Synopsis: In a ‘lost’ conference paper published 23 years ago, Prof. John Dash et al. correctly concluded that “slow neutrons” were responsible for creating Gold and Silver transmutation products that were clearly observed in electrochemical cells that had been electrolyzed for 400 hours. However, they mistakenly thought that such neutrons were produced by a nuclear fusion process. More recently, Mitsubishi Heavy Industries (MHI) has used a proprietary gas permeation method for LENR transmutation of Tungsten to Osmium and finally to Platinum. However, MHI’s ultralow energy neutron fluxes in Deuterium gas permeation cleanroom systems were not quite high enough to proceed all the way down the neutron-catalyzed LENR transmutation pathway to reach Gold like Dash et al. Mitsubishi is presently pushing aggressively to increase LENR transmutation rates and product yields in laboratory devices. In a recent company technical bulletin, the company revealed that transmutation product yields had been increased by nearly 3 orders of magnitude in 3 years by shifting from gas to electrochemical permeation through a thin-film metal-oxide sandwich structure (see slides #34 - 36). Interestingly, to achieve this increase in yields, MHI unknowingly followed guidelines that were already spelled-out in a Widom-Larsen theory rate calculation paper published back in 2007 (slide #33). Since MHI is also using semiconductor-like fabrication methods, cleanrooms, and some nanotech to build devices and increase transmutation product yields, it begs the question of whether there are any parallels between today’s primitive LENR devices and the historical development of transistors in the semiconductor industry. Well, there are. Slides #37 – 43 explain how --- in certain ways --- LENR active sites really do resemble electronic transistors used in microchips. I also discuss what this unexpected similarity may mean for future development and commercialization of LENRs for power generation. Amazingly, some aspects of future transistors and LENR device technology will probably converge and perhaps even strongly overlap.