Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
El valor de un Swap y el cálculo del cupón. Pablo García Estévez © E       l valor de un Swap1 es igual a la diferencia en...
El Valor de un Swap y el Cálculo del cupón                         2                                                      ...
El Valor de un Swap y el Cálculo del cupón          3                                                                     ...
Upcoming SlideShare
Loading in …5
×

El valor de un swap y el calculo del cupon

1,836 views

Published on

  • Be the first to comment

  • Be the first to like this

El valor de un swap y el calculo del cupon

  1. 1. El valor de un Swap y el cálculo del cupón. Pablo García Estévez © E  l valor de un Swap1 es igual a la diferencia entre las ramas variable y fija. El valor de la rama fija se  calcula como si de un bono de cupón fijo se tratase: se valoran los flujos de caja futuros al tipo de  descuento adecuado. Éste es el tipo cupón cero que existe en el mercado para ese vencimiento.  Por ejemplo, si la rama fija es de tres años y paga un cupón del 3%, ésta se valorará de la siguiente manera:  3 3 103   1 0 1 0 1 0Siendo 0ri el tipo cupón cero hasta el año i.  El  problema  está  en  la  valoración  de  la  rama  variable  al  no  conocer  los  valores  del  tipo  de  interés  de referencia del futuro. La rama variable calcula los cupones a periodo vencido. Es decir, el cupón del periodo n se calcula con el tipo de interés del periodo n‐1. De este modo la rama variable se actualizaría así:  0 1 2 1   1 0 1 0 1 0 1 0Siendo iR1 el tipo de interés de referencia de la rama variable del periodo i + 1. Si asumimos que iR1 es el tipo a plazo implícito, entonces podemos establecer la siguiente ecuación:  1 1 1 0  Podemos operar la ecuación para transformarla así:  1 0 1 1 1 0  Despejamos  1 0 1 1  1 0 1 0 1  1 0Si sustituimos esto en la ecuación de la rama variable:  1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0   1 0 1 0 1 0 1 0Si operamos los corchetes (mostramos sólo los periodos segundo y tercero)                                                             1  En este trabajo nos referiremos a un Swap Genérico (Plain Vanilla). Esto es, un Swap de tipos de interés (IRS) en donde sólo se intercambian intereses y una rama es fija mientras que la otra es variable. 
  2. 2. El Valor de un Swap y el Cálculo del cupón  2  Pablo García Estévez ©  1 0 1 0 1 0 1 0   1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0   1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0   1 0 1 0 1 0 1 0Como se puede observar los diferentes términos se van anulando sucesivamente. Al final, el valor actual de la rama variable es igual a la actualización del primer cupón mas el principal:  0   1 0El valor del Swap es entonces la diferencia entre el valor de la rama fija y variable. ¿Para qué sirva calcular el valor de un Swap? Para poder salirse de él sin tener que hacer un Swap en contrario. Si un inversor está en la rama variable de un Swap y los tipos de interés suben, puede salirse del Swap calculando la cantidad de dinero que va a recibir por la rama fija y la cantidad de dinero que tiene que pagar por la rama variable. Diferencia es el valor del Swap; el inversor abona a la contraparte fija esa cantidad y ya puede salirse de él.  Veamos un ejemplo. Swap IRS Vencimiento: 3 años LIBOR a 6 meses: 4% Cupón Swap: 4,15% ETTI: A un año 3,98%; a dos años 4,15%; a tres años 4,25% Nominal: 100 millones   A B C D E F 1 Calendario Tipo fijo Tipo Variable Factor descuento Tipo fijo act Tipo Var act 2 0,0 -100.000.000 -100.000.000 -100.000.000 -100.000.000 3 0,5 102.027.778 0,98067 100.056.089 4 1,0 4.150.000 0,96172 3.991.152 5 2,0 4.150.000 0,92189 3.825.864 6 3,0 104.150.000 0,88262 91.924.459 7 99.741.475 100.056.089 8 Recibe Paga 9 -314.613 En este caso el inversor deberá abonar 314.613 euros para salirse del Swap.En la primera columna establecemos el calendario de pagos. Como la parte variable paga semestralmente, aparece 0,5 indicando ese momento. La rama fija, sin embargo, paga de manera anual durante tres años. En  la  columna  B  y  C  se  han  calculado  los  flujos  de  la  parte  variable  y  fija.  La  parte  fija  es  el  4,15%  del nominal. El cupón de la rama variable se le debe hacer dos ajustes. Uno para calcular el cupón semestral que  consiste  en  dividir  entre  dos  al  cupón.  El  segundo  consiste  en  transformar  la  manera  de  contar  los 
  3. 3. El Valor de un Swap y el Cálculo del cupón  3  Pablo García Estévez © intereses con el LIBOR (año comercial) a la manera de contar los intereses en los bonos (año natural). De este modo el cupón se calcularía como sigue:  100.000.000 4% 365 2.027.778  360 2En la columna D se ha calculado los factores de actualización utilizando los tipos cupón cero. En la columna E y F se ha actualizado los cupones de las columnas B y C multiplicándolos por los factores de actualización de la columna D.  Las sumas de las columnas E y F son los valores de cada rama y la diferencia el valor del Swap.  Si lo que quisiéramos es calcular el cupón Swap, deberemos establecer la ecuación de equilibrio del Swap por la que el valor de las dos ramas se iguala, siendo en este caso la incógnita a calcular el cupón fijo.  102.027.778 100.000.000   1,0398 , 1,0398 1,0415 1,0425En este caso C vale un 4,26% del nominal.  En estas condiciones el Swap cotiza a  4,26%. Un inversor que quiera entrar en este Swap lo haría con un cupón fijo de 4,26% 

×