STRING Predicting novel metabolic pathways through the integration of diverse genome-scale data Lars Juhl Jensen EMBL Heid...
Too much information – too little knowledge <ul><li>Biology is now in the age of large-scale data collection </li></ul><ul...
STRING provides a network of functional interactions between proteins Genomic neighborhood Species co-occurrence Gene fusi...
Inferring functional modules from gene presence/absence patterns T rends in Microbiology Resting protuberances Protracted ...
Score calibration against a common reference <ul><li>Many diverse types of evidence </li></ul><ul><ul><li>The quality of e...
Multiple evidence types from several species
Objective definition of metabolic pathways Image: Molecular Biology of the Cell, 3 . rd edition Metabolism overview Define...
Getting more specific – generally speaking
Acknowledgments <ul><li>The STRING team </li></ul><ul><ul><li>Christian von Mering </li></ul></ul><ul><ul><li>Berend Snel ...
Thank you!
Upcoming SlideShare
Loading in …5
×

STRING - Predicting novel metabolic pathways through the integration of diverse genome-scale data

1,034 views

Published on

12th International Conference on Intelligent Systems for Molecular Biology, BioPathways SIG, Scottish Exhibition & Conference Center, Glasgow, Scotland, July 29-August 4, 2004

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,034
On SlideShare
0
From Embeds
0
Number of Embeds
11
Actions
Shares
0
Downloads
9
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • STRING - Predicting novel metabolic pathways through the integration of diverse genome-scale data

    1. 1. STRING Predicting novel metabolic pathways through the integration of diverse genome-scale data Lars Juhl Jensen EMBL Heidelberg
    2. 2. Too much information – too little knowledge <ul><li>Biology is now in the age of large-scale data collection </li></ul><ul><ul><li>Explosive increase in data from genome sequencing, microarray expression studies, screening for protein interactions etc. </li></ul></ul><ul><ul><li>The data types are highly heterogeneous </li></ul></ul><ul><ul><li>Much data is not being deposited in standardized repositories </li></ul></ul><ul><ul><li>Most data sets are error-prone and suffer from systematic biases </li></ul></ul><ul><li>STRING is a web resource that integrates many different types of information across 100+ species </li></ul><ul><ul><li>Objective definition of metabolic pathways / functional modules </li></ul></ul><ul><ul><li>Prediction of additional pathway members / novel pathways </li></ul></ul><ul><li>We do not intend STRING to be </li></ul><ul><ul><li>a primary repository for experimental data </li></ul></ul><ul><ul><li>a curated database of complexes or pathways </li></ul></ul><ul><ul><li>a substitute for expert annotation </li></ul></ul>
    3. 3. STRING provides a network of functional interactions between proteins Genomic neighborhood Species co-occurrence Gene fusions Database imports Exp. interaction data Microarray expression data Literature co-mentioning
    4. 4. Inferring functional modules from gene presence/absence patterns T rends in Microbiology Resting protuberances Protracted protuberance Cellulose © Trends Microbiol, 1999 Cell Cell wall Anchoring proteins Cellulosomes Cellulose The “Cellulosome”
    5. 5. Score calibration against a common reference <ul><li>Many diverse types of evidence </li></ul><ul><ul><li>The quality of each is judged by very different raw scores </li></ul></ul><ul><ul><li>These are all calibrated against the same reference set </li></ul></ul><ul><li>Requirements for a reference </li></ul><ul><ul><li>Must represent a compromise of the all types of evidence </li></ul></ul><ul><ul><li>Broad species coverage </li></ul></ul><ul><li>Both a strength and a weakness </li></ul><ul><ul><li>Scores for all evidence types are directly comparable </li></ul></ul><ul><ul><li>The type of interaction is currently not predicted </li></ul></ul>
    6. 6. Multiple evidence types from several species
    7. 7. Objective definition of metabolic pathways Image: Molecular Biology of the Cell, 3 . rd edition Metabolism overview Defined manually: cutting metabolic maps into pathways Purine biosynthesis Histidine biosynthesis Defined objectively: standard clustering of genome-scale data
    8. 8. Getting more specific – generally speaking
    9. 9. Acknowledgments <ul><li>The STRING team </li></ul><ul><ul><li>Christian von Mering </li></ul></ul><ul><ul><li>Berend Snel </li></ul></ul><ul><ul><li>Martijn Huynen </li></ul></ul><ul><ul><li>Daniel Jaeggi </li></ul></ul><ul><ul><li>Steffen Schmidt </li></ul></ul><ul><ul><li>Mathilde Foglierini </li></ul></ul><ul><ul><li>Peer Bork </li></ul></ul><ul><li>ArrayProspector web service </li></ul><ul><ul><li>Julien Lagarde </li></ul></ul><ul><ul><li>Chris Workman </li></ul></ul><ul><li>NetView visualization tool </li></ul><ul><ul><li>Sean Hooper </li></ul></ul><ul><li>Analysis of yeast cell cycle </li></ul><ul><ul><li>Ulrik de Lichtenberg </li></ul></ul><ul><ul><li>Thomas Skøt </li></ul></ul><ul><ul><li>Anders Fausbøll </li></ul></ul><ul><ul><li>Søren Brunak </li></ul></ul><ul><li>Web resources </li></ul><ul><ul><li>string.embl.de </li></ul></ul><ul><ul><li>www.bork.embl.de/ArrayProspector </li></ul></ul><ul><ul><li>www.bork.embl.de/synonyms </li></ul></ul>
    10. 10. Thank you!

    ×