Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

68125 engineering geology eeg 341

2,107 views

Published on

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this

68125 engineering geology eeg 341

  1. 1. ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ‫ﻜﻠﻴﺔ ﻋﻠﻭﻡ ﺍﻷﺭﺽ‬ ‫ﻗﺴﻡ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻭ ﺍﻟﺒﻴﺌﻴﺔ‬ ‫ﻤﻘﺭﺭ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﺍﻟﻬﻨﺩﺴﻴﺔ‬ ‫)ﺽ ﺠﻪ ١٤٣(‬ ‫‪Engineering Geology‬‬ ‫)143 ‪(EEG‬‬ ‫ﺍﻋﺩﺍﺩ‬ ‫ﺃ ﺩ./ ﻋﺒﺎﺱ ﺒﻥ ﻋﻴﻔﺎﻥ ﺍﻟﺤﺎﺭﺜﻲ‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٠‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  2. 2. Faculty of Earth Sciences King Abdul-Aziz University Course Description (Theoretical) Department: Engineering and Environmental Geology Course Symbol: EEG Course name: Number: 341 Engineering Geology Pre-requisite Courses: EEG 311, EEG 322 Course description: - Engineering geological consideration, description of soils and rock masses. Classification of rock masses for engineering purposes. Engineering geological maps and their applications. Requirement of conducting Engineering Geological studies and Writing Reports, Rock and soil improvement such as grouting, drains and reinforcement of ground (2 days Field Trips) Course objectives: 1. To outline the contribution of engineering geology to the civil and mining works 2. To explain the classical approach to solve an engineering geological problem 3. The extensive uses of engineering geology maps 4. The role and effect of engineering geology in the improvement of earth materials General references for course: (Books/Journals…etc.) 1. Engineering Geology and Geotechnics by BELL, F. G., 1980. 2. Engineering Geology: Rock Engineering in Construction by GOODMAN, R.E., 1993 3. Engineering Geology: An Environmental Approach by RAHN, P. H., 1986 4. Engineering Geology by ZARUBA, Q., and MENCL, V., 1976 Internet links: Geology and Geological Engineering Geotechnical and Geoenvironmental Software Directory Geophex, Ltd. GeoLine SpringerLink: Bulletin of Engineering Geology and the Engineering Geology Journals in engineering geology, earth science, environment, ... Engineering Geology Course outcome: The student will be trained to know the description of soil and rock masses for engineering purposes and is also expected to know the following: 1. Engineering geological maps and its applications. 2. Rock engineering properties and the geotechnical problems they cause. 3. The various techniques for soil and rock improvement. Scheme of assessment: 3 exams: 30% Field Trip: 10% Attendance: 10% Lab work: 25% Final exam: 25% EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ١ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  3. 3. Time Table for Course Lectures Week 1 2 3 Test Name Introduction: Definition, purpose and scope The broad scope of engineering geology Functions of engineering geology References See above First Exam 4 5 6 7 8 9 10 11 12 13 14 15 Types of Maps Engineering geological map. Geohazards maps Comparison between geological and engineering maps,. Description and classification systems of soil Second Exam Description and classification systems of Rocks BGD system Geological Society system IAEG system, RMR system Third Exam Requirement of conducting Engineering Geological studies, Engineering Geological Reports Rock and soil improvement such as grouting, drains and reinforcement of ground Rock and soil improvement such as grouting, drains and reinforcement of ground 16 Final Exam EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٢ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  4. 4. Time Table for Course Lab Work Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Test Name Review: Engineering properties of soils and rock. Flowchart function Types of Maps Exam 1 Classification of engineering geological maps Single purpose map Multipurpose & Comprehensive Maps Soil Classification( USCS) Exam 2 Description and classification systems of Rocks (Review) Zonation BGD – system Rock Mass Description System by GS Rock and Soil Descrip. & Class. For Eng. Geol. Mapping (IAEG) RMR System Exam 3 Conducting Engineering geological study Example of Writing Eng. Geol. reports Lab Final Exam EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٣ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ References ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  5. 5. ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫ﺭﻤﺯ ﺍﻟﻤﻘﺭﺭ:- ﺽ ﺠﻪ‬ ‫ﺭﻗﻡ ﺍﻟﻤﻘﺭﺭ ١٤٣‬ ‫ﺍﻟﻤﺘﻁﻠﺒﺎﺕ ﺍﻟﺴﺎﺒﻘﺔ ﺽ ﺠﻪ ١١٣ ﻭ ﺽ ﺠﻪ ٢٢٣‬ ‫ﻭﺼﻑ ﺍﻟﻤﻘﺭﺭ:-‬ ‫ﺘﻌﺭﻴﻑ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﺍﻟﻬﻨﺩﺴﻴﺔ ، ﺍﻫﺘﻤﺎﻤﺎﺘﻬﺎ ﻭ ﻤﺠﺎﻻﺕ ﺃﻋﻤﺎﻟﻬﺎ، ﺍﻻﻋﺘﺒﺎﺭﺍﺕ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ، ﺍﻟﺨﺭﺍﺌﻁ‬ ‫ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻭ ﺃﻨﻭﺍﻋﻬﺎ، ﺃﻨﻅﻤﺔ ﻭ ﺼﻑ ﻭ ﺘﺼﻨﻴﻑ ﺍﻟﺘﺭﺒﺔ ، ﺃﻨﻅﻤﺔ ﻭ ﺼﻑ ﻭ ﺘﺼـﻨﻴﻑ ﺍﻟﻜﺘـل‬ ‫ﺍﻟﺼﺨﺭﻴﺔ ﻭﺭﺴﻡ ﺍﻟﺨﺭﺍﺌﻁ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻭ ﻜﺘﺎﺒﺔ ﺍﻟﺘﻘﺎﺭﻴﺭ. ﺍﻟﻤﺸﺎﻜل ﺍﻟﻬﻨﺩﺴﻴﺔ ﻓﻲ ﺍﻟﺘﺭﺒﺔ ﻭ ﺍﻟﺼﺨﻭﺭ‬ ‫ﻭﻁﺭﻕ ﻤﻌﺎﻟﺠﺘﻬﺎ.‬ ‫اﻟﻤﺮاﺟﻊ اﻟﻌﻠﻤﻴﺔ ﻟﻠﻤﻘﺮر‬ ‫.0891 ,.‪1. Engineering Geology and Geotechnics by BELL, F. G‬‬ ‫,.‪2. Engineering Geology: Rock Engineering in Construction by GOODMAN, R.E‬‬ ‫3991‬ ‫6891 ,.‪3. Engineering Geology: An Environmental Approach by RAHN, P. H‬‬ ‫6791 ,.‪4. Engineering Geology by ZARUBA, Q., and MENCL, V‬‬ ‫:‪Internet links‬‬ ‫‪Geology and Geological Engineering‬‬ ‫‪Geotechnical and Geoenvironmental Software Directory‬‬ ‫.‪Geophex, Ltd‬‬ ‫‪GeoLine‬‬ ‫‪SpringerLink: Bulletin of Engineering Geology and the Engineering Geology‬‬ ‫... ,‪Journals in engineering geology, earth science, environment‬‬ ‫‪Engineering Geology‬‬ ‫اﻟﻤﻄﻠﻮب ﻣﻦ اﻟﻤﻘﺮر:-‬ ‫١- ﻓﻬﻢ اﻟﻄﺎﻟﺐ ﻟﻠﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اهﺪاﻓﻬﺎ و ﻣﺠﺎﻻت ﻋﻤﻠﻬﺎ‬ ‫٢- ﻣﻌﺮﻓﺘﻪ ﺑﺎﻧﻮاع اﻟﺨﺮاﺋﻂ اﻟﻬﻨﺪﺳﻴﺔ واﻧﻈﻤﺔ رﺳﻤﻬﺎ و ﺗﺼﻨﻴﻔﻬﺎ‬ ‫٣- ﺗﻄﺒﻴﻖ اﻧﻈﻤﺔ و ﺻﻒ و ﺗﺼﻨﻴﻒ اﻟﺘﺮﺑﺔ و اﻟﺼﺨﻮر ﻟﻸﻏﺮاض اﻟﻬﻨﺪﺳﻴﺔ و ﻟﺮﺳﻢ اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ.‬ ‫٤- ﻣﻌﺮﻓﺔ ﻃﺮق اﺟﺮاء اﻟﺪراﺳﺎت و آﺘﺎﺑﺔ اﻟﺘﻘﺎرﻳﺮ ﻓﻲ ﻣﺠﺎل اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ.‬ ‫٥- اﻟﺘﻌﺮف ﻋﻠﻰ اﻟﻤﺸﺎآﻞ اﻟﻬﻨﺪﺳﻴﺔ ﻟﻠﺘﺮﺑﺔ و اﻟﺼﺨﻮر وﻃﺮق ﻣﻌﺎﻟﺠﺘﻬﺎ.‬ ‫.‬ ‫ﻃﺮق اﻟﺘﻘﻴﻴﻢ و ﺗﻮزﻳﻊ اﻟﺪرﺟﺎت:‬ ‫%03‬ ‫%01‬ ‫%01‬ ‫%52‬ ‫%52‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٤‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫:‪3 exams‬‬ ‫:‪Field Trip‬‬ ‫:‪Attendance‬‬ ‫:‪Lab work‬‬ ‫:‪Final exam‬‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  6. 6. ‫ﺍﳉﻴﻮﻟﻮﺟﻴﺎ ﺍﳍﻨﺪﺳﻴﺔ‬ ‫‪Engineering Geology‬‬ ‫ﻋﻨﻮان اﻟﻤﻨﻬﺞ ﻳﻨﻘﺴﻢ إﻟﻰ ﻗﺴﻤﻴﻦ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ و اﻟﻬﻨﺪﺳﺔ و آﻞ ﻣﺼﻄﻠﺢ ﻟﻪ ﺗﻮﺿﻴﺤﻪ :‬ ‫ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ : ﻣﺼﻄﻠﺢ ﻳﻌﻨﻲ ﻋﻠﻢ اﻷرض .‬‫ اﻟﻬﻨﺪﺳﻴﺔ : وهﻮ ﻳﻌﻨﻲ ﻣﺠﺎل اﻟﻬﻨﺪﺳﺔ .‬‫• ﺗﻌﺮﻳﻒ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ :-‬ ‫ﻫﻭ ﺍﻟﻌﻠﻡ ﺍﻟﺭﺍﺒﻁ ﺒﻴﻥ ﺍﻟﻤﺘﻜﻭﻨﺎﺕ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﻟﻸﺭﺽ ﻭ ﻤﺎ ﺘﺤﺘﻭﻴﻪ ﻤﻥ ﺃﻨﻭﺍﻉ ﺼﺨﻭﺭ ﻭ ﺘﺸﻘﻘﺎﺕ ﻭ‬ ‫ﻤﻴﺎﻩ ﻭ ﺘﺭﺍﻜﻴﺏ ﻭ ﺘﻀﺎﺭﻴﺱ ﻭ ﺒﻴﻥ ﺍﻷﻋﻤﺎل ﺍﻟﻬﻨﺩﺴﻴﺔ ﺴﻭﺍﺀﺍ ﺍﻟﻤﺩﻨﻴﺔ ﺃﻭ ﺍﻟﺘﻌﺩﻴﻨﻴﺔ ﻭ ﻤﻌﺭﻓﺔ ﺘﻘﻨﻴـﺔ‬ ‫ﺃﺴﺘﺨﺩﻡ ﺍﻷﺭﺽ ﺃﻭ ﻤﻭﺍﺩ ﺍﻷﺭﺽ ﻟﻺﻨﺸﺎﺀ ﻭ ﻟﻠﺒﻨﺎﺀ .‬ ‫ﻭ ﻫﻭ ﻋﻠﻡ ﺘﻁﺒﻴﻘﻲ ﻴﺨﺘﺹ ﺒﻌﻼﻗﺔ ﺨﻭﺍﺹ ﺍﻟﻘﺸﺭﺓ ﺍﻷﺭﻀﻴﺔ ﺒﺠﻤﻴﻊ ﺍﻟﺘﻁﺒﻴﻘﺎﺕ ﺍﻟﻬﻨﺩﺴـﻴﺔ ﻭﺍﻟﺒﻴﺌﻴـﺔ‬ ‫ﺍﻟﺘﻲ ﻴﺘﻡ ﺇﻨﺸﺎﺌﻬﺎ ﻓﻭﻕ ﺃﻭ ﺒﺩﺍﺨل ﺍﻟﻘﺸﺭﺓ ﺍﻷﺭﻀﻴﺔ ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﺍﻟﺴﺩﻭﺩ ﺍﻟﺨﺯﺍﻨـﺎﺕ ﺍﻟﻁـﺭﻕ‬ ‫ﺍﻟﺠﺴﻭﺭ ﺍﻷﻨﻔﺎﻕ ﺍﻟﻤﻨﺎﺠﻡ ﺃﺒﺎﺭ ﺍﻟﺒﺘﺭﻭل.‬ ‫ﻭ ﻴﺘﻁﻠﺏ ﺘﺨﺼﺹ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻤﻌﺭﻓﺔ ﺍﻟﺘﺎﻟﻲ:- ﻨﺸﺄﺓ ﺍﻷﺭﺽ، ﺃﻨﻭﺍﻉ ﺍﻟﺼﺨﻭﺭ، ﺍﻷﺸﻜﺎل‬ ‫ﺍﻟﺒﻨﺎﺌﻴﺔ ﻟﻠﺼﺨﻭﺭ، ﺍﻟﺨﻭﺍﺹ ﺍﻟﻔﻴﺯﻴﺎﺌﻴﺔ ) ﺍﻟﻁﺒﻴﻌﻴﺔ( ﻭﺍﻟﻤﻴﻜﺎﻨﻴﻜﻴﺔ )ﺍﻟﻬﻨﺩﺴﻴﺔ( ﻟﻠﺼﺨﻭﺭ ﻭ ﺍﻟﺘﺭﺒـﺔ،‬ ‫ﺍﻟﻤﻴﺎﻩ ﺘﺤﺕ ﺍﻷﺭﻀﻴﺔ، ﻭ ﺘﺤﻠﻴل ﻭ ﺩﺭﺍﺴﺔ ﺠﻴﻭﻟﻭﺠﻴﺔ ﺍﻷﻨﻔﺎﻕ، ﺍﻟﺴﺩﻭﺩ ﻭﺍﻟﺨﺯﺍﻨﺎﺕ ﻭﻋﻼﻗﺘﻬﺎ ﺒﺨﻭﺍﺹ‬ ‫ﺍﻟﺘﺭﺒﺔ، ﻭ ﻤﻌﺭﻓﺔ ﻨﺘﺎﺌﺞ ﺍﻟﻁﺭﻕ ﺍﻟﺴﻴﺯﻤﻴﺔ ﻟﻠﻤﺴﺢ ﺍﻟﺠﻴﻭﻟﻭﺠﻲ، ﺍﻟﺨﺭﺍﺌﻁ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ.‬ ‫ﻭﻴﻬﺘﻡ ﺍﻟﺘﺨﺼﺹ ﺒﺘﻁﺒﻴﻘﺎﺕ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﻓﻲ ﺍﻷﻋﻤﺎل ﺍﻟﻬﻨﺩﺴﻴﺔ ﺍﻟﻤﺩﻨﻴﺔ ﻭ ﺍﻟﻤﻨﺠﻤﻴﺔ ﻭﺍﻟﺒﻴﺌﻴﺔ، ﻭ ﻴﻌﻨﻲ‬ ‫ﺒﺘﺨﺭﻴﺞ ﺠﻴﻭﻟﻭﺠﻴﻴﻥ ﻓﻲ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﺍﻟﻬﻨﺩﺴﻴﺔ ﺃﻭ ﺍﻟﺒﻴﺌﻴﺔ ﻟﻠﻘﻴﺎﻡ ﺒﺈﺴﺘﻨﺘﺎﺠﺎﺕ ﻭﺘﻘﻴﻴﻡ ﺍﻟﻤﺨﺎﻁﺭ ﺍﻟﻬﻨﺩﺴﻴﺔ‬ ‫ﻭﺍﻟﺒﻴﺌﻴﺔ ﺍﻟﺘﻲ ﻗﺩ ﺘﻨﺘﺞ ﺃﻭ ﺘﺼﺎﺤﺏ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻹﻨﺸﺎﺌﻴﺔ ﻭﺍﻟﻁﺒﻴﻌﻴﺔ.‬ ‫ﻭ ﻻﺒﺩ ﻟﻠﺠﻴﻭﻟﻭﺠﻲ ﺍﻟﻬﻨﺩﺴﻲ ﻴﻜﻭﻥ ﻟﺩﻴﻪ ﺇﻟﻤﺎﻡ ﺒﺎﻟﻌﻠﻡ ﺍﻟﺠﻴﻭﻟﻭﺠﻲ ﻤﻥ ﻁﺒﻘﺎﺕ ﺍﻷﺭﺽ ﻭ ﺍﻟﺤﺭﻜﺎﺕ‬ ‫ﺍﻟﺒﻨﺎﺌﻴﺔ ﻭ ﺘﻀﺎﺭﻴﺱ ﺍﻷﺭﺽ ﻭ ﺍﻟﺘﺭﺍﻜﻴﺏ ﺍﻟﻤﻌﺩﻨﻴﺔ ﻭ ﺍﻟﻤﻨﺠﻤﻴﺔ ﻭ ﻨﻭﻋﻴﺔ ﺍﻟﺼﺨﺭ ﻭ ﻟﺩﻴـﻪ ﺇﻟﻤـﺎﻡ‬ ‫ﻜﺫﻟﻙ ﺒﺠﻴﻭﻟﻭﺠﻴﺎ ﺍﻟﻤﻴﺎﻩ ﺍﻟﺴﻁﺤﻴﺔ ﻭ ﺍﻟﺠﻭﻓﻴﺔ ﻭ ﺒﻴﺌﺔ ﺘﺭﺴﻴﺏ ﺍﻟﺼﺨﻭﺭ ﺍﻟﺭﺴﻭﺒﻴﺔ ﻭ ﻁﺭﻴﻘﺔ ﺘﻜﻭﻥ ﻭ‬ ‫ﺘﺤﻭل ﺍﻟﺼﺨﻭﺭ ﺍﻟﻤﺘﺤﻭﻟﺔ ﻭ ﻴﻜﻭﻥ ﻟﺩﻴﻪ ﺇﻟﻤﺎﻡ ﺒﺎﻟﺘﺼﻨﻴﻑ ﺍﻟﺤﻘﻠﻲ ﻟﻠﺼﺨﻭﺭ ﻭ ﺃﻨﻭﺍﻋﻬﺎ ﻭ ﺍﻟﺸﻘﻭﻕ ﻭ‬ ‫ﺍﻟﻔﻭﺍﺼل ﻭ ﺍﻨﻭﺍﻋﻬﺎ ﻭ ﻗﻴﻤﺔ ﻤﻴﻭﻟﻬﺎ ﻭ ﻟﺩﻴﻪ ﻗﺩﺭﺓ ﻋﻠﻰ ﺭﺴﻡ ﻭ ﻗـﺭﺍﺀﺓ ﺍﻟﺨـﺭﺍﺌﻁ ﺍﻟﺠﻴﻭﻟﻭﺠﻴـﺔ ﻭ‬ ‫ﺘﺤﺩﻴﺩ ﺍﻟﻤﻭﺍﻗﻊ ﻭ ﻋﻤل ﺍﻟﺤﺩﻭﺩ ﺒﻴﻥ ﺍﻟﺼﺨﻭﺭ ﺍﻟﻤﺨﺘﻠﻔﺔ .‬ ‫ ﻜﻤﺎ ﻴﺠﺏ ﻋﻠﻰ ﺍﻟﺠﻴﻭﻟﻭﺠﻲ ﺍﻟﻬﻨﺩﺴﻲ ﻜﻤﺎ ﻴﻜﻭﻥ ﻟﺩﻴﻪ ﺇﻟﻤﺎﻡ ﻭ ﺩﺭﺍﺴﺔ ﻋﻠـﻡ ﺍﻟﻤﺴـﺎﺤﺔ ﻭ‬‫ﺍﻟﺘﻀﺎﺭﻴﺱ ﻭ ﺍﻟﺠﻴﻭﻓﻴﺯﻴﺎﺀ ﻟﻴﻜﻭﻥ ﻗﺎﺩﺭ ﻋﻠﻰ ﺩﺭﺍﺴﺔ ﺘﻁﺒﻴﻘﺎﺘﻬﺎ ﻭ ﺁﺜﺎﺭﻫﺎ ﻋﻠﻰ ﺍﻟﻤﻨﺸﺂﺕ ﻭ‬ ‫ﻤﻥ ﺍﻟﻀﺭﻭﺭﻴﺎﺕ ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﻤﺘﺨﺼﺹ ﺃﻥ ﻴﻜﻭﻥ ﻟﺩﻴﻪ ﻋﻠﻡ ﺒﺩﺭﺍﺴﺔ ﻋﻠﻡ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﺘﺭﺒـﺔ‬ ‫ﻭ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﺼﺨﻭﺭ ﻭ ﻤﻭﺍﺩ ﺍﻟﺒﻨﺎﺀ ﻭ ﻟﺩﻴﻪ ﺍﻟﻘﺩﺭﺓ ﻋﻠﻰ ﺇﺠﺭﺍﺀ ﺍﻟﺘﺠﺎﺭﺏ ﺍﻟﻤﻌﻤﻠﻴﺔ ﻟﻠﺘﺭﺒـﺔ‬ ‫ﻭ ﺍﻟﺼﺨﻭﺭ ﻭ ﺍﻟﺭﻜﺎﻡ .‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٥‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  7. 7. ‫ ﻭ ﻤﻥ ﺃﻫﻤﻴﺔ ﻫﺫﻩ ﺍﻟﻤﺎﺩﺓ ﺃﻥ ﺘﺘﻌﺭﻑ ﻭ ﺘﺩﺭﺱ ﺍﻟﺨﻭﺍﺹ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻟﻠﺘﺭﺒﺔ ﻭ ﺍﻟﺼـﺨﻭﺭ ﻭ‬‫ﻁﺭﻕ ﺘﺼﻨﻴﻔﻬﺎ ﻭ ﻁﺭﻕ ﻭﺼﻔﻬﺎ ﻟﻠﺘﻤﻜﻥ ﻤـﻥ ﺩﺭﺍﺴـﺔ ﻭ ﻓﺤـﺹ ﺍﻟﻤﻭﺍﻗـﻊ ﺍﻷﺭﻀـﻴﺔ‬ ‫ﻟﻸﻏﺭﺍﺽ ﺍﻟﻬﻨﺩﺴﻴﺔ .‬ ‫ ﻭ ﻴﻜﻤل ﻫﺫﻩ ﺍﻟﺩﺭﺍﺴﺔ ﻜﺘﺎﺒﺔ ﺘﻘﺭﻴﺭ ﻭ ﺭﺴﻡ ﺨﺭﺍﺌﻁ ﺠﻴﻭﻟﻭﺠﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻟﻠﻤﻭﻗﻊ ﺍﻟﻤﺭﺍﺩ ﺇﻗﺎﻤﺔ‬‫ﺍﻟﻤﻨﺸﺄﺓ ﻋﻠﻴﻪ ﻤﺤﺘﻭﻴﺎ ﻋﻠﻰ ﺍﻟﺨﻭﺍﺹ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﻭ ﺍﻟﺘﺭﻜﻴﺒﻴﺔ ﺇﻀـﺎﻓﺔ ﺇﻟـﻰ ﺍﻟﺨـﻭﺍﺹ‬ ‫ﺍﻟﻬﻨﺩﺴﻴﺔ ﺍﻟﻤﻌﺘﻤﺩﺓ ﻟﻤﺜل ﻫﺫﻩ ﺍﻟﺩﺭﺍﺴﺔ .‬ ‫ﺃﻫﻡ ﺃﻋﻤﺎل ﺍﻟﻤﻬﻨﺩﺱ ﺍﻟﺠﻴﻭﻟﻭﺠﻲ:‬ ‫١.‬ ‫ﻓﺤﺹ ﺍﻟﻤﻭﺍﻗﻊ ﻭﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻤﻴﺩﺍﻨﻴـﺔ ﻭﺘﻘﻴـﻴﻡ ﺍﻟﺘﻀـﺎﺭﻴﺱ ﺍﻷﺭﻀـﻴﺔ ﻟﻸﻏـﺭﺍﺽ‬ ‫ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ.‬ ‫٢.‬ ‫ﺩﺭﺍﺴﺔ ﻤﻭﺍﻗﻊ ﺍﻟﻁﺭﻕ ﻭ ﺍﻷﻨﻔﺎﻕ ﻭﺍﻟﻜﺒﺎﺭﻱ ﻭﺍﻟﺴﺩﻭﺩ ﻭﺍﻟﻤﻨﺤﺩﺭﺍﺕ ﺍﻟﺼـﺨﺭﻴﺔ ﻭ ﺍﻟﻤـﺩﻥ‬ ‫ﻭﺤﻤﺎﻴﺔ ﺍﻟﺸﻭﺍﻁﺊ ﻤﻥ ﺍﻟﻨﺎﺤﻴﺔ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ.‬ ‫٣.‬ ‫ﺘﻘﻴﻴﻡ ﺍﻵﺜﺎﺭ ﺍﻟﻨﺎﺘﺠﺔ ﻋﻥ ﻤﺨﺎﻁﺭ ﺍﻟﺴﻴﻭل ﻭﺍﻟﻔﻴﻀﺎﻨﺎﺕ ﻭﺍﻟﺯﻻﺯل ﻭﺍﻟﺒـﺭﺍﻜﻴﻥ ﻭﺍﻟﺘﺼـﺤﺭ‬ ‫ﻭﺇﻴﺠﺎﺩ ﺍﻟﺤﻠﻭل ﺍﻟﻤﻨﺎﺴﺒﺔ ﻟﻬﺎ.‬ ‫ﺃﻫﺩﺍﻑ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﺍﻟﻬﻨﺩﺴﻴﺔ‬ ‫١ - ﺍﻟﻤﺴﺎﻫﻤﺔ ﻓﻲ ﺤل ﺍﻟﻤﺸﺎﻜل ﺍﻟﻬﻨﺩﺴﻴﺔ ﻭﺍﻟﺒﻴﺌﻴﺔ ﻟﻠﻤﺼﺎﺩﺭ ﺍﻟﻁﺒﻴﻌﻴﺔ.‬ ‫٢- ﻓﺤﺹ ﺍﻟﻤﻭﺍﻗﻊ ﻭﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻤﻴﺩﺍﻨﻴﺔ ﻭﺘﻘﻴﻴﻡ ﺍﻟﺘﻀﺎﺭﻴﺱ ﺍﻷﺭﻀﻴﺔ ﻟﻸﻏﺭﺍﺽ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ‬ ‫ﺍﻟﻬﻨﺩﺴﻴﺔ.‬ ‫٣- ﺩﺭﺍﺴﺔ ﻤﻭﺍﻗﻊ ﺍﻟﻁﺭﻕ ﻭ ﺍﻷﻨﻔﺎﻕ ﻭﺍﻟﻜﺒﺎﺭﻱ ﻭﺍﻟﺴﺩﻭﺩ ﻭﺍﻟﻤﻨﺤﺩﺭﺍﺕ ﺍﻟﺼﺨﺭﻴﺔ ﻭ ﺍﻟﻤﺩﻥ‬ ‫ﻭﺤﻤﺎﻴﺔ ﺍﻟﺸﻭﺍﻁﺊ ﻤﻥ ﺍﻟﻨﺎﺤﻴﺔ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ.‬ ‫٤- ﺘﻘﻴﻴﻡ ﺍﻵﺜﺎﺭ ﺍﻟﻨﺎﺘﺠﺔ ﻋﻥ ﻤﺨﺎﻁﺭ ﺍﻟﺴﻴﻭل ﻭﺍﻟﻔﻴﻀﺎﻨﺎﺕ ﻭﺍﻟﺯﻻﺯل ﻭﺍﻟﺒﺭﺍﻜﻴﻥ ﻭﺍﻟﺘﺼﺤﺭ ﻭﺇﻴﺠﺎﺩ‬ ‫ﺍﻟﺤﻠﻭل ﺍﻟﻤﻨﺎﺴﺒﺔ ﻟﻬﺎ.‬ ‫٥ - ﺍﻟﻤﺴﺎﻫﻤﺔ ﻓﻲ ﺍﻟﺘﻭﻋﻴﺔ ﺍﻟﺒﻴﺌﻴﺔ ﺍﻟﻁﺒﻴﻌﻴﺔ ﻤﻥ ﻜل ﻤﺎ ﻴﻬﺩﺩﻫﺎ ﻭﻴﻠﻭﺜﻬﺎ. ﻭﺘﻘﺩﻴﻡ ﺍﻟﺒﺤﻭﺙ‬ ‫ﻭﺍﻟﺩﺭﺍﺴﺎﺕ ﺍﻟﻌﻠﻤﻴﺔ ﻓﻲ ﻤﺠﺎﻻﺕ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻭﺍﻟﺒﻴﺌﻴﺔ.‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٦‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  8. 8. ‫• دور و ﻣﻬﺎم اﻟﺠﻴﻮﻟﻮﺟﻲ اﻟﻬﻨﺪﺳﻲ )‪-: (Function of Engineering Geologist‬‬ ‫ﻋﻤﻞ اﻟﺠﻴﻮﻟﻮﺟﻲ اﻟﻬﻨﺪﺳﻲ ﻳﻠﺨﺺ ﻓﻲ اﻻﺗﻲ :‬ ‫١- ﻓﺤﺺ اﻟﻤﻮاﻗﻊ اﻷرﺿﻴﺔ ‪. Interpretation of the ground conditions‬‬ ‫٢- اﻻآﺘﺸﺎف و اﻟﺘﻘﻴﻴﻢ ‪.Exploration and assessment‬‬ ‫٣- ﺗﻌﻴﻴﻦ اﻷﺧﻄﺎر ‪. Identification of hazards‬‬ ‫اﻟﻌﻤﻞ اﻟﺠﻴﻮﻟﻮﺟﻲ اﻟﻬﻨﺪﺳﻲ‬ ‫ﺗﺤﺪﻳﺪ اﻟﻤﺨﺎﻃﺮ‬ ‫اﻻآﺘﺸﺎف واﻟﺘﻘﻴﻴﻢ  ‬ ‫اﻟﺘﻨﻘﻴﺐ‬ ‫اﺳﺘﻘﺮار اﻟﻤﻨﺤﺪرات‬ ‫اﺳﺘﻘﺮار اﻷﻧﻔﺎق‬ ‫اﻟﺴﺒﺨﺔ‬ ‫اﻟﻬﺒﻮط‬ ‫اﻟﺘﺂآﻞ  ‬ ‫ﻣﻮاد اﻟﺒﻨﺎء‬ ‫اﻟﺮﻣﻞ‬ ‫اﻟﺒﻨﺎء‬ ‫اﻟﻬﺒﻮط‬ ‫اﻻﻧﻬﻴﺎر  ‬ ‫اﻷﺳﻤﻨﺖ‬ ‫اﻟﻨﻔﻂ‬ ‫اﻟﺮآﺎم‬ ‫اﻟﻨﻮﻋﻴﺔ‬ ‫اﻟﻜﻤﻴﺔ  ‬ ‫ﻣﺼﺎدر اﻟﻤﻴﺎﻩ‬ ‫اﻟﺠﻮﻓﻴﺔ  ‬ ‫اﻟﺘﻮﻓﺮ‬ ‫اﻟﻨﻮﻋﻴﺔ‬ ‫اﻟﻜﻤﻴﺔ  ‬ ‫ﻓﺤﺺ اﻟﻤﻮاﻗﻊ اﻷرﺿﻴﺔ  ‬ ‫اﻟﺘﻌﺪﻳﻦ‬ ‫ﻋﻠﻢ اﻷرض  ‬ ‫ﻧﻮع اﻟﺘﺮﺑﺔ‬ ‫ﻧﻮع اﻟﺼﺨﺮ‬ ‫ﺳﻤﻚ اﻟﺘﺮﺑﺔ‬ ‫ﺳﻤﻚ اﻟﺼﺨﺮ‬ ‫ﻣﺴﺘﻮى اﻟﻤﺎء  ‬ ‫اﻟﻜﺜﺒﺎن اﻟﺮﻣﻠﻴﺔ‬ ‫ﺣﺮآﺘﻬﺎ‬ ‫اﻟﻘ ة اﻟﻤﻨﺨﻔﻀﺔ‬ ‫اﻟﻄﺮق اﻟﺠﺒﻠﻴﺔ‬ ‫اﺳﺘﻘﺮار‬ ‫اﻟﻤﻨﺤﺪرات‬ ‫ﻧﻈﻢ اﻟﺘﺼﺮﻳﻒ  ‬ ‫اﻷﺑﻨﻴﺔ‬ ‫اﻹهﺘﺰازات‬ ‫اﻷﺳﺎﺳﺎت‬ ‫١- اﻷﺳﺎﺳﺎت اﻟﻀﺤﻠﺔ‬ ‫٢- اﻷﺳﺎﺳﺎت اﻟﻌﻤﻴﻘﺔ  ‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٧‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ‫اﻟﻬﻨﺪﺳﺔ  ‬
  9. 9. ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٨‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  10. 10. Definition and Scope of Engineering Geology Engineering geology forms the bridge between geology and engineering. It is mainly concerned with the application of geology to civil and mining engineering practice. The purpose is to ensure that geological factors affecting the planning, design construction and maintenance of engineering works and the development of groundwater resources are recognized, adequately interpreted and presented for use in engineering practice. : ‫ﺗﻌﺮﻳﻒ‬ ‫اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ هﻲ اﻟﺮاﺑﻂ ﺑﻴﻦ اﻟﻤﻮاد اﻟﺠﻴﻮﻟﻮﺟﻴﺔ ) اﻟﺼﺨﻮر واﻟﺘﺮﺑﺔ ( واﻷﻋﻤﺎل اﻟﻬﻨﺪﺳﻴﺔ واﻷﺧﺬ ﻓﻲ اﻻﻋﺘﺒﺎر‬ ‫اﻟﻌﻮاﻣﻞ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻤﺆﺛﺮة ﻋﻠﻰ‬ ‫٤- اﻟﺼﻴﺎﻧﺔ‬ ‫٣- اﻟﺒﻨﺎء‬ ‫٢- اﻟﺘﺼﻤﻴﻢ‬ ‫١- اﻟﺘﺨﻄﻴﻂ‬ In engineering geology basic knowledge is required of the following: - General Geology - Surveying - Geomorphology - Remote Sensing - Hydrology -Seismic, Geophysics - Soil Mechanics - Rock Mechanics - Concrete, Aggregate - Foundation - Road pavement of construction A Much greater knowledge is required of site in investigation practice such as : Boring Engineering geophysics Sampling Photo geology Lab in situ testing Engineering geological mapping This knowledge is printed on background of with emphasis on structural geology , geomorphology , Sediment logy And there must be information on the use of computers in data analysis and geological mapping . Functions of Engineering Geologist The engineering geologist can contribute on the followings; Interpretation of the ground conditions Exploration and assessment Identification of hazards EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٩ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  11. 11. ‫ﺘﻁﺒﻴﻘﺎﺕ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﺍﻟﻬﻨﺩﺴﻴﺔ‬ ‫ﺇﻥ ﺍﻟﺘﺭﺍﺒﻁ ﺒﻴﻥ ﻋﻠﻡ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﻭﺍﻟﻬﻨﺩﺴﺔ ﺍﻟﻤﺩﻨﻴﺔ ﻭ ﺍﻟﺘﻌﺩﻴﻨﻴﺔ ﻗﺩ ﺒﺩﺃ ﻤﻨﺫ ﺃﻥ ﺒﺩﺃ ﺍﻹﻨﺴﺎﻥ ﺒﺘﺸﻴﻴﺩ ﺃﺒﻨﻴﺘﻪ ﻋﻠﻰ ﺴﻁﺢ‬ ‫ﺍﻷﺭﺽ , ﻋﻠﻰ ﺍﻟﺭﻏﻡ ﻤﻥ ﺍﻟﺘﺒﺎﻴﻥ ﺍﻟﻭﺍﻀﺢ ﺒﻴﻨﻬﻤﺎ .‬ ‫ﺇﻥ ﺘﻁﺒﻴﻕ ﺍﻟﻤﺒﺎﺩﺉ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﻓﻲ ﺍﻻﻜﺘﺸﺎﻓﺎﺕ ﺍﻟﻬﻨﺩﺴﻴﺔ ﺘﻌﻭﺩ ﺒﺎﻟﻨﻔﻊ ﻋﻠﻰ ﺍﻟﻌﻠﻭﻡ ﺍﻟﻬﻨﺩﺴﻴﺔ , ﻭﻜﺫﺍ ﻓـﺈﻥ ﻤﻌﺭﻓـﺔ‬ ‫ﺍﻟﻤﻜﻭﻨﺎﺕ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﻟﻠﺘﺭﺒﺔ ﻭﺍﻟﺼﺨﻭﺭ ﺴﻴﺴﺎﻋﺩ ﻓﻲ ﻤﻌﺭﻓﺔ ﻤﺩﻯ ﺘﻭﺍﺯﻥ ﺍﻟﻤﻨﺸﺂﺕ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻭﺇﺩﺍﻤﺘﻬﺎ , ﻟﺫﺍ ﺘﻌﺘﺒﺭ‬ ‫ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﺍﻟﻬﻨﺩﺴﻴﺔ ﺃﺤﺩ ﺍﻟﺠﻭﺍﻨﺏ ﺍﻟﺘﻁﺒﻴﻘﻴﺔ ﻟﻌﻠﻡ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﻭﺘﺸﻜل ﺤﻠﻘﺔ ﺍﻟﻭﺼل ﻤﻊ ﺍﻟﻬﻨﺩﺴﺔ ﺍﻟﻤﺩﻨﻴﺔ , ﻭﺫﻟـﻙ‬ ‫ﺒﺘﻁﺒﻴﻕ ﻤﺒﺎﺩﺉ ﻋﻠﻡ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺎ ﻟﻠﺘﻘﻠﻴل ﻤﻥ ﺍﻟﻤﺸﺎﻜل ﺍﻟﻬﻨﺩﺴﻴﺔ ﺫﺍﺕ ﺍﻟﻌﻼﻗﺔ , ﺇﻥ ﺍﻟﻤﻬﻨﺩﺱ ﺍﻟﻤﺩﻨﻲ ﻏﻴﺭ ﻤﺅﻫل ﻟﻠﻘﻴﺎﻡ‬ ‫ﺒﺩﺭﺍﺴﺔ ﺠﻴﻭﻟﻭﺠﻴﺔ ﻤﺘﻜﺎﻤﻠﺔ ﻭﻓﻲ ﺍﻟﻭﻗﺕ ﻨﻔﺴﻪ ﻓﺈﻥ ﺍﻟﺠﻴﻭﻟﻭﺠﻲ ﻻ ﻴﺘﻤﻜﻥ ﻤﻥ ﺘﻁﺒﻴﻕ ﺍﻟﻤﺒﺎﺩﺉ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﻓﻲ ﺤـل‬ ‫ﺍﻟﻤﺸﺎﻜل ﺍﻟﻬﻨﺩﺴﻴﺔ , ﻟﺫﺍ ﻓﺈﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﺍﻟﻤﻬﻨﺩﺱ ﺍﻟﻤﺩﻨﻲ ﻭﺍﻟﺠﻴﻭﻟـﻭﺠﻲ ﻴﻤﻠـﺅﻩ ﺍﻵﻥ ﻤـﺎ ﻴﺴـﻤﻰ ﺒﺎﻟﻤﻬﻨـﺩﺱ‬ ‫ﺍﻟﺠﻴﻭﻟﻭﺠﻲ .‬ ‫ﻓﺎﻟﻤﻬﻨﺩﺱ ﺍﻟﺠﻴﻭﻟﻭﺠﻲ ﻋﻠﻰ ﻤﻌﺭﻓﺘﻪ ﺍﻟﻜﺎﻤﻠﺔ ﺒﺎﻟﻤﺒﺎﺩﺉ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﻴﺴﺘﻁﻴﻊ ﺃﻥ ﻴﻌﻤل ﻓﻲ ﻋﺩﺓ ﻤﺠـﺎﻻﺕ ﻫﻨﺩﺴـﻴﺔ‬ ‫ﻓﻀﻼ ﻋﻥ ﺍﻟﻤﺠﺎﻻﺕ ﺍﻟﺘﻲ ﻴﺴﺘﻠﺯﻡ ﺇﺠﺭﺍﺀ ﺘﺤﺭﻴﺎﺕ ﺠﻴﻭﻟﻭﺠﻴﺔ ﺃﻭﻟﻴﺔ ﻭﻤﻔﺼﻠﺔ.‬ ‫ﹰ‬ ‫• ﻓﻔﻲ ﻤﺠﺎل ﺍﻟﻜﺸﻑ ﻋﻥ ﺍﻟﺜﺭﻭﺍﺕ ﺍﻟﻁﺒﻴﻌﻴﺔ ﻭ ﺍﺴﺘﺨﺭﺍﺠﻬﺎ ﺒﺈﻤﻜﺎﻥ ﺍﻟﻤﻬﻨﺩﺱ ﺍﻟﺠﻴﻭﻟﻭﺠﻲ ﺃﻥ ﻴﻌﻤل ﻓﻲ ﻋﻤﻠﻴﺎﺕ‬ ‫ﺍﻟﻜﺸﻑ ﻋﻥ ﺍﻟﻨﻔﻁ ﻭﺍﻟﺨﺎﻤﺎﺕ ﺍﻟﻤﻌﺩﻨﻴﺔ ﻭﺍﻟﻤﻴﺎﻩ ﺍﻟﺠﻭﻓﻴﺔ , ﻓﻴﺴﺘﺨﺩﻡ ﻁﺭﻕ ﺍﻟﻜﺸﻑ ﺍﻟﺴﻁﺤﻴﺔ ﻭﺍﻟﺠﻭﻴـﺔ ﻭﻜـﺫﺍ‬ ‫ﺍﻟﺘﻨﻘﻴﺏ ﻭﺇﺠﺭﺍﺀ ﺍﻟﻔﺤﻭﺼﺎﺕ ﺍﻟﻤﺨﺘﺒﺭﻴﺔ ﻭ ﺍﻟﻤﻭﻗﻌﻴﺔ , ﻭﻜﺫﺍ ﺍﺴﺘﺨﺩﺍﻡ ﻁﺭﻕ ﺍﻟﻜﺸﻑ ﺍﻟﺘﺤﺕ ﺴـﻁﺤﻴﺔ ﻭﺍﻟﺘـﻲ‬ ‫ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﺍﻷﺠﻬﺯﺓ ﺍﻟﺠﻴﻭﻓﻴﺯﻴﺎﺌﻴﺔ ﺍﻟﻤﺘﻨﻭﻋﺔ .‬ ‫•‬ ‫ﻭﻓﻲ ﺍﻟﻤﺠﺎﻻﺕ ﺍﻟﻬﻨﺩﺴﻴﺔ ﺒﺈﻤﻜﺎﻥ ﺍﻟﻤﻬﻨﺩﺱ ﺍﻟﺠﻴﻭﻟﻭﺠﻲ ﺍﻟﻌﻤل ﻓﻲ ﻤﺠﺎل ﺇﻨﺸﺎﺀ ﺍﻟﺴﺩﻭﺩ ﻭﺍﻟﺨﺯﺍﻨـﺎﺕ ﺍﻟﻤﺎﺌﻴـﺔ‬ ‫ﺒﺈﺨﺘﻴﺎﺭ ﺍﻟﻤﻭﺍﻗﻊ ﺍﻻﻓﺘﺭﺍﻀﻴﺔ ﺍﻟﻤﻨﺎﺴﺒﺔ , ﻭﺇﻴﺠﺎﺩ ﺍﻟﺤﻠﻭل ﻭﺍﻟﻤﻌﺎﻟﺠﺎﺕ ﺍﻟﻤﻨﺎﺴﺒﺔ ﻟﺘﻔﺎﺩﻱ ﺍﻟﻤﺸﺎﻜل ﺍﻟﻤﺘﻭﻗﻌﺔ ﻋﻨﺩ‬ ‫ﺍﻹﻨﺸﺎﺀ ﻭﺘﺤﺩﻴﺩ ﻤﻨﺎﻁﻕ ﺍﻟﻀﻌﻑ ﻭﺍﻟﻔﺠﻭﺍﺕ ﺍﻟﺩﺍﺨﻠﻴﺔ ﻭﻤﺸـﺎﻜل ﺍﻟﺘﺤﺸـﻴﺔ ﻭ ﺍﻹﻨﺯﻻﻗـﺎﺕ ﻭ ﺍﻻﻫﺘـﺯﺍﺯﺍﺕ‬ ‫ﺍﻷﺴﺎﺴﻴﺔ ﻭﺍﻟﻤﺴﺘﺤﺜﺔ ﻤﻥ ﺠﺭﺍﺀ ﺘﺠﻤﻊ ﺍﻟﺤﺠﻡ ﺍﻟﻬﺎﺌل ﻟﻠﻤﻴﺎﻩ ﻓﻲ ﺍﻟﺨﺯﺍﻨﺎﺕ ﻭﻤﺭﺍﻗﺒﺔ ﺠﺴﻡ ﺍﻟﺴﺩ ﺒﻌﺩ ﺍﻹﻨﺸﺎﺀ ﻤﻥ‬ ‫ﺨﻼل ﻤﺠﻤﻭﻋﺔ ﻤﻥ ﺍﻷﺠﻬﺯﺓ ﺍﻟﺠﻴﻭﻓﻴﺯﻴﺎﺌﻴﺔ ﺍﻟﺨﺎﺼﺔ .‬ ‫•‬ ‫ﻭﻓﻲ ﻤﺠﺎﻻﺕ ﺤﻔﺭ ﺍﻷﻨﻔﺎﻕ ﻴﻌﻤل ﺍﻟﻤﻬﻨﺩﺱ ﺍﻟﺠﻴﻭﻟﻭﺠﻲ ﻋﻠﻰ ﺇﺠﺭﺍﺀ ﺍﻟﺘﺤﺭﻴﺎﺕ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﺍﻟﻼﺯﻤﺔ ﻷﺠـل‬ ‫ﺘﺤﺩﻴﺩ ﺍﻟﻤﺴﺎﺭ ﺍﻟﺩﻗﻴﻕ ﻟﻠﻨﻔﻕ ﺁﺨﺫﺍ ﻓﻲ ﻋﻴﻥ ﺍﻻﻋﺘﺒﺎﺭ ﺍﻟﻤﺸﺎﻜل ﺍﻟﻤﺨﺘﻠﻔﺔ ﺃﺜﻨﺎﺀ ﺤﻔﺭ ﺍﻷﻨﻔـﺎﻕ ﻭﺒﻌـﺩﻫﺎ ﻭﻜـﺫﺍ‬ ‫ﹰ‬ ‫ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻹﻗﺘﺼﺎﺩﻴﺔ ﻹﺠﺭﺍﺀ ﻋﻤﻠﻴﺎﺕ ﺍﻟﺤﻔﺭ ﻭﺍﻟﺒﻨﺎﺀ .‬ ‫•‬ ‫ﻭﻓﻲ ﻤﺠﺎل ﺇﻨﺸﺎﺀ ﺍﻟﻁﺭﻕ ﻭﺍﻟﺠﺴﻭﺭ ﻓﺈﻥ ﺍﻟﻤﻬﻨﺩﺱ ﺍﻟﺠﻴﻭﻟﻭﺠﻲ ﻴﻌﻤل ﻋﻠﻰ ﺘﺨﻁﻴﻁ ﺍﻟﻁﺭﻕ ﻋﻠـﻰ ﺍﻟﺨـﺭﺍﺌﻁ‬ ‫ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﻭﺍﻟﺠﻐﺭﺍﻓﻴﺔ ﻭﺍﻟﺼﻭﺭ ﺍﻟﺠﻭﻴﺔ , ﻭﺍﻟﻜﺸﻑ ﻋﻠﻰ ﺍﻟﺼﺨﻭﺭ ﺍﻟﺘﻲ ﺘﻤﺭ ﻋﻠﻴﻬﺎ ﺍﻟﻁﺭﻗـﺎﺕ ﻭﺃﺴـﻠﻭﺏ‬ ‫ﻤﻌﺎﻟﺠﺔ ﻜل ﻤﺭﺤﻠﺔ ﺇﻨﺸﺎﺀ ﻭﺘﺤﺩﻴﺩ ﻤﻭﺍﻗﻊ ﺍﻟﻤﻭﺍﺩ ﺍﻟﻤﻁﻠﻭﺒﺔ ﻟﻺﺴﺘﺨﺩﺍﻡ ﻓﻲ ﻤﺠﺎل ﺭﺼﻑ ﺍﻟﻁﺭﻕ ﻭﺫﻟﻙ ﻀﻤﻥ‬ ‫ﺍﻟﺘﺤﺭﻴﺎﺕ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﺍﻟﺘﻲ ﻴﻘﻭﻡ ﺒﻬﺎ.‬ ‫•‬ ‫ﻭﻓﻲ ﻤﺠﺎل ﺍﻟﺯﺭﺍﻋﺔ ﻭﺍﻟﺭﻱ ﻴﻌﻤل ﺍﻟﻤﻬﻨﺩﺱ ﺍﻟﺠﻴﻭﻟﻭﺠﻲ ﻋﻠﻰ ﻤﻌﺭﻓﺔ ﺃﻨﻭﺍﻉ ﺍﻟﺘﺭﺒـﺔ ﻭﺘﺭﻜﻴﺒﻬـﺎ ﻭﺼـﺩﺭﻫﺎ‬ ‫ﻭﺨﺼﺎﺌﺼﻬﺎ ﻭﺍﻜﺘﺸﺎﻑ ﻤﺼﺎﺩﺭ ﺍﻟﻤﻴﺎﻩ ﺍﻟﺠﻭﻓﻴﺔ ﻭﺇﻨﺸﺎﺀ ﺍﻟﺴﺩﻭﺩ ﻭﺍﻟﻘﻨﻭﺍﺕ ﺍﻟﺯﺭﺍﻋﻴﺔ .‬ ‫ﺍﻥ ﺍﻟﻤﻬﻨﺩﺱ ﺍﻟﺠﻴﻭﻟﻭﺠﻲ ﻴﻌﻤل ﻋﻠﻰ ﺘﻘﺩﻴﻡ ﺍﻟﻤﻌﻠﻭﻤﺎﺕ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﻷﻋﻤﺎﻕ ﻤﺨﺘﻠﻔﺔ ﺤﺴﺏ ﺍﻟﺤﺎﺠﺔ ﻭ ﻴﺨﺘﺒﺭ ﻨـﻭﻉ‬ ‫ﺍﻟﺘﻜﻭﻨﺎﺕ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﻭ ﺍﻟﻤﻴﺎﻩ ﺍﻟﺠﻭﻓﻴﺔ ﻭ ﻤﻨﺴﻭﺒﻬﺎ ﻭ ﺘﺤﺩﻴﺩ ﻤﻜﻭﻨﺎﺘﻬﺎ ﺍﻟﻜﻴﻤﻴﺎﺌﻴﺔ ﻓﻲ ﻤﺸﺎﺭﻴﻊ ﺍﻟﺘﺎﺴﻴﺱ ﻟﻠﻤﻨﺸـﺂﺕ‬ ‫ﺍﻟﻤﺩﻨﻴﺔ ﻭﺨﺎﺼﺔ ﻟﻠﺘﺭﺒﺔ ﺍﻟﻤﺎﻟﺤﺔ )ﺍﻟﺴﺒﺨﺎﺕ(.ﻟﺫﻟﻙ ﻓﺎﻨﻪ ﻴﻘﻭﻡ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﺤﺩﺙ ﺘﻘﻨﻴﺎﺕ ‪GIS‬ﻷﺠل ﺍﻟﺤﺼـﻭل ﻋﻠـﻰ‬ ‫ﺍﻟﻤﻌﻠﻭﻤﺎﺕ ﺍﻟﻼﺯﻤﺔ ﻟﺘﻔﺎﺩﻱ ﺍﻟﻤﺸﺎﻜل ﺍﻟﻬﻨﺩﺴﻴﺔ ﺍﻟﻤﺘﻭﻗﻌﺔ ﻭ ﺘﺤﺩﻴﺩ ﻤﻭﺍﻗﻌﻬﺎ‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٠١‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  12. 12. ‫ﺗﻌﺮﻳﻒ اﻟﺨﺎرﻃﺔ‬ ‫هﻲ ﻋﺒﺎرة ﻋﻦ رﺳﻢ ﻳﺤﺘﻮي ﻋﻠﻰ آﺜﻴﺮ ﻣﻦ اﻟﺮﻣﻮز و اﻷﻟﻮان و ﻻﺑﺪ أن ﺗﺤﺘﻮي ﻋﻠﻰ ٣ أﺷﻴﺎء :-‬ ‫‪N‬‬ ‫١- إﺗﺠﺎﻩ اﻟﺸﻤﺎل .‬ ‫٢- ﻣﻘﻴﺎس اﻟﺮﺳﻢ .‬ ‫٣- ﺗﻌﺮﻳﻒ اﻟﺮﻣﻮز و اﻷﻟﻮان )ﻣﻔﺘﺎح اﻟﺨﺮﻳﻄﺔ ‪( Legend‬‬ ‫• اﻟﺨﺮاﺋﻂ اﻟﺠﻐﺮاﻓﻴﺔ :-‬ ‫- ﻟﺘﺤﺪﻳﺪ اﻟﻤﻨﺎﻃﻖ و اﻟﻤﻮاﻗﻊ و اﻟﻴﺎﺑﺲ و اﻟﻤﺎء .‬ ‫• اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ :-‬ ‫ ﻟﺘﺤﺪﻳﺪ ﻣﻨﺎﻃﻖ وﺣﺪود و أﻧﻮاع اﻟﺼﺨﻮر و اﻟﺘﺮﺑﺔ و إﺗﺠﺎﻩ و ﻃﻮل و ﻧﻮع اﻟﺤﺮآﺎت اﻟﺒﻨﺎﺋﻴﺔ‬‫و اﻟﺸﻘﻮق و اﻟﺼﺪوع . و ﺗﻌﺘﻤﺪ ﻋﻠﻰ اﻟﻮﺻﻒ إﻣﺎ ﺑﺎﻟﺮﻣﻮز أو اﻷﻟﻮان .‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫١١‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  13. 13. ‫أﻧﻮاع اﻟﺨﺮاﺋﻂ‬ ‫١- اﻟﺨﺮاﺋﻂ اﻟﺠﻐﺮاﻓﻴﺔ‬ ‫)‪( Geographic Maps‬‬ ‫ﺗﻬﺘﻢ ﺑﺎﻟﺘﻀﺎرﻳﺲ واﻷﺑﻌﺎد وأﺷﻜﺎل ﺳﻄﺢ اﻷرض .‬ ‫٢- اﻟﺨﺮاﺋﻂ اﻟﻜﻨﺘﻮرﻳﺔ ) ‪( Contour Maps‬‬ ‫ﺗﻬﺘﻢ ﺑﺎﻻرﺗﻔﺎﻋﺎت واﻷﺑﻌﺎد اﻟﺜﻼﺛﺔ .‬ ‫٣- اﻟﺨﺮاﺋﻂ اﻟﻄﺒﻮﻏﺮاﻓﻴﺔ‬ ‫)‪( Topographic Maps‬‬ ‫وهﻰ ﺧﺮاﺋﻂ اﻟﻈﻮاهﺮ اﻟﺘﻀﺎرﻳﺴﻴﺔ ﻣﻦ ﺟﺒﺎل واﻧﻬﺎر وﻗﻴﻌﺎن ﺑﺤﺎر و أودﻳﺔ وﺳﻬﻮل .‬ ‫٤- اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ )‪( Geologic Maps‬‬ ‫وهﻲ ﺧ ﺮاﺋﻂ ﺗﺤﺘ ﻮي ﻋﻠ ﻰ اﻟﻤﻌﻠﻮﻣ ﺎت اﻟ ﺜﻼث ﻣﻌﻠﻮﻣ ﺎت اﻟﺴ ﺎﺑﻘﺔ واﻟﺘﺮاآﻴ ﺐ اﻟﺠﻴﻮﻟﻮﺟﻴ ﺔ واﻟﺒﻨﺎﺋﻴ ﺔ‬ ‫وأﻧﻮاع اﻟﺘﺮﺑﺔ واﻟﺼﺨﻮر.‬ ‫٥- اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ )‪( Engineering Geological Maps‬‬ ‫وه ﻰ ﺧ ﺮاﺋﻂ ﺗﺤﺘ ﻮى ﻋﻠ ﻰ ﻣﻌﻠﻮﻣ ﺎت ﺟﻐﺮاﻓﻴ ﺔ وآﻨﺘﻮرﻳ ﺔ وﻃﻮﻏﺮاﻓﻴ ﺔ و ﺗﻀﺎرﻳﺴ ﻴﺔ وﻣﻌﻠﻮﻣ ﺎت‬ ‫ﺟﻴﻮﻟﻮﺟﻴ ﺔ ﻋ ﻼوة ﻋﻠ ﻰ رﻣ ﻮز واﻟﺨ ﻮاص اﻟﻬﻨﺪﺳ ﻴﺔ ﻟﺘﺮﺑ ﺔ واﻟﺼ ﺨﻮر ﺣﺴ ﺐ اﻟﻨﻈ ﺎم اﻟﻤﻄﻠ ﻮب‬ ‫اﺳﺘﺨﺪام ﺧﻮاﺻﻪ واﻟﻤﻌﺘﻤﺪ ﻋﺎﻟﻤﻴﺎ .‬ ‫٦- ﺧﺮاﺋﻂ اﻟﻤﺨﺎﻃﺮ )‪( Geohazard Maps‬‬ ‫ﻋﺒ ﺎرة ﻋ ﻦ ﺧ ﺮاﺋﻂ ﺟﻐﺮاﻓﻴ ﺔ وﻃﺒﻮﻏﺮاﻓﻴ ﺔ ﻣﻮﺿ ﺢ ﻋﻠﻴﻬ ﺎ ﺣ ﺪود وﻧ ﻮع وﺗﺼ ﻨﻴﻒ اﻟﺨﻄ ﺮ إﻣ ﺎ ﺷ ﺪة‬ ‫اﻟﻬﺰات وإﻣﺎ ﺷﺪة اﻟﺒﺮاآﻴﻦ وإﻣﺎ ﺣﺪود ﻣﺠﺮى ﺳﻴﻞ وإﻣﺎ ﺗﺠﻤﻊ اﻟﻜﺜﺒﺎن اﻟﺮﻣﻠﻴ ﺔ زاﻣ ﺎ ﻧﻄﺎﻗ ﺎت هﺒ ﻮط‬ ‫اﻷرض وإﻣﺎ ﻧﻄﺎﻗﺎت اﻻﻧﺰﻻﻗﺎت‬ ‫اﻷرﺿﻴﺔ .‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٢١‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  14. 14. ‫اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫‪Engineering Geological Maps‬‬ ‫اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ )‪( Engineering Geological Maps‬‬ ‫هﻰ ﻋﺒﺎرة ﻋﻦ ﺧﺮاﺋﻂ ﻟﻬﺎ ﺣﺪود وأﺑﻌﺎد وﻟﻬﺎ ﻣﻘﺎس رﺳ ﻢ وﺗﺤﺘ ﻮى ﻋﻠ ﻰ ﻣﻌﻠﻮﻣ ﺎت ﺟﻌﺮاﻓﻴ ﺔ وﻋﻠ ﻰ‬ ‫ﺣ ﺪود آﻨﺘﻮرﻳ ﺔ ﻓ ﻲ اﻻرﺗﻔﺎﻋ ﺎت واﻻﻧﺨﻔﺎﺿ ﺎت واﻟﺘﻀ ﺎرﻳﺲ ﻟﺴ ﻄﺢ اﻷرض وﻋﻠ ﻰ ﻣﻌﻠﻮﻣ ﺎت‬ ‫ﻷﻧ ﻮاع اﻟﺼ ﺨﻮر ودرﺟ ﺎت اﻟﺘﺠﻮﻳ ﺔ وﻋﻠ ﻰ ﺗﺮاآﻴ ﺐ اﻟﺠﻴﻮﻟﻮﺟﻴ ﺔ اﻟﺒﻨﺎﺋﻴ ﺔ ﻣﺜ ﻞ اﻟﺼ ﺪوع واﻟﻄﻴ ﺎت‬ ‫واﻟﺘﺸﻘﻘﺎت واﻟﺘﺸﻮهﺎت .‬ ‫ﺑﺎﻹﺿ ﺎﻓﺔ ﻟﻤﺨﻠ ﺺ ﻟﺮﻣ ﻮز اﻟﻤﻌﺘﻤ ﺪة ﻓ ﻲ اﻟﺨﺼ ﺎﺋﺺ اﻟﻬﻨﺪﺳ ﻴﺔ ﺣﺴ ﺐ اﻟﻨﻈ ﺎم اﻟﻤﺴ ﺘﺨﺪم ﻟﻌﻤ ﻞ‬ ‫اﻟﻨﻄﺎﻗ ﺎت وﺗﺨﺘﻠ ﻒ ﻣ ﻦ ﻧﻈ ﺎم إﻟ ﻰ ﻧﻈ ﺎم ﺳ ﻮاء اﻟﺼ ﺨﻮر او اﻟﺘﺮﺑ ﺔ وه ﺬﻩ اﻟﺮﻣ ﻮز ﻣﻬﻤ ﺔ ﻟﻌﻤ ﻞ‬ ‫) ‪ (Zoning‬اﻟﺬى هﻮ اﺳﺎس رﺳﻢ اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ .‬ ‫اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ :-‬ ‫ﻋﺒﺎرة ﻋﻦ رﺳﻢ ﻳﺤﺘﻮي ﻋﻠﻰ اﻟﻈﻮاهﺮ اﻟﺠﻐﺮاﻓﻴﺔ و اﻟﻈﻮاهﺮ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ و ﻋﻠﻰ رﻣﻮز و ﻗﻴﻢ ﺗﻌﺒﺮ ﻋﻦ‬ ‫اﻟﺨﻮاص اﻟﻬﻨﺪﺳﻴﺔ ﻟﻠﻤﺘﻜﻮﻧﺎت اﻟﺠﻴﻮﻟﻮﺟﻴﺔ ﺳﻮاءا اﻟﺘﺮﺑﺔ أو اﻟﺼﺨﻮر .‬ ‫و ﺗﺼﻨﻒ إﻟﻰ ﺛﻼث أﺻﻨﺎف .‬ ‫ﻳﺠﺐ أن ﺗﻜﻮن ﻋﻠﻰ أﺳﺎس ﺧﺎرﻃﺔ ﺟﻴﻮﻟﻮﺟﻴﺔ ﺳﻠﻴﻤﺔ ﻳﻮﺿﻊ ﻋﻠﻴﻬﺎ اﻟﺨﻮاص اﻟﻬﻨﺪﺳﻴﺔ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ . و‬ ‫هﻲ ﺧﺮاﺋﻂ ﻟﻬﺎ ﺣﺪود وأﺑﻌﺎد وﻣﻘﻴﺎس رﺳﻢ وﺗﺤﺘﻮي ﻋﻠﻰ ﻣﻌﻠﻮﻣﺎت ﺟﻐﺮاﻓﻴﺔ وﻋﻠﻰ ﺣﺪود آﻨﺘﻮرﻳﺔ ﻓﻲ‬ ‫اﻻرﺗﻔﺎﻋﺎت واﻻﻧﺨﻔﺎﺿﺎت وﻋﻠﻰ ﺗﻀﺎرﻳﺲ ﺳﻄﺢ اﻷرض , وأﻧﻮاع اﻟﺼﺨﻮر ودرﺟﺎت اﻟﺘﺠﻮﻳﺔ وﻋﻠﻰ‬ ‫اﻟﺘﺮاآﻴﺐ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﺒﻨﺎﺋﻴﺔ ﻣﺜﻞ اﻟﺼﺪوع واﻟﻔﻮاﻟﻖ. ﺑﺎﻹﺿﺎﻓﺔ إﻟﻰ ﻣﻠﺨﺺ ﻟﻠﺮﻣﻮز اﻟﻤﻌﺘﻤﺪة ﻓﻲ‬ ‫اﻟﺨﺼﺎﺋﺺ اﻟﻬﻨﺪﺳﻴﺔ ﺣﺴﺐ اﻟﻨﻈﺎم اﻟﻤﺴﺘﺨﺪم ﻟﻌﻤﻞ اﻟﻨﻄﺎﻗﺎت. وﺗﺨﺘﻠﻒ ﻣﻦ ﻧﻈﺎم إﻟﻰ ﻧﻈﺎم ﺳﻮاء‬ ‫ﻟﻠﺼﺨﺮ أو اﻟﺘﺮﺑﺔ , وهﺬﻩ اﻟﺮﻣﻮز ﻣﻬﻤﺔ ﻟﻌﻤﻞ اﻟﻨﻄﺎﻗﺎت )‪ (zoning‬اﻟﺬي هﻮ أﺳﺎس رﺳﻢ اﻟﺨﺮاﺋﻂ‬ ‫اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ.‬ ‫• ﺧﺮاﺋﻂ اﻟﻤﺨﺎﻃﺮ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ :- )وﺗﻌﺘﺒﺮ ﻣﻦ اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ(‬ ‫ ﻋﺒﺎرة ﻋﻦ ﺧﺮاﺋﻂ ﺟﻴﻮﻟﻮﺟﻴﺔ هﻨﺪﺳﻴﺔ ﺗﺤﺘﻮي ﻇﻮاهﺮ ﺟﻐﺮاﻓﻴﺔ و ﻣﺘﻜﻮﻧﺎت ﺟﻴﻮﻟﻮﺟﻴﺔ و ﻋﻠ ﻰ‬‫رﻣ ﻮز و ﻗ ﻴﻢ ﺗﻌﺒ ﺮ ﻋ ﻦ اﻟﺨ ﻮاص اﻟﻬﻨﺪﺳ ﻴﺔ ﻟﻠﻤﺨ ﺎﻃﺮ ﻓ ﻲ اﻟﻤﻮﻗ ﻊ ﻣﻀ ﺎف إﻟﻴﻬ ﺎ ﻣﻌﻠﻮﻣ ﺎت‬ ‫هﻴﺪروﺟﻴﻮﻟﻮﺟﻴ ﺔ و ﻣﻌﻠﻮﻣ ﺎت ﻋ ﻦ اﻟﻬ ﺰات اﻷرﺿ ﻴﺔ و ﻋ ﻦ ﻣﺘﻜﻮﻧ ﺎت اﻟﻜﺜﺒ ﺎن اﻟﺮﻣﻠﻴ ﺔ و‬ ‫اﻹﻧﻬﻴﺎرت اﻟﺼﺨﺮﻳﺔ ﺣﺴﺐ اﻟﺨﺎرﻃﺔ اﻟﻤﻄﻠﻮﺑﺔ .‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٣١‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  15. 15. ‫ﺗﺼﻨﻴﻒ اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫: ‪Classification of Engineering Geological Maps‬‬‫اﻟﺨﺮاﺋﻂ اﻟﻤﻌﺘﻤﺪة ﻋﻠﻰ ﻣﻘﻴﺎس اﻟﺮﺳﻢ‬ ‫- اﻟﻌﻼﻗﺔ ﺑﻴﻦ اﻟﻤﺴﺎﻓﺎت ﻓﻲ اﻟﻄﺒﻴﻌﺔ و اﻟﻤﺴﺎﻓﺎت ﻓﻲ اﻟﺨﺎرﻃﺔ .‬ ‫-:‪a- Based on Scale‬‬ ‫:‪1- Large Scale‬‬‫000,000,1 :1 .…… 000,001 :1 >‬ ‫:‪2- Medium Scale‬‬‫000.001 : 1 – 000,01 : 1‬ ‫‪1 cm : 100000 cm‬‬ ‫اﻟﻄﺒﻴﻌﺔ اﻟﺨﺎرﻃﺔ‬ ‫: ‪3- Small Scale‬‬‫000.01 : 1‬ ‫‪and less‬‬ ‫‪1 cm = 1000 cm‬‬ ‫اﻟﺨﺎرﻃﺔ‬ ‫اﻟﻄﺒﻴﻌﺔ‬ ‫‪1 cm = 100 m‬‬ ‫‪b- Based on Purpose‬‬ ‫ اﻟﺨﺮاﺋﻂ اﻟﻤﻌﺘﻤﺪة ﻋﻠﻰ اﻟﻐﺮض أو اﻟﻬﺪف .‬‫:‪1- Special purpose Map‬‬‫ ﺧﺮاﺋﻂ ذات هﺪف أو ﻏﺮض ﻣﻌﻴﻦ .‬‫.‪- Small Scale Map‬‬ ‫.‪- Large Scale Map‬‬ ‫.‪- Analytical map‬‬ ‫:‪2- Multi – purpose Map‬‬‫ ﺧﺮاﺋﻂ ذات أهﺪاف أو أﻏﺮاض ﻋﺪﻳﺪة .‬‫.‪- Comprehensive map‬‬ ‫اﻟﺨﺮاﺋﻂ اﻟﻤﻌﺘﻤﺪة ﻋﻠﻰ اﻟﻤﺤﺘﻮي‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٤١‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ :‪c- Based on Content‬‬‫.‪1- Analytical Map‬‬ ‫.‪2- Comprehensive‬‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  16. 16. ‫) اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ (‪Engineering Geological Maps‬‬ ‫ﻭﻫﻰ ﺘﺸﻤل ﺍﻟﻅﻭﺍﻫﺭ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﻭﺍﻟﻁﺒﻭﻏﺭﺍﻓﻴﺔ ﻭﺍﻟﺠﻐﺭﺍﻓﻴﺔ ﻭﺍﻟﺠﻴﻭﻤﻭﻓﻭﻟﻭﺠﻴﺔ ﺒﺎﻻﻅﺎﻓﺔ ﺍﻟﻰ ﺭﺴﻡ‬ ‫ﺍﻟﺨﻭﺍﺹ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻟﻜل ﻤﻥ ﺃﻨﻭﺍﻉ ﺍﻟﺼﺨﻭﺭ‬ ‫ﻤﺎﻫﻰ ﺍﻨﻭﺍﻉ ﺍﻟﺨﺭﺍﺌﻁ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ‬ ‫‪Classification of Engineering Geological Maps‬‬ ‫‪1- Based on Scale‬‬ ‫)000001:1-0000001:1( ‪a- Large Scale Map‬‬ ‫)00001-000001:1( ‪b- Medium Scale Map‬‬ ‫‪c- Small Scale Map‬‬ ‫00001<‬ ‫‪2- Based on Purpose‬‬ ‫وﻳﻌﺘﻤﺪ ﻋﻠﻰ ﻧﻮع اﻟﻤﻌﻠﻮﻣﺔ‬ ‫‪2.1- Special Purpose‬‬ ‫‪2.1- Multi Purpose‬‬ ‫‪3- Based on Content‬‬ ‫وﻳﻌﺘﻤﺪ ﻋﻠﻰ اﻟﻤﺤﺘﻮي‬ ‫‪3.1 Analytical Map‬‬ ‫‪3.2 Comprehensive‬‬ ‫ﻤﺎﻫﻭ ﺍﻟﻨﻁﺎﻕ ) ‪( Zoning‬‬ ‫ﻫﻰ ﻤﻭﺍﻗﻊ ﻋﻠﻰ ﺍﻟﻁﺒﻴﻌﺔ ﺍﻡ ﻻﻭﺩﻴﺔ ﺍﻭ ﻟﺠﺒﺎل ﻴﺘﻡ ﻓﻴﻬﺎ ﺘﻭﺤﻴﺩ ﻭﺠﻤﻊ ﻭﺭﺒﻁ ﺍﻟﻤﻭﺍﻗﻊ ﺍﻟﺘﻲ ﺘﺘﺸـﺎﺒﻬﺔ ﻓـﻲ‬ ‫ﻨﻭﻉ ﺍﻟﺼﺨﺭ ﻭﺩﺭﺠﺔ ﺍﻟﺘﺠﻭﻴﻪ ﻭﻓﻲ ﺍﻟﺭﻤﻭﺯ ﺍﻟﻤﻭﺤﺩﺓ ﻭﺍﻟﻤﻌﺘﻤﺩﺓ ﻟﺘﺼﻨﻴﻑ ﻭﻭﺼﻑ ﺍﻟﺨﻭﺍﺹ ﺍﻟﻬﻨﺩﺴـﻴﺔ‬ ‫ﻭﺭﺒﻁ ﺍﻟﻤﻭﺍﻗﻊ ﻤﻊ ﺒﻌﻀﻬﺎ ﺍﻟﺒﻌﺽ .‬ ‫ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﺍﻟﻭﺼﻑ ﻭﺍﻟﺘﺼﻨﻴﻑ .‬ ‫ﺍﻟﺘﺼﻨﻴﻑ ﻫﻭ ﺘﺤﻭﻴل ﻗﻴﻡ ﺍﻟﺨﻭﺍﺹ ﺇﻟﻰ ﻤﻌﺎﻴﻴﺭ ﺭﻗﻤﻴﺔ ﺜﻡ ﻴﺘﻡ ﺠﻤﻊ ﻫﺫﻩ ﺍﻟﻤﻌﺎﻴﻴﺭ ﻟﻠﺨﺭﻭﺝ ﺒﺭﻗﻡ ﻨﻬـﺎﺌﻲ‬ ‫ﻤﻭﺤﺩ ﻟﺘﺼﻨﻴﻑ ﻤﺜل ‪ RMR‬ﻭﻴﻨﺘﻬﻲ ﺒﻭﺼﻑ ﻤﺠﻤﻭﻉ ﻗﻴﻡ ﺍﻟﻤﻌﺎﻴﻴﺭ . ﺇﻤﺎ ﺍﻟﻭﺼﻑ ﻓﻬـﻭ ﺘﺤﻭﻴـل ﻗـﻴﻡ‬ ‫ﺍﻟﺨﻭﺍﺹ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻟﻜل ﻨﻅﺎﻡ ﻭﺼﻔﻰ ﺇﻟﻰ ﺭﻤﻭﺯ )‪ ( Symbols‬ﻤﺜل ‪ BGD‬ﻻﺴﺘﺨﺩﺍﻤﻬﺎ ﻓـﻲ ﻋﻤـل‬ ‫ﺍﻟﻨﻁﺎﻗﺎﺕ ﻭﺭﺴﻡ ﺍﻟﺨﺭﺍﺌﻁ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ .‬ ‫ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﺍﻟﺘﺼﻨﻴﻑ ﻭﺍﻟﻭﺼﻑ :-‬ ‫ﺍﻟﺘﺼﻨﻴﻑ )‪( classification‬‬ ‫ﺘﺤﻭﻴل ﻗﻴﻡ ﺍﻟﺨﻭﺍﺹ ﺇﻟﻰ ﻤﻌﺎﻴﻴﺭ ﺭﻗﻤﻴﺔ ﺜﻡ ﻴﺘﻡ ﺠﻤﻊ ﻫﺫﻩ ﺍﻟﻤﻌﺎﻴﻴﺭ ﺒﺎﻟﺨﺭﻭﺝ ﺒﺭﻗﻡ ﻨﻬﺎﺌﻲ ﻤﻭﺤﺩ ﻟﻠﺘﺼﻨﻴﻑ‬ ‫ﻭﻴﻨﺘﻬﻲ ﺒﻭﺼﻑ ﻟﻤﺠﻤﻭﻉ ﻗﻴﻡ ﻤﻌﻴﺎﺭﻴﺔ )ﻤﻭﺤﺩﺓ(.‬ ‫ﺍﻟﻭﺼﻑ ) ‪( Description‬‬ ‫ﺘﺤﻭل ﻗﻴﻡ ﺍﻟﺨﻭﺍﺹ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻟﻜل ﻨﻅﺎﻡ ﻭﺼﻔﻲ ﺇﻟﻰ ﺭﻤﻭﺯ ﻭﻭﺼﻑ ﻻﺴﺘﺨﺩﺍﻤﻪ ﻓﻲ ﻋﻤـل ﺍﻟﻨﻁﺎﻗـﺎﺕ‬ ‫ﻭﺭﺴﻡ ﺍﻟﺨﺭﺍﺌﻁ ﺍﻟﺠﻴﻭﻟﻭﺠﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ.‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٥١‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  17. 17. ‫ﻤﺜﺎل‬ Example of Description BGD 1-Rock Name 2- Layer Thickness L 3- Fracture Intercept F 4-Uniaxial Compressive Strength S 5- Friction Angle A Classification Example of RMR ‫ﻣﺜﺎل ﻋﻠﻰ‬ Rating UCU ٢٠ RQD ٢٠ j.S ١٥ Joint Condition ٣٠ Ground Water ٥ Total RMR =90 EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ١٦ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  18. 18. A- Soil and Rock Description classification system For Engineering Purposes 1- Soil Description and classification system Unified Soil Classification System (U S C S) BY: Terzaghi and peck 1968 Engineering proper ties of (U S C S) 1. Soil type 2. Grain size 3. Soil texture 4. Soil color 5. Cc _Cu 6. Strength 7. LL _PL 2- Rock description and classification Systems Description a- Basic Geotechnical b- Rock Mass Description of Description of Rock Engineering purpose Masses (BGD) BY: Engineering Group BY: International Society Geological Society (GS) 1972 Rock material Discontinuity of Rock Mechanics 1. Rock type 1. type (ISRM) 1981 2. sets no 2. Color 1. Rock name 3. Grain size 3. Joint spacing 2. Layer thickness (L) 4. orientation 3. Fracture intercepts (F) 4. Strength Dip / Dip direction 4. Uniaxial Compressive Strength (UCS) 5. Angle of friction(A) classification a- Rock Mass Rating (RMR) BY:Bieniawski 1974 1. Strength 2.Rock Quality Designation (RQD) 3. Spacing of Joint (J.S) 4. condition of Discontinuity 5. ground water B- Soil and Rock Mass Description and classification system For Engineering Geological Mapping Rock and soil description and classification for engineering geological mapping. Bulletin of the International Association of Engineering Geology, No. 24, pp. 235-244. EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ١٧ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  19. 19. Soil Classification and Description Soil Description :1- Soil Type . 2- Soil Color . 3- Mineral Composition . 4- Strength (Consistency) , Density . Type of Soils :1- Sand . , 2- Silt . 3- Clay . 4- Sabkhah . 5- Mixed (Gravel, Sand, Silt, Clay) -: ‫* ﻣﺜﺎل ﻟﺒﻌﺾ أﻟﻮان اﻟﺘﺮﺑﺔ و ﻣﻌﺮﻓﺔ ﺗﺮآﻴﺒﻬﺎ اﻟﻤﻌﺪﻧﻲ‬ - Yellowish Red (Granite : Mineral Composition : K- feldspar – Plagioclase) - Black – Gray (Diorite – Gabbro : Mineral Composition : Biotite – Muscovite) - Yellow – Beige (Clay – Dolomite) : ‫و ﻣﺜﺎل ﻟﺘﺼﻨﻴﻔﻬﺎ‬ SW , SP , CL 4- SPT (Standard Penetration Test) :N - Very Dense. - Dense. - Medium Dense. - Loose. - Very Loose. • Soil Description :- -: ‫ﻣﺜﺎل ﻟﻠﻮﺻﻒ‬ - Sand = Yellow. Dense, Angular, Very Loose. SW 0 – 15 % Relative Density. ASTM (1985a). Standard practice for description and identification of soils (visual-manual) procedure. Test designation D2488-84. 1985 Annual Book of ASTM Standards, American Society of Testing and Materials, Philadelphia, Vol.04.08, pp. 409-423. ASTM (1985b). Standard test method for classification of soils for engineering purposes. Test Designation D2487-83. 1985 Annual Book of ASTM Standards, American Society of Testing and Materials, Philadelphia, Vol. 04.08, pp. 395-408. EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ١٨ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  20. 20. Soil Description The sequence of describing a soil sample is as follows: a) Compactness and consistency b) Color c) Descriptive term d) Soil identification (Major constituents) e) Soil identification (Minor constituents) f) Water content descriptive term. a) Compactness and consistency: (stiffness or density) b) Color: the soil colors provide information of soil minerals and environments. • • • • • • • Red: Indicates iron oxide Pale Yellow: Hydrated iron oxide Black: Organic soils Dark brown: due to dark Gray: (manganese, magnetite) Green: Glauconitic White: Silica, gypsum, kaoline clay. In general use only basic colors. Describe soils with different shades of basic colors by using two basic colors; e.g. Gray brown. “Mottled” means marked with spots of color while "streaked" means having color patterns which cannot be considered spotted. c)Descriptive term: • Coarse grained soils i. Use angular, subangular, rounded etc. to indicate the shape of the grains ii. Use coarse medium, fine, coarse to fine, or medium to fine to indicate grain size distribution of the samples. • Fine grained soils Use brittle, friable, spongy, sticky, fissured, fibrous, etc. if applicable. EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ١٩ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  21. 21. • Other descriptive terms applicable to both fine grained and coarse grained soils are : with occasional, with frequent, pockets of, layers of, seams of, lenses of, etc. These will follow the soil identification. d) Soils identification: (Major constituents) Identify the major matrix of the soil sample and write this in Capital letters e.g. GRAVEL, SAND, SILT, CLAY. e) Soils identification: (Minor constituents) Identify the minor matrix of the soil sample and write this in small letters e.g. gravely , Sandy, Silty , Clayey. f) Water content descriptive term. Seepage, Wet, Dump, Dry, very Dry Examples: Sand : Dense, brown, subangular medium grained, trace silt, with pockets of clay. Gravel : Very dense, gary, angular fine grained, some sand and trace silt, with seems of clay. Silty Sand : Medium dense, gray brown, subrounded medium grained with trace gravel and lenses of clay clay : Stiff, dark gray, sticky with some silt. Soil Classification: Unified Soil Classification System BY: Terzaghi and peck 1968 It includes:- 1. Soil type , 2. Grain size, 3. Soil texture, 4. Soil color, 5. Cc, Cu 6. Strength, 7. LL -PL Sieve analysis test is a test to determine gradation, which is common mean for describing the particle size distribution present in a soil. It is applied to the soil fraction consisting of gravel, sand, silt, and clay particles. Soil Types:- (1) Cohesion:- CLAY (2) Cohesionless:- GRAVEL, SAND, SILT Cu Coefficient of uniformity = D60 / D10 Cc Coefficient of curvature = (D30)2 / (D10*D60) Soil Strength :- The Standard Penetration Test (SPT) is useful in determining certain properties of soils, particularly of cohesionless soils, for which undisturbed samples are not easily obtained. SPT (Standard Penetration Test) :-Very Dense, Dense, Medium Dense. Loose Very Loose. Plastic Limit, PL, and Liquid Limit, LL are engineering properties for clays. EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٢٠ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  22. 22. ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫١٢‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  23. 23. ‫‪Rock Mass Description‬‬ ‫ اﻟﻐﺮض هﻮ رﺳﻢ اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ .‬‫ و هﻮ ﻋﺒﺎرة ﻋﻦ وﺻﻒ آﺘﺎﺑﻲ .‬‫- وﻳﻮﺟﺪ ﻧﻮﻋﻴﻦ ﻣﻦ أﻧﻈﻤﺔ اﻟﻮﺻﻒ :-‬ ‫‪1- Basic Geotechnical Description‬‬ ‫)‪(BGD‬‬ ‫1891 ‪ISRM‬‬ ‫و أﺳﺎﺳﻬﺎ ﻟﻤﻬﻨﺪﺳﻴﻦ اﻟﺘﻌﺪﻳﻦ‬ ‫. ‪ISRM : International Society for Rock Mechanics‬‬ ‫‪2- Rock Mass Description for Engineering Purposes‬‬ ‫)‪(GS‬‬ ‫‪Geological Society‬‬ ‫‪1972 – 1977 G‬‬ ‫و أﺳﺎﺳﻬﺎ ﺟﻴﻮﻟﻮﺟﻲ‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٢٢‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  24. 24. Basic Geotechnical Description, (BGD) ISRM (1981) -: ‫و ﺗﻌﺘﻤﺪ ﻋﻠﻰ اﻟﺨﻮاص اﻟﺘﺎﻟﻴﺔ‬ I Geological factors: 1- Rock name. 2- Weathering . II Structure Geology factors: 3- F.I. , J.S. 4- Layer thickness. III Engineering factors: 5- Strength Parameters. 6- Friction Angle. Basic Geotechnical Description of Rock Masses, Int. Rock Mech. & Min. Sci. & Geomech. Abst. Vol. 18, pp. 85-110, Pergamon Press Ltd., 1981. ‫و ﺗﺤﺴﺐ هﺬﻩ اﻟﺨﻮاص و ﺗﻨﻈﻢ ﻓﻲ ﺟﺪول ﻳﺤﺘﻮي ﻋﻠﻰ رﻗﻢ اﻟﻤﻮﻗﻊ و ﺑﺎﻟﺘﺮﺗﻴﺐ ذآﺮ ﺗﺤﻠﻴﻞ هﺬﻩ‬ . ‫اﻟﺨﻮاص ﻟﻜﻞ ﻣﻮﻗﻊ و ﺗﺤﺪﻳﺪ اﻟﻨﻄﺎق ﻟﻬﺬا اﻟﻤﻮﻗﻊ‬ . ‫و ﻓﻲ اﻟﺘﺼﻨﻴﻒ ﻳﺠﺐ ذآﺮ اﻟﻤﺼﺪر اﻟﺬي أﺧﺬ ﻣﻨﻪ‬ : ‫ﻣﺜﺎل‬ EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٢٣ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  25. 25. ‫3.1 , 2.1 , 1.1 : ‪St. 1 : Granite , W3 , Location‬‬ ‫1 .‪St‬‬ ‫2 .‪St‬‬ ‫3 .‪St‬‬ ‫4 .‪St‬‬ ‫4.2 , 3.2 , 2.2 , 1.2 : ‪St. 2 : Basalt , W1 , Location‬‬ ‫1.3 : ‪St. 3 : Diorite , W2 , Location‬‬ ‫2.4 , 1.4 : ‪St. 4 : Diorite , W4 , Location‬‬ ‫‪Location‬‬ ‫ﻳﺤﺪد ﺑﺈﺳﻢ اﻟﺼﺨﻮر و درﺟﺔ اﻟﺘﺠﻮﻳﺔ و ﻳﻮﺟﺪ ﻟﺪﻳﻨﺎ ﻓﻲ هﺬا اﻟﻤﺜﺎل ارﺑﻊ ﻣﺤﻄﺎت . -: ‪Station‬‬ ‫ﻳﺤﺪد داﺧﻞ اﻟﻤﺤﻄﺎت ﻷﺧﺬ اﻟﻘﺮاءات اﻟﻬﻨﺪﺳﻴﺔ أو ﻗﻴﺎﺳﻬﺎ و ﻟﺪﻳﻨﺎ ﻓﻲ هﺬا اﻟﻤﺜﺎل -: ‪Location‬‬ ‫ﻋﺸﺮة ﻣﻮاﻗﻊ .‬ ‫ﺧﻼﺻﺔ اﻟﻨﺘﺎﺋﺞ‬ ‫‪Summary Results‬‬ ‫‪Zone‬‬ ‫‪Descript‬‬ ‫‪ion‬‬ ‫‪ø‬‬ ‫‪UCS‬‬ ‫‪Layer‬‬ ‫‪thickness‬‬ ‫, ‪F.I‬‬ ‫.‪J.S‬‬ ‫‪I‬‬ ‫‪II‬‬ ‫‪III‬‬ ‫‪IIII‬‬ ‫‪Weathering‬‬ ‫‪Rock‬‬ ‫‪Name‬‬ ‫‪Station‬‬ ‫.‪No‬‬ ‫1‬ ‫2‬ ‫3‬ ‫4‬ ‫ﻳﺘﻢ ﻋﻤﻞ ورﻗﺔ وﺻﻒ ﻟﻜﻞ ﻣﻮﻗﻊ و ﺟﺪول ﻟﻜﻞ ﻣﺤﻄﺔ ﻳﺤﺘﻮي ﻋﻠﻰ ﻋﺪد اﻟﻤﻮاﻗﻊ و اﺧﺮ ﺧﺎﻧﺔ‬ ‫ﻟﻠﻤﺘﻮﺳﻂ .‬ ‫ﻣﻼﺣﻈﺔ :‬ ‫إذا اﺗﺤﺪ ﻧﻮع اﻟﺼﺨﺮ و درﺟﺔ اﻟﺘﺠﻮﻳﺔ و اﻟﺮﻣﻮز ﻟﻠﺨﻮاص اﻟﻬﻨﺪﺳﻴﺔ ﻧﻀﻌﻬﺎ ﻓﻲ ﻧﻄﺎق واﺣﺪ .‬ ‫ﻣﺜﺎل ﻟﻠﻮﺻﻒ :‬ ‫. 2‪Granite: - W3 , F3 , L3 , S2 , A‬‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٤٢‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  26. 26. The description of rock masses for engineering purposes By Geological Society (GS) [ Engineering Group] Working Party . : ‫اﻟﺨﻮاص اﻟﺘﻲ ﻳﻌﺘﻤﺪ ﻋﻠﻴﻬﺎ هﺬا اﻟﺘﺼﻨﻴﻒ‬ By the Geological Society (Gs)(Engineering Group) Working Party, 1977 Properties of Intact Rock Description: Properties of Rock Mass Description: 1‐ 2‐ 3‐ 4‐ 5‐ 1‐ Types 2‐ Numbers of  discontinuity sets  3‐ Location and orientation 4‐ Spacing between  adjacent discontinuities  5‐ Aperture of  discontinuity surface   6‐ Infilling   7‐ Persistence or extent  8‐ Nature of surface  Rock type  Color  Grain size  Texture and fabric  Weathered and altered  state  6‐ Strength  Geological Society (1972). The preparation of maps and plans in terms of engineering geology. Geological Society Engineering Group Working Party Report, Quarterly Journal of Engineering Geology, Vol.5, pp. 295-381. Geological Society (1977). The description of rock masses for engineering purposes. Geological Society Engineering Group Working Party Report, Quarterly Journal of Engineering Geology, Vol.10, pp. 355. ‫و ﺑﻌﺪ إﻳﺠﺎد اﻟﺨﻮاص اﻟﺴﺎﺑﻘﺔ و ﺗﺮﺗﻴﺒﻬﺎ ﻓﻲ ﺟﺪول ﺗﻮﺻﻒ ﻓﻲ وﺻﻒ آﺘﺎﺑﻲ‬ EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٢٥ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  27. 27. ‫)‪Rock Mass Rating (RMR‬‬ ‫4791 ‪BY:Bieniawski‬‬ ‫و ﻳﻤﻜﻦ إﺳﺘﺨﺪام ﻧﻈﺎم اﻟﺘﺼﻨﻴﻒ ﺑﺪﻻ ﻣﻦ ﻧﻈﺎم اﻟﻮﺻﻒ ﻓﻲ ﻋﻤﻞ و رﺳﻢ اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ‬ ‫اﻟﻬﻨﺪﺳﻴﺔ و أآﺜﺮ ﻣﺎ ﻳﺴﺘﺨﺪﻣﻪ اﻟﻤﻬﻨﺪﺳﻴﻦ ﻻﻧﻬﻢ ﻳﻬﺘﻤﻮن ﺑﺎﻟﻘﻴﻤﺔ اآﺜﺮ ﻣﻦ اﻟﺨﻮاص اﻟﺠﻴﻮﻟﻮﺟﻴﺔ .‬ ‫‪RMR Classification System‬‬ ‫ﻣﺜﺎل /‬ ‫‪130 MPa‬‬ ‫% 57‬ ‫‪2m‬‬ ‫ﺷﺮح‬ ‫‪Dry‬‬ ‫‪UCS‬‬ ‫‪RQD‬‬ ‫.‪J.S‬‬ ‫.‪Joint con‬‬ ‫‪Ground Water‬‬ ‫∑‬ ‫‪Rating‬‬ ‫51‬ ‫71‬ ‫02‬ ‫03‬ ‫01‬ ‫% 29‬ ‫: )‪RMR Classification (I‬‬ ‫. ‪- Very good Rock Mass‬‬ ‫و ﻳﺴﺘﺨﺪم ﻟﻠﻤﺸﺎرﻳﻊ و اﻷﻏﺮاض اﻟﺨﺎﺻﺔ .‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٦٢‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  28. 28. ‫أﻣﺎ رﺳﻢ اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ ﺑﻨﻈﺎم اﻟﺘﺼﻨﻴﻒ ﻓﺎﻟﺨﺮﻳﻄﺔ ﺗﻜﻮن ﺑﻬﺬا اﻟﺸﻜﻞ :‬ ‫ﻣﻼﺣﻈﺔ :-‬ ‫ﻳﺘﻄﻠﺐ ﻋﻤﻞ ﻓﺤﺺ ﻟﻠﻤﻮﻗﻊ ﻟﻜﻲ ﻳﺘﻢ ﻋﻨﻞ اﻟﺨﺮﻳﻄﺔ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ .‬ ‫ﻣﻊ ﺗﻘﺪم اﻟﻌﻠﻢ ﺗﺪﺧﻞ اﻟﺠﻴﻮﻟﻮﺟﻲ اﻟﻬﻨﺪﺳﻲ ﺑﻨﺴﺒﺔ ٠٨ %‬ ‫‪Soil and Rock Description‬‬ ‫ﺗﻌﺘﺒﺮ هﻨﺪﺳﻴﺔ و ﻳﺘﺪﺧﻞ ﺑﻬﺎ اﻟﺠﻴﻮﻟﻮﺟﻲ اﻟﻬﻨﺪﺳﻲ ﺑﻨﺴﺒﺔ ٠٢ %‬ ‫‪Soil and Rock Classification‬‬ ‫و هﻲ ﻃﺮﻳﻘﺔ ﺟﺪﻳﺪة ﻓﻲ ﻋﻤﻞ اﻟﺨﺮاﺋﻂ و ﻗﺪ ﺗﻢ اﻟﻌﻤﻞ ﺑﻬﺎ ﻓﻲ ﻋﺎم ٤٠٠٢ م .‬ ‫و اﻟﺘﺼﻨﻴﻒ اﻟﻤﺘﺒﻊ ﻓﻲ هﺬﻩ اﻟﻄﺮﻳﻘﺔ هﻮ ﺗﺼﻨﻴﻒ :‬ ‫‪RMR‬‬ ‫و ﻣﻨﻪ ﻳﺘﻢ ﻋﻤﻞ ﻧﻄﺎﻗﺎت و ﻣﻦ ﺛﻢ رﺳﻢ اﻟﺨﺮﻳﻄﺔ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ .‬ ‫و اﻟﺒﻴﺎﻧﺎت ﻣﻮﺣﺪﻩ ﻓﻲ آﻞ ﻣﻦ اﻟﻮﺻﻒ و اﻟﺘﺼﻨﻴﻒ .‬ ‫و ﻓﻲ ﺗﺼﻨﻴﻒ :‬ ‫‪RMR‬‬ ‫ﻳﻤﻜﻦ رﺳﻢ ﺧﺮﻳﻄﺔ ﺟﻴﻮﻟﻮﺟﻴﺔ هﻨﺪﺳﻴﺔ ﻟﻠﻤﺸﺎرﻳﻊ اﻟﺘﺎﻟﻴﺔ :‬ ‫.‪Slope‬‬ ‫. ‪Foundations Dam‬‬ ‫.‪Tunnels‬‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٧٢‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  29. 29. ‫‪Rock and soil description and classification for engineering‬‬ ‫‪geological mapping‬‬ ‫‪IAEG (1981). Rock and soil description and classification for‬‬ ‫‪engineering geological mapping. Bulletin of the International Association‬‬ ‫.442-532 .‪of Engineering Geology, No. 24, pp‬‬ ‫أول ﻣﺎ ﻳﺘﻢ ﻋﻤﻠﻪ ﻣﻦ ﻗﺒﻞ اﻟﺠﻴﻮﻟﻮﺟﻲ اﻟﻬﻨﺪﺳﻲ :-‬ ‫١- اﻟﺨﺮوج ﻟﻠﻤﻮﻗﻊ و ﻓﺤﺼﻪ .‬ ‫٢- اﻹآﺘﺸﺎف و اﻟﺘﻘﻴﻴﻢ و إﺟﺮاء اﻟﺘﺠﺎرب اﻟﺤﻘﻠﻴﺔ و اﻟﻤﻌﻤﻠﻴﺔ .‬ ‫٣- ﺗﻌﻴﻴﻦ اﻟﻤﺨﺎﻃﺮ و ﺗﺤﺪﻳﺪ اﻟﻨﻄﺎﻗﺎت ورﺳﻢ اﻟﺨﺮاﺋﻂ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ اﻟﻬﻨﺪﺳﻴﺔ و ﻣﻦ ﺛﻢ آﺘﺎﺑﺔ اﻟﺘﻘﺮﻳﺮ.‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٨٢‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  30. 30. Material Improvement The soil and rock improvement will include two parts; (A) Grouting, and (B) Deep Compaction. A) Grouting A.1 Definition: Injection of fluid material under pressure to improve the geotechnical character of soil and rocks and to stop or reduce water movement. Grouting is expensive and time consuming process. A.2 Purpose: Grout are used to 1. improve the quality of soil and rocks in dams, tunnel, slopes, mines and foundation. The main purpose are: 2. increase the strength by cementing the particles (cohesion) 3. prevent water by reduce pore water pressure and reduce permeability 4. stop water leakage A.3 Types of Grout: a) Particles suspensions Clay grout: clay mixed with water to form colloidal Suspension. The clay may be bentonite. the strength is low reduce the permeability • Clay and cement grout to increase the strength keeping the permeability low Cement grout: the cement water ratio is 3 to 5 to prevent clogging the pores. Bitumen: cheap grout used mainly for water stop. b) Grout admixture : Some of the grouts are a mixture of more than one type to improve the grout quality (Table 1). Table 1: The properties of some grout admixture EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٢٩ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  31. 31. Grout that accelerate setting time • Cacl2 • NaOH • Sodium silicate Grout that reduce setting time • Gypsum • lime Grout that increase plasticity and reduce Chemical c) shrinkage very fine bentonite (volcanic clay) There are grout: hundred of chemical grouts in the form of powder. The material is mixed with water in the site. The amount of powder added to water controls the setting time. The chemical composition is presented in Table 2. Table 2: The chemical grout Silicate gel Resins (Acrylic and Phenolic) Phenol-formaldehyde Acrylate Resorcinolformaldehyde Polyacrylamide Foam Am-9 DMAPN Cemex-A A.4 Site Investigation: EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٣٠ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  32. 32. 1. Geology Rocks: look for fissures, faults, or weakness zones (shear zones) Soils: Soil type and permeability 2. Geotechnical survey: 2.1 Drilling to discover the soil/rock types and boundaries. 2.2 Soil properties (k) 2.2.1 Permeability: This will tell us how easy the grouting fluid can penetrate. Should be determined in boreholes "site" k =(Q)/ 5.5 r H Q = volume of flow r = radius of casing H = differential head causing flow 2.2.2 Porosity: It gives an indication of the volume required to fill the soil (rock) with grout fluid. 2.2.3 Borehole size distribution i. if 20% passes # 200 grouting is not successful ii. grout particles < (1/10) D50 2.2.4 Pore size distribution Grout particles = soil pore size A.5 Grout selection: The correct grout for a given project is selected based on: The purpose (strength and/or water tightening) The purpose (strength and/or water tightening) The material to be treated (soil or rock) Look Table 7-4 and Table 7-17. The grout viscosity The grout grain size The availability in local market The setting time The grout price (Table 7-16). EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٣١ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  33. 33. Example (1): If the ground k-value is 5x10-3 m/s. What is the grout type if it the purpose is to increase strength. The selection of grout material based on (Figure 5.5): (1) (2) (3) Purpose. material to be treated (soil). Permeability. Answer : the grout is Asphalt Emulsion Fig. 5-5. Grout applications in loose soil. A.6 Ground Treatment: Following the selection of the grout type and ground, the area to be treated should be estimated (in square meters) and the depth of the treatment. Grouting is conducted in the following steps; Select the suitable grout type based on the properties and condition of the ground to be treated (Figure 5.5, Table 7.4, Tables 4.1-4.2 ). Check again the grout suitability based on prices (Tables 7-16). The grout is injected to the ground inside drill holes. The standard of the boreholes is shown in Figure 7.39. The depth of the drilling depends on the thickness of the layer to be treated (5 or 10 m deep). The spacing of the drill holes depends on the type of ground material, soil or rock (Table 7.9). The volume of the grout depends on the porosity of soil ( !) or the estimation of the fracture size in rocks. Example (2): Fine sand under a dam is to be treated to increase the ٣٢ EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  34. 34. strength. The ground surface area is 55 by 25 m, and treatment should be to a depth of 5 m. The soil permeability (k) is 5x10 m/s. The soil porosity (n) is 0.25. The cost of cement is SR 60 per m 3 , the relative cost of the grout to be used is 1.5. Determine • The grout type to be used • The volume of the grout • The total cost of the grout Solution (1) Use Figure 5.5 to determine the grout type based on k value and purpose (strengthening). ..... the suitable grout is Silicate gel (for strengthening). volume of the treated soil is 55x25x5 m 3 ( 6,875 m3). The volume of the grout depend on the soil porosity (n=0.25), then the volume of the grout (Vg ) is (2) The Vg . 6,875 x 0.25 = 1,718.75 m3 The total grout cost can be estimated as follow: - the grout volume is 1,718.75 m3 - the cost of cement is SR 60 per m3, which means that if the used grout was cement then it cost : 60 x 1,718 = SR 103,125 (But remember that we did not use cement). - the selected grout relative cost is 1.5, then the cost of the selected grout is: (3) 103,125 x 1.5 = SR 54,687.5 EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٣٣ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  35. 35. B) Deep Compaction: This method is restricted to soil only. The main types of deep compaction are; B-1 Static Compaction B-2 Dynamic compaction B-3 Vibrofloatation B-4 Deep blasting B-1 Static Compaction This method is slowing arid used for fine grained soil (silt and clay). Large and heavy rectangular concrete are placed on the soil for months and the soil settlement is monitored. EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٣٤ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  36. 36. B-2 Dynamic compaction (Menard, 1972) Weight of bounder (Wx) = 5 to 40 tons Dropping height (hx) = 10 to 40 m Energy = 4000 ft-ton Crater depth 1 to 3 m Effective depth (De) can be calculated from; De = (Wx hx)'/2 The average De is about 10 to 15 m B-3 Vibrofloatation Good for loose granular soils by rearranging loose cohesionless grains into denser array (Figure 4.5). It is more suitable where explosions can not be used. The degree of suitability depends on the soil PI as follow; Degree of suitability Fair to good Not suitable PI Good to excellent 0 to less than 8 more than 8 0 B- 4 Deep blasting EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٣٥ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  37. 37. Explosive compaction is carried out by setting off explosive charges in the ground. The energy released causes liquefaction of the soil close to the blast point and causes cyclic straining of the soil. This cyclic strain process increases pore water pressures and provided strain amplitudes and numbers of cycles of straining are sufficient, the soil mass liquefies (i.e. pore water pressures are temporarily elevated to the effective vertical overburden stress in the soil mass so that a heavy fluid is created). Experience has indicated that the degree of ground improvement obtained by blasting depends on the initial density of the granular subsoils. The density of loose deposits can typically increase considerably to relative densities in the range of 70 to 80%, whereas soils with initial relative densities of 60 to 70% can only be densified by a small amount. Our experience also indicates that EC generally causes volume changes equal to or in excess of what would be anticipated under design levels of earthquake shaking, as described in the attached reference paper by Gohl et al (2000). The radius of the effected area (r) is: r = (w)1/3 C where r = radial distance w = charge weight of explosive C = charge factor depending on the soil type Example: if Wt 6 x 1.2 kg charge Depth 7 m Soil is loose sand ------ this will give Settlement of 0.4 m and 10 m effective depth EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٣٦ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  38. 38. ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٧٣‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  39. 39. ‫‪IMPROVEMENT TECHNIQUES‬‬ ‫.‪1. Compaction‬‬ ‫.‪2. Dewatering‬‬ ‫.‪3. Stress and Settlement‬‬ ‫.‪4. Foundations‬‬ ‫‪5. Pilings‬‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬ ‫٨٣‬ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ 143 ‪EEG‬‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬
  40. 40. 1.Compaction Soil is extensively used as a basic material of construction. For example: dams, dikes, embankments, ramps, etc. The advantages of using soil are that it (1) is generally available everywhere, (2) is durable – it will last a long time, and (3) has a comparatively low cost. It is typically placed in layers (sometimes called lifts) with each layer being compacted to develop a final elevation and/or shape. Why Does It Need Compacted? Compaction increases a soils density. This produces the following effects: 1. increases the soil’s shear strength 2. decreases future settlement 3. decreases the soil’s permeability (also a function of soil type) 4. stable against volume change as water content or other factors change 5. relatively durable and safe against deterioration It is most appropriate to talk about a compaction energy. The compaction energy given to a soil is proportional to the pressure, speed of rolling, and the number of times it is rolled. A unique aspect of soil is encountered when one wants to maximize the density but minimize the compaction energy – which makes good business sense. For a given compaction energy, there is an optimum water content that will obtain a maximum dry density. Too little or too much water content will cause a smaller dry density. The water acts as a lubricant and allows the soil particles to squeeze together more easily. The Standard Proctor Test is a laboratory test used to determine the optimum water for a given compaction energy, for a given soil. The graph below illustrate the results obtained from a Standard Proctor test: Quick glance at the Standard Proctor test procedures (ASTM D 1557): (1) dry sample until friable (easily crumbled) with trowel (2) prepare at least 4 samples using the same soil but different moisture contents (3) wait for a specified curing time (4) compact (gives a standard energy/vol) (5) measure γ and ω. EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٣٩ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  41. 41. Types of compactors (machine images courtesy of Bomag GmbH) !Error !Error Hand Compactor (motorized and nonmotorized) !Error !Error !Error Walk Behind Double Smooth Roller !Error !Error Towed Single Roller (Vibratory or nonvibratory) !Error !Error Smooth Roller (Many times vibratory) “Sheepsfoot ” (Protrusions !Error stick out from smooth roller, can supply pressures in excess of 600 psi or 4200 kN/m2) Walk Behind Vibratory Plate Walk Behind Roller Pneumati c Roller (smooth rubber tires) Smooth Roller !Error !Error Grader (Not a compactor, but often used in conjunction with compactors) !Error Heavy Compactor/Bulldoz er (also a “Sheepsfoot” compactor) EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٤٠ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  42. 42. Soil type, water content, and type of compactor are factors that need to be considered when compacting. Compaction is often used when fill (disturbed soil from another location and transported) is used at a construction site. This implies you may be using self-propelled scrapers (earth movers), bulldozers, and graders. An earthcut or “borrow” is popular to use. A borrow is simply a hole dug (usually near the construction site) so that soil from this hole is used elsewhere as fill. Borrows and fill dirt being used at a construction site. Notice the darker top soil with the lighter subsoil. Rules of Thumb For Compacting Soils: I. Granular soils can be compacted in thicker layers (or “lifts) than silt or clay. II. Fill placed underwater (or requiring good drainage properties) should consist of granular or coarse material. III. Check to make sure natural soil is adequate for supporting compacted fill. This can be tested by rolling over it with a heavy piece of equipment and observing compaction characteristics (called “proof-rolling”). IV. Cohesionless soils usually need kneading, tamping, vibratory compacting. (Note: kneading is defined as working by folding.) Cohesive soils usually need kneading, tamping, or impact. Heavy cohesive soils can sometimes require dynamic compacting that uses large weights dropped from heights or underground dynamite with directed explosions. Compaction Control Field Testing: 1. Sand Cone – requires hole excavated, weigh the soil removed and determine the volume of the hole with sand. This is done by filling the hole with a sand of known density. 2. Washington Densometer – requires hole excavated 3. Oil Replacement – requires hole excavated, weigh the soil removed and determine the volume of the hole with a device with an expandable rubber membrane 4. Nuclear Densometer – uses a radioactive source and “counter” to determine soil density. This method has fast results with the potential for a large number of tests in a short time. It is usually calibrated with the Sand Cone method. EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٤١ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  43. 43. Compaction Characteristics and Soil Grouping in USCS Group Symbol Value as Compaction Compressibility Embankment Characteristics and Expansion Material GW Good Very Little GP Good Very Little GM Good Slight GC Good Slight SW Good Very Little SP Good Very Little SM Good Slight SC Good to Fair Slight to Medium ML Good to Poor Slight to Medium CL OL, MH, CH, OH, PT Good to Fair Medium Very Stable Reasonably Stable Reasonably Stable Reasonably Stable Very Stable Reasonably Stable when Dense Reasonably Stable when Dense Reasonably Stable Poor, gets better with high density Stable Fair to Poor High Poor, Unstable EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٤٢ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ Value as Subgrade Material Excellent Excellent to Good Excellent to Good Good Good Good to Fair Good to Fair Good to Fair Fair to Poor Fair to Poor Poor to Not Suitable ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  44. 44. 2. Dewatering When soil is excavated below or near the water table, pumps will usually be used to dewater the site. This involves creating a drawdown curve (or cone of depression) that is below the base of the excavation. Factors that are important include soil permeability, depth of water table, depth (and geometry) of excavation. Single stage dewatering The above diagram illustrates a dewatering technique using small trenches dug around the perimeter of the excavation. One can estimate the pumping requirements based upon the formula (reference: Soils In Construction, W.L. Schroeder, S.E. Dickenson, Prentice Hall 1996, pg. 162). The value D represents the radius of influence, H is the depth to an impermeable layer from the original water table, ht is the height of the water level in the interceptor ditch with respect to the impermeable layer, k is the soil’s permeability, and q is the pump per unit length of ditch. A more elaborate two-stage dewatering technique is shown in the diagram below. Multi-stage dewatering EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٤٣ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  45. 45. As a general rule, when the excavation is deep (with respect to the water table) and the soil is very permeable (i.e. gravel or sand), a high pumping rate will be required. For an excavation that extends just slightly below the water table and the soil is somewhat impermeable (i.e. clay or silt), a lower pumping rate is required. Be careful, the depth of a water table varies as a function of time for any given site! This means that the depth of the water table varies with seasons or possibly local precipitation. Drawdown curve for an excavation site with two pumps. EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٤٤ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  46. 46. 3. Stress and Settlement A strange case of Palace of Fine Arts in the Alameda area of Mexico City. Built sometime between 1900 and 1934, it was a magnificent and strongly built structure. It was built on grade, level with the square and other buildings nearby. But because of loose sand permeated with water in the subsurface, the massive structure sunk 6 ft into the ground! (Luckily, it settled evenly minimizing structural damage.) Believe it or not, in the 1960’s the building moved again. This time it moved 12 ft up! The weight of skyscrapers being built around the Palace had pushed the subsurface water and soil around sufficiently to raise the building. (Source: Why Buildings Fall Down, M. Levy and M. Salvadori, WW Norton & Company, 1992) The Milwaukee Metropolitan Sewerage District (MMSD) agreed to a $24 million settlement in a claim against the engineering firm CH2M Hill. MMSD claimed the engineering firm mis-judged the weak bedrock and potential for flooding in the designs of a 5.3-mile North Shore deep tunnel project. This project was designed to store raw sewage during rain-storms and snow melts, preventing the polluted water from fouling the area’s rivers and Lake Michigan. MMSD also agreed to pay $3.5 million to settle claims from downtown businesses. These businesses claimed water pouring into the tunnel drained ground water under downtown businesses, causing building foundations, walls, sidewalks and sewer connections to crack. (Source: Milwaukee Journal Sentinel, December 5, 1998) Worlds oldest building code, the Code of Hammurabi. Settlement and Consolidation of Soils Any structure built on soil is subject to settlement. Some settlement is inevitable and, depending on the situation, some settlements are tolerable. When building structures on top of soils, one needs to have some knowledge of how settlement occurs and predict how much and how fast settlement will occur in a given situation. Important factors that influence settlement: • • • • • Soil Permeability Soil Drainage Load to be placed on the soil History of loads placed upon the soil (normally or over-consolidated?) Water Table Settlement is caused both by soil compression and lateral yielding (movement of soil in the lateral direction) of the soils located under the loaded area. Cohesive soils usually settle from compression while cohesionless soils often settle from lateral yielding – however, both factors may play a role. Some other less common causes of settlement include dynamic forces, changes in the groundwater table, adjacent excavations, etc. Compressive deformation generally results from a reduction in the void volume, accompanied by the rearrangement of soil grains. The reduction in void volume and rearrangement of soil grains is a function of time. How these EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٤٥ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  47. 47. deformations develop with time depends on the type of soil and the strength of the externally applied load (or pressure). In soils of high permeability (e.g. coarse-grained soils), this process requires a short time interval for completion, and almost all settlement occurs by the time construction is complete. In low permeable soils (e.g. fine-grained soils) the process occurs very slowly. Thus, settlement takes place slowly and continues over a long period of time. In essence, a graph of the void ratio as a function of time for several different applied loads, provides an enormous amount of information about the settlement characteristics of a soil. Terminology Pressure (or load) is defined as the amount of weight being distributed over an amount of area. Mathematically: . Overburden pressure is the effective pressure (sometimes referred to as effective weight) of the overlaying soil. This can be calculated according to the formula P=γh where γ is the unit weight of overlaying soil and h is the depth. Normally consolidated clay has never been subjected to any loading larger than the present effective overburden pressure. The height of the soil above the clay has been fairly constant through time. Overconsolidated clay has been subjected at some time to a loading greater than the present overburden pressure. This type of clay is generally less compressible. Coefficient of consolidation, cv, is a measure of how fast and how much a sample of soil will deform under a load. A large value indicates a fast consolidation and a low value indicates a slow consolidation. Estimating Settlement in Clay and Sand How fast does the soil settle? The process of obtaining a quantitative prediction of how much a soil will settle and how fast begins with examining a plot of soil deformation as a function of time for a given load. The soil deformation will correspond to a void ratio. Figure 1 shows such a plot. Figure 1 Primary consolidation of the soil happens before point A on the graph. EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٤٦ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  48. 48. The secondary consolidation happens after point A and is characterized by a very slow settlement. The coefficient of consolidation, cv, for a particular loading is related to the shape of this graph and is defined as (1) where H is the thickness of the test specimen at 50% consolidation, and t50 is the time to 50% consolidation. One can use this parameter to calculate the time rate of settlement with equation 2 and figure 2. The time, t, to reach a particular percent of consolidation is (2) where H is the thickness of the consolidating layer, Tv is a time factor that depends of the percent consolidation and is obtained from figure 2, and cv is the coefficient of consolidation. Figure 2 How much will the soil settle? Figure 3 EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٤٧ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  49. 49. Now, to calculate the total settlement due to primary consolidation, we need to introduce the equation (derived from figure 3): (3) where S = total settlement due to primary consolidation, eo = initial void ratio of the soil in situ, e = void ratio of the soil when subjected to a total pressure (p), H = thickness of the consolidating clay layer (if the cohesive soil layer is underlain by sand and gravel then use ½H for the thickness and use H if underlain by bedrock) , p = total pressure acting at midheight of the consolidating layer, po = present effective overburden pressure at midheight of the consolidating layer. The constant Cc is the compression index and is equal to the slope of the curve indicated in figure 3. Its value can be calculated by (4) with the variables defined the same as in equation 3. Example: Consider an 8 ft clay layer beneath a building that is overlain by a stratum of permeable sand and gravel and is underlain by impermeable bedrock. The total expected consolidation settlement for the clay layer due to the footing load is 2.5 in. It is also known from laboratory tests that cv=2.68x10-3 in.2/min. Find: (1) How many years it will take for 90% of the total expected consolidation settlement to take place? (2) What amount of consolidation settlement will occur in 1 yr.? (2) (1) Work part one in reverse: t = (Tv/cv)H2 Tv = 0.848 (using U = 90% in figure 2) H = 8ft(12in/1ft) = 96 in t = (1yr)(365d/1yr)(24hr/1d)(60min/1hr) = 2 2 2 t90 = ( (0.848)(96in) )/(2.68x10 in /min) 5.26x105 min = 2.9x106 min Tv = (tcv)/H2 = ( (5.26x105 min)(2.69x10-3 or in2/min) )/(96in)2 = 0.15 Tv = 0.15 corresponds to U = 43% (figure 2.9x106 min (1hr/60min)(1d/24hr)(1yr/365d) = 5.5 2) Thus, S1yr = (2.5in)(0.43) = 1.08 in. years In sandy soils, settlement occurs fast (soil is usually settled before construction is done) and the amount of settlement is determined in a different way than cohesive soils. The maximum settlement on dry sand can be calculated by where smax is the maximum settlement (inches), q is the applied pressure (tsf), B is the width of the footing, and Nlowest is a number of blows required to drive a rod while following a standard set of procedures. It should be noted that this equation has a correction factor if the groundwater table is close to the footing. Example of a settlement analysis with a high water table and multiple soil layers EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٤٨ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  50. 50. Time of Soil Settlement Animation Illustrates primary and secondary rates of consolidation. Soil Compression Characteristics Animation Soil does not behave like a spring (i.e. it does not follow Hooke’s Law). Once compressed it rebounds only slightly upon un-loading. This animation demonstrates the different behavior for normally consolidated and over-consolidated soil. Settlement cracks that have developed in the masonry near the the Stout physics department offices in Jarvis Hall. Same crack line but on the opposite side of the wall. The crack goes right into the floor tiling. Differential settlement of the Soil Retaining wall at UW-Stout during the summer of 2001. EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٤٩ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  51. 51. 4. Foundations "On account of the fact that there is no glory attached to the foundations and that the sources of success or failure are hidden deep in the ground, building foundations have always been treated as step children and their acts of revenge for the lack of attention can be very embarrassing." Karl Terzaghi [source: Lundin, T., 2001, Are you saving nickels or dollars?, Hanson Insight newsletter, <http://www.hansonengineers.com/insight/0502/story4.htm>, May] Important aspects to be aware of: I. In the design plans, the depth of the footings should be indicated with respect to the final grade around the house. Foundation footings should be no less than 4 feet deep (Wisconsin Standard) and should not be placed onto disturbed soil. The footings need to be below the frost line. The frost line is the depth to which soil freezes during the winter. The soil above the frost line is subject to large amounts of fost heaving and shrinking (when ice melts) and can cause extreme cracking for too shallow of foundations. II. Foundation footings should be placed upon good soil. This information can be obtained by soil exploration and laboratory testing. One could also ask neighbors about their foundations and the extent of cracking in their walls. III. The sewer pipe should enter the house below the footing (sometimes at a depth of 8 inches from the bottom of the footing to the top of the pipe). The sewer pipe should have a slope of about 1/8in. every foot causing contents to move away from the house. Bearing Capacity for Shallow Foundations Structure foundations are subject not only to settlement but also to shear failures. First of all, foundations usually have the design of an inverted T. Where columns or walls are resting on a footing and the footing has an enlarged area to reduce the pressure exerted on the soil for a given load. In general, foundations must be designed to satisfy the following criteria: 1. They must be located properly (both vertically and horizontally orientation) so as not to be adversely affected by outside influences. 2. They must be safe from excessive (or non-uniform) settlement. 3. They must be safe from bearing capacity failure (shear failure). There are three modes of shear failure: general shear failure, local shear failure, and punching shear failure. These modes characterize the stress-strain dynamics that happen in certain soil types. General shear failure is identified by a well-defined wedge beneath the foundation and slip surfaces extending diagonally from the side edges of the footing downward through the soil, then upward to the ground surface. The ground surface adjacent to the footing bulges upward. Soil displacement is accompanied by tilting of the foundation (unless the foundation is restrained). The load-settlement curve for the general shear case indicates that failure is abrupt. EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٥٠ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬
  52. 52. Punching shear failure involves significant compression of a wedge-shaped soil zone beneath the foundation and is accompanied by the occurrence of vertical shear beneath the edges of the foundation. The soil zones beyond the edges of the foundation a little affected, and no significant degree of bulging occurs. Aside from a large settlement, failure is not clearly recognized. Local shear failure has elements of both general and punching shear failure. It has well-defined slip surfaces that fade into the soil mass beyond the edges of the foundation and do not carry upward to the ground surface. Slight bulging of the ground surface adjacent to the foundation does occur. Significant vertical compression takes place beneath the foundation. EEG 341 ‫ﻣﻘﺮر اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ‬ ‫ﺟﺎﻣﻌﺔ اﻟﻤﻠﻚ ﻋﺒﺪاﻟﻌﺰﻳﺰ‬ ٥١ ‫آﻠﻴﺔ ﻋﻠﻮم اﻷرض‬ ‫أد/ ﻋﺒﺎس ﺑﻦ ﻋﻴﻔﺎن اﻟﺤﺎرﺛﻲ‬ ‫ﻗﺴﻢ اﻟﺠﻴﻮﻟﻮﺟﻴﺎ اﻟﻬﻨﺪﺳﻴﺔ و اﻟﺒﻴﺌﻴﺔ‬

×