Triángulos




             1
 Definición
 Elementos
 Clasificación
 Teoremas Fundamentales
 Ejercicios




                           2
definición
Se define como la porción de plano delimitado por tres rectas que se cortan dos
a dos , o como la porción común...
elementos

            B
        Y                       Lados: AB, BC, CA
            α
                                 ...
CLASIFICACIÓN
  Los triángulos se clasifican de la siguiente manera:
 I. DE ACUERDO A SUS LADOS
 a) EQUILÁTERO: Tiene su...
c) ESCALENO : Es el que tiene tres
b) ISÓSCELES: Si tiene dos lados
                                          lados desigu...
b) OBLICUÁNGULOS : Cuando no tiene un ángulo interior recto (90° ).
   Pueden ser :
                                      ...
II. DE ACUERDO A SUS ÁNGULOS
a) RECTÁNGULO: Si uno de sus ángulos mide 90° ( ángulo recto)

  Los lados que forman dicho á...
TEOREMAS FUNDAMENTALES
1.       La suma de las medidas de los
                                           2. La medida de u...
3. La suma de las medidas de los       4. En todo triángulo, la longitud de
   ángulos exteriores , uno por vér-      uno ...
Ejercicios Resueltos
1.- En la figura : Hallar “x”                 B                         2.- En la figura: Hallar m <...
Upcoming SlideShare
Loading in …5
×

Isabel enciso apaza_presentacion2

680 views

Published on

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
680
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Isabel enciso apaza_presentacion2

  1. 1. Triángulos 1
  2. 2.  Definición  Elementos  Clasificación  Teoremas Fundamentales  Ejercicios 2
  3. 3. definición Se define como la porción de plano delimitado por tres rectas que se cortan dos a dos , o como la porción común de tres semiplanos pertenecientes a un mismo semiplano. α β λ 3
  4. 4. elementos B Y Lados: AB, BC, CA α Vértices: A, B, C Ángulos internos: Z α, β, λ A β λ Ángulos externos: X C X, Y, Z 4
  5. 5. CLASIFICACIÓN Los triángulos se clasifican de la siguiente manera:  I. DE ACUERDO A SUS LADOS  a) EQUILÁTERO: Tiene sus tres lados congruentes. Cada ángulo interior mide 60° . B 60º 60º 60º A C 5
  6. 6. c) ESCALENO : Es el que tiene tres b) ISÓSCELES: Si tiene dos lados lados desiguales. congruentes. El tercero es llamado base. Los ángulos en la base son B congruentes. B A C A BASE C 6
  7. 7. b) OBLICUÁNGULOS : Cuando no tiene un ángulo interior recto (90° ). Pueden ser : OBTUSÁNGULO : Si uno de sus ACUTÁNGULO: Si sus tres ángulos ángulos interiores es obtuso. interiores son agudos. B B θ θ µ α α β C A A C β >90° α° ; θ° ; µ° < 90° 7
  8. 8. II. DE ACUERDO A SUS ÁNGULOS a) RECTÁNGULO: Si uno de sus ángulos mide 90° ( ángulo recto) Los lados que forman dicho ángulo se llaman catetos y el opuesto a estos se llama hipotenusa. La Longitud de la hipotenusa es mayor que la de los catetos. B C α A HIPOTENUSA c T a E a > b T O 90°- α a > c A CATETO C b 8
  9. 9. TEOREMAS FUNDAMENTALES 1. La suma de las medidas de los 2. La medida de un ángulo exterior ángulos interiores de un trián- es igual a la suma de las medidas gulo es 180°. de los ángulos interiores no ad- yacentes a él. B B 1. β β α θ α x° A C A C α+ β + θ = 180° X=α+β 9
  10. 10. 3. La suma de las medidas de los 4. En todo triángulo, la longitud de ángulos exteriores , uno por vér- uno de sus lados es menor que la tice es igual a 360° . suma de las longitudes de los otros dos, pero a su vez mayor que su diferencia. B y Si: c<b<a b<a + c b>a–c x z A C a–c<b<a+c x+ y + z = 360° 10
  11. 11. Ejercicios Resueltos 1.- En la figura : Hallar “x” B  2.- En la figura: Hallar m < BAC 20º 100º B x α A C 98º 2x Solución 40º X + 30º A ABD, isósceles : AB = BD C D DBC, isósceles: BC = BD Resolución: Del gráfico vemos que m< BAC= x = ? Luego: ABC, Isósceles ya que AB = BC Por el teorema del ángulo exterior α = 30º y x = 20º + α m < externo = m < A + m < B 2x + x + 30 = x + 98 x = 50º 2x = 68º x = 34º 11

×