Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Graphene based supercapacitor


Published on

  • Be the first to comment

Graphene based supercapacitor

  1. 1. This article appeared in a journal published by Elsevier. The attachedcopy is furnished to the author for internal non-commercial researchand education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:
  2. 2. Authors personal copy Electrochemistry Communications 13 (2011) 355–358 Contents lists available at ScienceDirect Electrochemistry Communications j o u r n a l h o m e p a g e : w w w. e l s ev i e r. c o m / l o c a t e / e l e c o mGraphene supercapacitor electrodes fabricated by inkjet printing and thermalreduction of graphene oxideLinh T. Le a, Matthew H. Ervin b, Hongwei Qiu a, Brian E. Fuchs c, Woo Y. Lee a,⁎a Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USAb U.S. Army Research Laboratory, RDRL-SER_L, 2800 Powder Mill Road, Adelphi, MD 20783–1197, USAc U.S. Army Armament Research, Development and Engineering Center, Picatinny Arsenal, NJ, 07806, USAa r t i c l e i n f o a b s t r a c tArticle history: Graphene oxide nanosheets, stably dispersed in water at 0.2 wt.%, were inkjet-printed onto Ti foils andReceived 10 January 2011 thermally reduced at 200 °C in N2, as a new method of fabricating inkjet printed graphene electrodes (IPGEs)Received in revised form 21 January 2011 for supercapacitors. The specific capacitance of IPGE ranged from 48 to 132 F/g, depending on the potentialAccepted 24 January 2011 scan rate from 0.5 to 0.01 V/s using 1M H2SO4 as the electrolyte. The initial performance of IPGEs comparesAvailable online 2 February 2011 favorably to that reported for graphene electrodes prepared by other fabrication methods. This new finding isKeywords: expected to be particularly useful for designing and fabricating inter-digitized electrode arrays with a lateralGraphene oxide spatial resolution of ~ 50 μm for flexible micro-supercapacitors.Graphene © 2011 Elsevier B.V. All rights reserved.SupercapacitorsElectrodesInkjet printingFlexible electronics1. Introduction Unlike these carbonaceous nanomaterials, graphene oxide (GO) is hydrophilic and can be easily dispersed in water at relatively high Electric double layer capacitor (“supercapacitor”) electrodes are concentrations of up to 0.2% [10]. Although GO is not electricallygenerally fabricated of electrically conductive and high surface area conductive, it can be thermally [11], chemically [12] and photothermallymaterials (e.g., activated carbon) required for high capacitance [1–3]. [13] reduced to graphene. In this communication, we report for the firstRecently, there has been a significant interest in exploring carbon time, to our best knowledge, the feasibility of inkjet printing GOnanotubes (CNT) and graphene as ideal electrode materials with their dispersed in water and the subsequent thermal reduction as a newtheoretical surface areas of 1315 and 2630 m2/g, respectively [4–8]. avenue for fabricating graphene supercapacitor electrodes.Also, their chemical stability, high electrical and thermal conductivity,and mechanical strength and flexibility are attractive as conformal 2. Experimentalelectrode materials particularly for flexible supercapacitors. However,for inkjet printing, these nanomaterials as well as activated carbon GO dispersed in water at 2 mg/ml was purchased from ananoparticles are hydrophobic and thus segregate in water even at commercial source (Cheap Tubes). The average dimensions of GOvery low concentrations (e.g., 5 ppm for single-walled CNT) unless were reported by the supplier to be 500 nm × 500 nm × 0.8 nm. Thesurfactants are added or their surfaces are functionalized [9]. The use as-received GO solution was sonicated for 15 min followed by filteringof surfactants and surface modification during supercapacitor elec- with a 450 nm Millex syringe filter before loading into a printheadtrode fabrication is generally not desired, since they can function as cartridge. The viscosity and surface tension of the GO ink weredielectric films to: (1) increase junction resistance between particles, measured at ambient conditions using a Viscolab 450 viscometer(2) impede electrolyte access to the electrode surface and (3) conse- (Cambridge Viscosity) and a DeltaPi tensiometer (Kibron), respec-quently decrease capacitance. We have found that CNT and activated tively. Ti foils (100 μm thick, 99.99% purity, Sigma Aldrich) werecarbon nanoparticles dispersed in water even at ppm levels are mainly used as an example of a flexible substrate and currentbasically not jettable due to nozzle clogging. collector. The substrates were cleaned with acetone and de-ionized water several times prior to printing. A commercial Dimatix Material Printer DMP 2800 inkjet printer (Fujifilm Dimatix) was used to print the GO ink. This inkjet printer ⁎ Corresponding author. Tel.: + 1 201 216 8307; fax: + 1 201 216 8306. utilizes 16 microfabricated piezoelectric nozzles for on-demand and E-mail address: (W.Y. Lee). programmable generation of 10 pL microscopic ink droplets. The1388-2481/$ – see front matter © 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.elecom.2011.01.023
  3. 3. Authors personal copy356 L.T. Le et al. / Electrochemistry Communications 13 (2011) 355–358inkjet-printed GO samples were reduced in flowing N2 at 200 °C for the GO surface (Fig. 1a). At room temperature, the viscosity and12 h using a Microtherm MT furnace (The Mellen Company) in a glass surface tension of the GO ink were 1.06 mPa s and 68 mN/m,tube. The uniformity and surface morphology of the resulting respectively, and were similar to those of de-ionized watergraphene electrodes were characterized by Nikon C-BD115 optical (0.99 mPa s and 72 mN/m). The physical properties of the GO inkmicroscopy (Nikon Instrument) and Zeiss Auriga FIB-SEM scanning were outside of the ranges recommended by the manufacturer forelectron microscopy (Carl Zeiss NTS). normal operation of the printer (i.e., 10–12 mPa s and 28–32 mN/m). IPGEs electrochemical performance was evaluated with cyclic Nevertheless, as shown in Fig. 1b, we found that manipulating thevoltammetry (CV) and constant current charge/discharge measure- firing voltage of the piezoelectric nozzles as a function of time wasments made using a VersaStat 3 system (Princeton Applied Research). effective in generating spherical ink droplets at a velocity of ~7.5 m/s.Two IPGEs printed on Ti substrates were clamped together in a Teflon During the first segment of droplet generation, we rapidly increasedblock using a Celgard 3401 membrane (Celgard) as a separator and the voltage to the maximum over 5 μs to force rapid pressure buildup1M H2SO4 electrolyte in order to make constant current charge/ in the nozzles for droplet ejection. In the second segment, wedischarge measurements as a full, though unpackaged device. Two decreased the voltage at a slower rate of over 28 μs to cutoff dropletsamples were evaluated to confirm the reproducibility of our results. tails and therefore form spherical droplets. This “waveform function” optimization was performed through real-time observations of3. Results and discussion droplet generation using a built-in video camera. After hitting the Ti foil surface, spreading, and solvent evaporation, The as-received GO ink was observed to be dispersion-stable for each 10 pL droplet produced a disk-shaped GO dot with a diametermonths due to the presence of hydrophilic functional groups [14] on of ~50 μm. For example, the circular GO dot shown in Fig. 1c wasFig. 1. IPGE ink and morphology: (a) GO dispersed in water at 0.2 wt.% as a stable ink; (b) spherical ink droplets generated by piezoelectric nozzles; (c) SEM image of a circular GO dotprinted on the Ti foil surface after 20 printing passes at a spatial resolution of ~ 50 μm; and (d), (e) and (f) SEM images of IPGE printed on the Ti surface used for electrochemicalevaluation.
  4. 4. Authors personal copy L.T. Le et al. / Electrochemistry Communications 13 (2011) 355–358 357produced with 20 printing passes at 20 min between passes to: It was interesting to observe the island features of ~ 1–2 mm on the(1) build GO thickness sufficient for microscopy characterization IPGE surface (i.e., “white” areas in Fig. 1d). SEM characterizationand (2) show that drop-to-drop placement and alignment could be indicated that there were almost no graphene present in the “black”repeated to increase the GO thickness with a minimum spatial boundaries. The island formation occurred right after inkjet printingresolution of ~ 50 μm. The droplets were overlapped at a spacing of and was not caused by the reduction step. The island formation was15 μm between the center locations of two neighboring droplets to also observed to be much less pronounced on more hydrophilicprint a continuous GO thin-film of 1 cm × 1 cm on the Ti surface substrates and appeared to be dependent on the hydrophobicity of the(Fig. 1d). The printing step was repeated 100 times to deposit initial surface. Within each island, graphene appeared to be denselysufficient GO for electrochemical measurements. The resistance of the stacked with the appearance of secondary boundaries (i.e., “white”as-printed GO on Kapton was measured by a voltmeter to be infinite lines in the SEM image of Fig. 1e) that were continuously networkedwhereas that of the thermally reduced GO film in N2 at 200 °C (i.e., over an average distance of ~ 20–30 μm. At high magnificationIPGE) was measurable at less than ~ 1 MΩ. Also, the color of the GO (Fig. 1f), the graphene sheets appear to be more wrinkled andfilm changed from light brown to black upon thermal reduction. These stacked less uniformly at these boundaries than in the areas withinobservations were consistent with the prior finding of Zangmeister the boundaries. This morphological development was observed on[11] who treated GO at 220 °C in air and confirmed the reduction of other substrate materials.GO to graphene by Fourier transform infrared spectroscopy and X-ray As shown in Fig. 2a, IPGEs exhibited fairly rectangular CV curvesphotoemission spectroscopy. at scan rates in the range of 0.01 to 0.5 V/s which is indicative of 6 (a) 140 (b) Specific Capacitance (F/g) 4 Current Density (mA/g) 120 2 0 100 -2 0.02 V/s 80 0.05 V/s 0.1 V/s -4 0.2 V/s 0.5 V/s 60 -6 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0 200 400 600 800 1000 1200 1400 Potential (V) Cycle number 0.6 (c) 140 (d) Specific Capacitance (F/g) 0.4 120 0.2 100 Potential (V) 0.0 80 -0.2 60 -0.4 40 -0.6 20 -0.8 0 0 200 400 600 800 1000 1200 1400 1600 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Time (s) Scan Rate (V/s) 10 (e) Specific Power (kW/kg) 1 0.1 0.01 0.1 1 10 Specific Energy (Wh/kg)Fig. 2. Electrochemical properties of IPGE: (a) cyclic voltammograms measured at different scan rates, (b) specific capacitance retained as a function of CV cycles, (c) constant currentcharge/discharge curves, (d) specific capacitance as a function of voltage scan rates and (e) Ragone plot.
  5. 5. Authors personal copy358 L.T. Le et al. / Electrochemistry Communications 13 (2011) 355–358capacitive behavior. The specific capacitance decreased from 125 to Acknowledgment121 F/g over 1000 CV cycles at a constant scan rate of 50 mV/s(Fig. 2b) demonstrating 96.8% capacitance retention. Fig. 2c shows The authors thank the U.S. Army — ARDEC for funding this projectthat the charging/discharging curves were fairly linear, again under the contract of W15QKN-05-D-0011.demonstrating capacitive behavior. Also, at the device level, thespecific capacitance was measured to be 48 to 132 F/g in the scan Referencesrange of 0.5 to 0.01 V/s (Fig. 2d). The energy and power density of [1] B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals andIPGEs are plotted in Fig. 2e with: (1) the highest energy density Technological Applications, Springer, 1999.of 6.74 Wh/kg achieved at a power density of 0.190 kW/kg and [2] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials 7(2) the highest power density of 2.19 kW/kg at an energy density of (2008) 845–854. [3] S. Vivekchand, C. Rout, K. Subrahmanyam, A. Govindaraj, C. Rao, Graphene-based1.34 Wh/kg. electrochemical supercapacitors, Journal of Chemical Sciences 120 (2008) 9–13. The electrochemical performance of IPGEs was more or less similar [4] A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Specific surface area ofto that reported for other graphene electrodes prepared by conventional carbon nanotubes and bundles of carbon nanotubes, Carbon 39 (2001) 507–514. [5] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nanopowder-based methods in the absence of any pseudocapacitance Letters 8 (2008) 3498–3502.materials added to the electrodes [3,15,16]. However, the power density [6] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials 6 (2007)of IPGEs was considerably lower than that of CNT-based electrodes 183–191. [7] M. Pumera, Electrochemistry of graphene: new horizons for sensing and energywhich has been reported as high as 70 to 100 kW/kg [17,18]. The storage, The Chemical Record 9 (2009) 211–223.lower power density of IPGEs may be partly explained by the lack of: [8] M. Pumera, Graphene-Based Nanomaterials For Energy Storage, Energy &(1) interconnectivity among 2D graphene nanosheets for electron Environmental Science (2011), doi:10.1039/C0EE00295J.conduction and (2) 3D mesoscale porosity for ion conduction. [9] K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P.M. Ajayan, Inkjet printing of electrically conductive patterns ofNevertheless, the initial performance of IPGEs is promising, and is carbon nanotubes, Small 2 (2006) 1021–1025.expected to be further improved by optimizing printing and reduction [10] Y. Si, E.T. Samulski, Synthesis of water soluble graphene, Nano Letters 8 (2008)conditions as well as its 3D morphology. 1679–1682. [11] C.D. Zangmeister, Preparation and evaluation of graphite oxide reduced at 220 °C, Our results suggest that the inkjet printing of GO offers a new and Chemistry of Materials 22 (2010) 5625–5629.scalable avenue of fabricating graphene supercapacitor electrodes. In [12] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T.contrast to other electrode fabrication techniques such as screen Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558–1565.printing [19,20] and spray deposition [21], inkjet printing offers the [13] L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxideability to precisely pattern supercapacitor electrodes with the lateral and its polymer composite, Journal of the American Chemical Society 131 (2009)spatial resolution of ~ 50 μm. This microscale patternability is 11027–11032. [14] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueousexpected to enable new designs of inter-digitized electrode arrays, dispersions of graphene nanosheets, Nature Nanotechnology 3 (2008) 101–105.particularly for fabricating flexible micro-supercapacitors that may [15] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with anhave longer lifecycles and can be more rapidly charged beyond what ultrahigh energy density, Nano Letters 10 (2010) 4863–4868. [16] Z.S. Wu, D.W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.M. Cheng, Anchoring hydrousis possible with rechargeable micro-batteries [22–24]. Also, as an RuO2 on graphene sheets for high-performance electrochemical capacitors,additive net-shape process, inkjet printing offers advantages in Advanced Functional Materials 20 (2010) 3595–3602.addressing safety, health and environmental concerns associated [17] M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film super-with handling potentially expensive and toxic nanomaterials such as capacitors using single-walled carbon nanotubes, Nano Letters 9 (2009) 1872–1876.GO and graphene [25,26] by reducing waste generation and raw [18] Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa,material use. Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance, Electrochemical and Solid-State Letters 10 (2007) A106–A110. [19] M. Qian, et al., Electron field emission from screen-printed graphene films,4. Conclusions Nanotechnology 20 (2009) 425702. [20] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll Hydrophilic GO dispersed in water was found to be a stable ink for production of 30-inch graphene films for transparent electrodes, Natureinkjet printing of GO with the lateral spatial resolution of 50 μm. Nanotechnology 5 (2010) 574–578.Subsequent thermal reduction of the printed GO produced electrically [21] S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications, Nano Letters 7 (2007) 3394–3398.conductive graphene electrodes. In order to jet spherical GO ink [22] P.H.L. Notten, F. Roozeboom, R.A.H. Niessen, L. Baggetto, 3-D integrated all-solid-droplets, the waveform function of the piezoelectric nozzle operation state rechargeable batteries, Advanced Materials 19 (2007) 4564–4567.was adjusted to compensate for the low viscosity and high surface [23] R. Latham, R. Linford, W. Schlindwein, Biomedical applications of batteries, Solid State Ionics 172 (2004) 7–11.tension of the water-based ink. Several interesting morphological [24] M. Nathan, Microbattery technologies for miniaturized implantable medicalfeatures of IPGEs were observed with the mm-scale island formation devices, Current Pharmaceutical Biotechnology 11 (2010) 404–410.and μm-scale continuous boundaries at which graphene sheets [25] Y. Zhang, S.F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano, A.S. Biris, Cytotoxicity effectsappeared to be stacked less uniformly. The electrochemical perfor- of graphene and single-wall carbon nanotubes in neural phaeochromocytoma- derived PC12 Cells, ACS Nano 4 (2010) 3181–3186.mance of IPGEs compared favorably to the performance of graphene [26] K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, D. Cui, Biocompatibility ofelectrodes fabricated by traditional powder consolidation methods. graphene oxide, Nanoscale Research Letters (2010) 1–8.