SlideShare a Scribd company logo
1 of 6
Download to read offline
www.scling.com
AI - legal & ethics
2020-10-09
Lars Albertsson, Scling
1
www.scling.com
Machines and decisions
2
Humans
● Infrequent decisions
● New situations
Rules
● Situations that can be
solved by a recipe
Machine learning
● Some classes of problems
(recognition, prediction, games, …)
● Needs lots of examples
www.scling.com
Trivial example of learning software
3
If we know a child's age - can
we predict its height?
Expert:
"They seem to grow linearly."
height ~= age * 7 + 51
weights
https://www.mdpi.com/2072-4292/12/10/1667/htm
www.scling.com
What could possibly go wrong?
No human to inspect
● Is input sensible?
● Is output sensible?
● Individual adaptations?
● Consistent over time?
● Consistent over input?
4
5 years 86 cm
7 years 100 cm
12 years 100 cm
47 years 379 cm
213 years 1541 cm
-3 years 29 cm
We can handle this.
If we anticipate and prepare.
www.scling.com
AI is difficult, really difficult
5https://arxiv.org/abs/1602.04938
https://www.experfy.com/blog/robust-ai-protecting-neural-networks-against-adversarial-attacks/
www.scling.com
AI and society
6
● Short-term impact from AI is small. Long-term impact is massive.
● Can be explainable
○ Holistic vs step-by-step design
● Can be constrained
○ E.g. disregard ethnicity, gender
● Can be monitored
○ E.g. report conviction / resemblance to training data
● Regulations unavoidable
○ Weapons, face recognition, propaganda
○ Require tech + legal + political collaboration
Tech world cannot be
trusted to handle this alone.
Political / legal world is not
capable of handling this alone.

More Related Content

More from Lars Albertsson

Crossing the data divide
Crossing the data divideCrossing the data divide
Crossing the data divideLars Albertsson
 
Schema management with Scalameta
Schema management with ScalametaSchema management with Scalameta
Schema management with ScalametaLars Albertsson
 
How to not kill people - Berlin Buzzwords 2023.pdf
How to not kill people - Berlin Buzzwords 2023.pdfHow to not kill people - Berlin Buzzwords 2023.pdf
How to not kill people - Berlin Buzzwords 2023.pdfLars Albertsson
 
Data engineering in 10 years.pdf
Data engineering in 10 years.pdfData engineering in 10 years.pdf
Data engineering in 10 years.pdfLars Albertsson
 
The 7 habits of data effective companies.pdf
The 7 habits of data effective companies.pdfThe 7 habits of data effective companies.pdf
The 7 habits of data effective companies.pdfLars Albertsson
 
Holistic data application quality
Holistic data application qualityHolistic data application quality
Holistic data application qualityLars Albertsson
 
Secure software supply chain on a shoestring budget
Secure software supply chain on a shoestring budgetSecure software supply chain on a shoestring budget
Secure software supply chain on a shoestring budgetLars Albertsson
 
DataOps - Lean principles and lean practices
DataOps - Lean principles and lean practicesDataOps - Lean principles and lean practices
DataOps - Lean principles and lean practicesLars Albertsson
 
The right side of speed - learning to shift left
The right side of speed - learning to shift leftThe right side of speed - learning to shift left
The right side of speed - learning to shift leftLars Albertsson
 
Mortal analytics - Covid-19 and the problem of data quality
Mortal analytics - Covid-19 and the problem of data qualityMortal analytics - Covid-19 and the problem of data quality
Mortal analytics - Covid-19 and the problem of data qualityLars Albertsson
 
Data ops in practice - Swedish style
Data ops in practice - Swedish styleData ops in practice - Swedish style
Data ops in practice - Swedish styleLars Albertsson
 
The lean principles of data ops
The lean principles of data opsThe lean principles of data ops
The lean principles of data opsLars Albertsson
 
Engineering data quality
Engineering data qualityEngineering data quality
Engineering data qualityLars Albertsson
 
Eventually, time will kill your data processing
Eventually, time will kill your data processingEventually, time will kill your data processing
Eventually, time will kill your data processingLars Albertsson
 
Taming the reproducibility crisis
Taming the reproducibility crisisTaming the reproducibility crisis
Taming the reproducibility crisisLars Albertsson
 
Eventually, time will kill your data pipeline
Eventually, time will kill your data pipelineEventually, time will kill your data pipeline
Eventually, time will kill your data pipelineLars Albertsson
 
Kubernetes as data platform
Kubernetes as data platformKubernetes as data platform
Kubernetes as data platformLars Albertsson
 
Don't build a data science team
Don't build a data science teamDon't build a data science team
Don't build a data science teamLars Albertsson
 

More from Lars Albertsson (20)

Crossing the data divide
Crossing the data divideCrossing the data divide
Crossing the data divide
 
Schema management with Scalameta
Schema management with ScalametaSchema management with Scalameta
Schema management with Scalameta
 
How to not kill people - Berlin Buzzwords 2023.pdf
How to not kill people - Berlin Buzzwords 2023.pdfHow to not kill people - Berlin Buzzwords 2023.pdf
How to not kill people - Berlin Buzzwords 2023.pdf
 
Data engineering in 10 years.pdf
Data engineering in 10 years.pdfData engineering in 10 years.pdf
Data engineering in 10 years.pdf
 
The 7 habits of data effective companies.pdf
The 7 habits of data effective companies.pdfThe 7 habits of data effective companies.pdf
The 7 habits of data effective companies.pdf
 
Holistic data application quality
Holistic data application qualityHolistic data application quality
Holistic data application quality
 
Secure software supply chain on a shoestring budget
Secure software supply chain on a shoestring budgetSecure software supply chain on a shoestring budget
Secure software supply chain on a shoestring budget
 
DataOps - Lean principles and lean practices
DataOps - Lean principles and lean practicesDataOps - Lean principles and lean practices
DataOps - Lean principles and lean practices
 
The right side of speed - learning to shift left
The right side of speed - learning to shift leftThe right side of speed - learning to shift left
The right side of speed - learning to shift left
 
Mortal analytics - Covid-19 and the problem of data quality
Mortal analytics - Covid-19 and the problem of data qualityMortal analytics - Covid-19 and the problem of data quality
Mortal analytics - Covid-19 and the problem of data quality
 
Data ops in practice - Swedish style
Data ops in practice - Swedish styleData ops in practice - Swedish style
Data ops in practice - Swedish style
 
The lean principles of data ops
The lean principles of data opsThe lean principles of data ops
The lean principles of data ops
 
Data democratised
Data democratisedData democratised
Data democratised
 
Engineering data quality
Engineering data qualityEngineering data quality
Engineering data quality
 
Eventually, time will kill your data processing
Eventually, time will kill your data processingEventually, time will kill your data processing
Eventually, time will kill your data processing
 
Taming the reproducibility crisis
Taming the reproducibility crisisTaming the reproducibility crisis
Taming the reproducibility crisis
 
Eventually, time will kill your data pipeline
Eventually, time will kill your data pipelineEventually, time will kill your data pipeline
Eventually, time will kill your data pipeline
 
Data ops in practice
Data ops in practiceData ops in practice
Data ops in practice
 
Kubernetes as data platform
Kubernetes as data platformKubernetes as data platform
Kubernetes as data platform
 
Don't build a data science team
Don't build a data science teamDon't build a data science team
Don't build a data science team
 

Recently uploaded

IBEF report on the Insurance market in India
IBEF report on the Insurance market in IndiaIBEF report on the Insurance market in India
IBEF report on the Insurance market in IndiaManalVerma4
 
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...Dr Arash Najmaei ( Phd., MBA, BSc)
 
Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...
Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...
Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...Boston Institute of Analytics
 
DATA ANALYSIS using various data sets like shoping data set etc
DATA ANALYSIS using various data sets like shoping data set etcDATA ANALYSIS using various data sets like shoping data set etc
DATA ANALYSIS using various data sets like shoping data set etclalithasri22
 
Digital Indonesia Report 2024 by We Are Social .pdf
Digital Indonesia Report 2024 by We Are Social .pdfDigital Indonesia Report 2024 by We Are Social .pdf
Digital Indonesia Report 2024 by We Are Social .pdfNicoChristianSunaryo
 
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...Jack Cole
 
Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...
Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...
Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...ThinkInnovation
 
Decision Making Under Uncertainty - Is It Better Off Joining a Partnership or...
Decision Making Under Uncertainty - Is It Better Off Joining a Partnership or...Decision Making Under Uncertainty - Is It Better Off Joining a Partnership or...
Decision Making Under Uncertainty - Is It Better Off Joining a Partnership or...ThinkInnovation
 
Bank Loan Approval Analysis: A Comprehensive Data Analysis Project
Bank Loan Approval Analysis: A Comprehensive Data Analysis ProjectBank Loan Approval Analysis: A Comprehensive Data Analysis Project
Bank Loan Approval Analysis: A Comprehensive Data Analysis ProjectBoston Institute of Analytics
 
Presentation of project of business person who are success
Presentation of project of business person who are successPresentation of project of business person who are success
Presentation of project of business person who are successPratikSingh115843
 
Statistics For Management by Richard I. Levin 8ed.pdf
Statistics For Management by Richard I. Levin 8ed.pdfStatistics For Management by Richard I. Levin 8ed.pdf
Statistics For Management by Richard I. Levin 8ed.pdfnikeshsingh56
 
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis modelDecoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis modelBoston Institute of Analytics
 
Role of Consumer Insights in business transformation
Role of Consumer Insights in business transformationRole of Consumer Insights in business transformation
Role of Consumer Insights in business transformationAnnie Melnic
 

Recently uploaded (16)

IBEF report on the Insurance market in India
IBEF report on the Insurance market in IndiaIBEF report on the Insurance market in India
IBEF report on the Insurance market in India
 
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
 
Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...
Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...
Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...
 
DATA ANALYSIS using various data sets like shoping data set etc
DATA ANALYSIS using various data sets like shoping data set etcDATA ANALYSIS using various data sets like shoping data set etc
DATA ANALYSIS using various data sets like shoping data set etc
 
2023 Survey Shows Dip in High School E-Cigarette Use
2023 Survey Shows Dip in High School E-Cigarette Use2023 Survey Shows Dip in High School E-Cigarette Use
2023 Survey Shows Dip in High School E-Cigarette Use
 
Digital Indonesia Report 2024 by We Are Social .pdf
Digital Indonesia Report 2024 by We Are Social .pdfDigital Indonesia Report 2024 by We Are Social .pdf
Digital Indonesia Report 2024 by We Are Social .pdf
 
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
 
Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...
Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...
Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...
 
Decision Making Under Uncertainty - Is It Better Off Joining a Partnership or...
Decision Making Under Uncertainty - Is It Better Off Joining a Partnership or...Decision Making Under Uncertainty - Is It Better Off Joining a Partnership or...
Decision Making Under Uncertainty - Is It Better Off Joining a Partnership or...
 
Bank Loan Approval Analysis: A Comprehensive Data Analysis Project
Bank Loan Approval Analysis: A Comprehensive Data Analysis ProjectBank Loan Approval Analysis: A Comprehensive Data Analysis Project
Bank Loan Approval Analysis: A Comprehensive Data Analysis Project
 
Presentation of project of business person who are success
Presentation of project of business person who are successPresentation of project of business person who are success
Presentation of project of business person who are success
 
Statistics For Management by Richard I. Levin 8ed.pdf
Statistics For Management by Richard I. Levin 8ed.pdfStatistics For Management by Richard I. Levin 8ed.pdf
Statistics For Management by Richard I. Levin 8ed.pdf
 
Insurance Churn Prediction Data Analysis Project
Insurance Churn Prediction Data Analysis ProjectInsurance Churn Prediction Data Analysis Project
Insurance Churn Prediction Data Analysis Project
 
Data Analysis Project: Stroke Prediction
Data Analysis Project: Stroke PredictionData Analysis Project: Stroke Prediction
Data Analysis Project: Stroke Prediction
 
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis modelDecoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis model
 
Role of Consumer Insights in business transformation
Role of Consumer Insights in business transformationRole of Consumer Insights in business transformation
Role of Consumer Insights in business transformation
 

Ai legal and ethics

  • 1. www.scling.com AI - legal & ethics 2020-10-09 Lars Albertsson, Scling 1
  • 2. www.scling.com Machines and decisions 2 Humans ● Infrequent decisions ● New situations Rules ● Situations that can be solved by a recipe Machine learning ● Some classes of problems (recognition, prediction, games, …) ● Needs lots of examples
  • 3. www.scling.com Trivial example of learning software 3 If we know a child's age - can we predict its height? Expert: "They seem to grow linearly." height ~= age * 7 + 51 weights https://www.mdpi.com/2072-4292/12/10/1667/htm
  • 4. www.scling.com What could possibly go wrong? No human to inspect ● Is input sensible? ● Is output sensible? ● Individual adaptations? ● Consistent over time? ● Consistent over input? 4 5 years 86 cm 7 years 100 cm 12 years 100 cm 47 years 379 cm 213 years 1541 cm -3 years 29 cm We can handle this. If we anticipate and prepare.
  • 5. www.scling.com AI is difficult, really difficult 5https://arxiv.org/abs/1602.04938 https://www.experfy.com/blog/robust-ai-protecting-neural-networks-against-adversarial-attacks/
  • 6. www.scling.com AI and society 6 ● Short-term impact from AI is small. Long-term impact is massive. ● Can be explainable ○ Holistic vs step-by-step design ● Can be constrained ○ E.g. disregard ethnicity, gender ● Can be monitored ○ E.g. report conviction / resemblance to training data ● Regulations unavoidable ○ Weapons, face recognition, propaganda ○ Require tech + legal + political collaboration Tech world cannot be trusted to handle this alone. Political / legal world is not capable of handling this alone.