Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

From Enriched Museum Collections to Social Web and TV: Seminar at BBC


Published on

Presentaiton by Lora Aroyo and Guus Schreiber
July 7, 2010

Published in: Technology, Education
  • Be the first to comment

From Enriched Museum Collections to Social Web and TV: Seminar at BBC

  1. 1. Integra(ng  Social  Web  &  TV    with  help  of  seman(cs   Lora  Aroyo  &  Guus  Schreiber   Computer  Science   VU  University  Amsterdam  
  2. 2. Seman(c  Web  @  VU  Amsterdam   •  40  people,  two  groups:  Web  &  Media  (Schreiber),   Knowledge  Representa(on  &  Reasoning  (van   Harmelen)   •  A  few  ongoing  projects:   –  EU  culture  portal   –  NL  projects  on  access  to  cultural  heritage:  CHIP,  Agora   –  EU  NoTube:  Web  &  TV  seman(c  integra(on   –  PrestoPrime:  user-­‐generated  annota(ons  and  content  for   TV  archives   –  EU  LarKC:  plaRorm  for  massive  distributed  reasoning  
  3. 3. The  Linked  Data  Web:     typed  resources  and  links   Painting Dublin Core ULAN “Woman with hat SFMOMA creator Henri Matisse Web link URL URL
  4. 4. Demo  using  linked  data  (RPI,  Hendler)  
  5. 5. The  power  of  simple  alignments   “Tokugawa” AAT style/period SVCN Edo (Japanese period) period Tokugawa Edo AAT is Getty’s SVCN is local in-house Art & Architecture Thesaurus ethnology thesaurus
  6. 6. hVp://e-­‐culture.mul(    
  7. 7. Europeana  Thought  Lab  cloud  
  8. 8. From  metadata  to     seman(c  metadata   SKOS EDM 1. Make vocabulary 2. Align metadata interoperable schema 4. Align vocabulary 3. Enrich metadata
  9. 9. Enriching  the  metadata  
  10. 10. Resul(ng  seman(c  annota(on    
  11. 11. Personalized  Rijksmuseum NoTube 1st review
  12. 12. Personalized  Rijksmuseum 05-06 May NoTube 1st review 15 2010
  13. 13. Mobile  Museum  Tour
  14. 14. Crowdsourcing:  Video  Tagging  Games
  15. 15. NoTube:     Making  Television  More  Personal   hVp://    
  16. 16. Acronym  and  consor(um  
  17. 17. NoTube  slogan:   Pu#ng  the  user  back  in  the  driving  seat   Observa(ons:     •  Personalized  services  are  now  common     •  But:  user  data  is  s(ll  under  control  of   separate  applica(ons   •  Result:  user  is  faced  with  mul(tude  of   distributed  personal  data,  hidden  in  tons   of  inaccessible  cookies  
  18. 18. NoTube  building  blocks  (1)   1.  TV  metadata  services   EPG  metadata  grabbers     –  from  170+  channels  (issue:  channel  URLs)   –  metadata  format:  TV  Any(me     –  real-­‐(me  service     2.  Metadata  enrichment     – Add  links  to  external  Web  vocabularies  and   repositories:  Lupedia  service  
  19. 19. NoTube  building  blocks  (2)   3.  Linked  Open  Data  for  TV   –  Access  services  to  major  vocabularies     –  Alignment  services  between  major  vocabularies,  where   needed  (e.g.  genre  typologies)   4.  User  acKvity  streams   –  Standard  for  ac(vity  stream  representa(on,  i.e.  Atom   Ac(vity  Stream   –  Access  services  to  ac(vity  streams,  e.g.  YouTube,  TwiVer,  ..   –  Trusted  access  to  “friend”  informa(on,  e.g.   implementa(on  of  standard  like  OAuth  2.0  
  20. 20. NoTube  building  blocks  (3)   5.  User  profiling   Services  for  genera(ng  user  preferences    –  “Beancounter”    –  abstrac(ons  from  ac(vity  stream     User-­‐model  representa(on  based  on  FOAF,  i.e.  weighted   interests  and  considering  context   6.  Recommender  services     Collabora(ve  recommenders,  e.g.  preferences  of  friends   Content-­‐based  recommenders,  e.g.  program  about  Alma  Mahler     program  about  Walter  Gropius     Experiment  with  mix  of  these  recommenders  for  single  users   and  small  groups  of  users,  e.g.  families,  friends  
  21. 21. Usage  scenario  &  demo  
  22. 22. Thank  you   Ques(ons?   A world of opportunities is opening!