardo Zamana
16 views4 slides
Top-5-production-devconMunich-2023.pptx by
Top-5-production-devconMunich-2023.pptxTop-5-production-devconMunich-2023.pptx
Top-5-production-devconMunich-2023.pptxTier1 app
8 views40 slides
How Workforce Management Software Empowers SMEs | TraQSuite by
How Workforce Management Software Empowers SMEs | TraQSuiteHow Workforce Management Software Empowers SMEs | TraQSuite
How Workforce Management Software Empowers SMEs | TraQSuiteTraQSuite
5 views3 slides

Recently uploaded(20)

BushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports by Ra'Fat Al-Msie'deen
BushraDBR: An Automatic Approach to Retrieving Duplicate Bug ReportsBushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports
BushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports
Copilot Prompting Toolkit_All Resources.pdf by Riccardo Zamana
Copilot Prompting Toolkit_All Resources.pdfCopilot Prompting Toolkit_All Resources.pdf
Copilot Prompting Toolkit_All Resources.pdf
Riccardo Zamana16 views
Top-5-production-devconMunich-2023.pptx by Tier1 app
Top-5-production-devconMunich-2023.pptxTop-5-production-devconMunich-2023.pptx
Top-5-production-devconMunich-2023.pptx
Tier1 app8 views
How Workforce Management Software Empowers SMEs | TraQSuite by TraQSuite
How Workforce Management Software Empowers SMEs | TraQSuiteHow Workforce Management Software Empowers SMEs | TraQSuite
How Workforce Management Software Empowers SMEs | TraQSuite
TraQSuite5 views
Fleet Management Software in India by Fleetable
Fleet Management Software in India Fleet Management Software in India
Fleet Management Software in India
Fleetable12 views
Airline Booking Software by SharmiMehta
Airline Booking SoftwareAirline Booking Software
Airline Booking Software
SharmiMehta7 views
Myths and Facts About Hospice Care: Busting Common Misconceptions by Care Coordinations
Myths and Facts About Hospice Care: Busting Common MisconceptionsMyths and Facts About Hospice Care: Busting Common Misconceptions
Myths and Facts About Hospice Care: Busting Common Misconceptions
360 graden fabriek by info33492
360 graden fabriek360 graden fabriek
360 graden fabriek
info33492143 views
FOSSLight Community Day 2023-11-30 by Shane Coughlan
FOSSLight Community Day 2023-11-30FOSSLight Community Day 2023-11-30
FOSSLight Community Day 2023-11-30
Shane Coughlan6 views
Dev-Cloud Conference 2023 - Continuous Deployment Showdown: Traditionelles CI... by Marc Müller
Dev-Cloud Conference 2023 - Continuous Deployment Showdown: Traditionelles CI...Dev-Cloud Conference 2023 - Continuous Deployment Showdown: Traditionelles CI...
Dev-Cloud Conference 2023 - Continuous Deployment Showdown: Traditionelles CI...
Marc Müller42 views
Unlocking the Power of AI in Product Management - A Comprehensive Guide for P... by NimaTorabi2
Unlocking the Power of AI in Product Management - A Comprehensive Guide for P...Unlocking the Power of AI in Product Management - A Comprehensive Guide for P...
Unlocking the Power of AI in Product Management - A Comprehensive Guide for P...
NimaTorabi215 views
Navigating container technology for enhanced security by Niklas Saari by Metosin Oy
Navigating container technology for enhanced security by Niklas SaariNavigating container technology for enhanced security by Niklas Saari
Navigating container technology for enhanced security by Niklas Saari
Metosin Oy14 views
Generic or specific? Making sensible software design decisions by Bert Jan Schrijver
Generic or specific? Making sensible software design decisionsGeneric or specific? Making sensible software design decisions
Generic or specific? Making sensible software design decisions

Managing multi tenant resource toward Hive 2.0