Systems Biology and Medicine: Understanding disease by understanding the networks of Life - Hans V. Westerhoff and friends

Lake Como School of Advanced Studies
Lake Como School of Advanced StudiesLake Como School of Advanced Studies

SYSTEMS BIOLOGY AND SYSTEMS MEDICINE: TOWARDS A PRECISION MEDICINE September 26-30, 2016

Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 1
Systems Biology and 
Medicine:
Understanding disease 
by understanding the 
networks of Life
Hans V. Westerhoff
and friends
Synthetic Systems Biology, SILS, NISB, the University of Amsterdam, and
Molecular Cell Physiology, NISB, VU University Amsterdam, Amsterdam, NL, EU, and
Manchester Centre for Integrative Systems Biology, Manchester, UK, EU
The second Systems Biology & Systems Medicine  (SyBSyM)
School,  25‐29 September 2016, Como
Please logon to wifi:  SVILUPPOCOMO  PASSWORD:  SEE NOTES OR grumello20
Towards Individualized 
Systems Medicine
Hans V. Westerhoff
and friends
Synthetic Systems Biology, SILS, NISB, the University of Amsterdam, and
Molecular Cell Physiology, NISB, VU University Amsterdam, Amsterdam, NL, EU, and
Manchester Centre for Integrative Systems Biology, Manchester, UK, EU
The first Systems Biology & Systems Medicine  (SyBSyM)
School,  21‐27 September 2014, Como
Systems Medicine 2016
A unique course:
Small and intensive
The menu
Prepare to vote
Voting is anonymous
TXT 1
2
Internet 1
2
Twitter 1
2
The text on this slide will instruct your audience on how to vote. This
text will only appear once you start a free or a credit session.
Please note that the text and appearance of this slide (font, size,
color, etc.) cannot be changed.
What is special about 1996?
A. First recombinant DNA implementation
B. First sequenced genomes published
C. Structure of DNA discovered
D. Anti sense RNA discovered
The question will open when you
start your session and slideshow.
Internet This text box will be used to describe the different message sending methods.
TXT The applicable explanations will be inserted after you have started a session.
Twitter It is possible to move, resize and modify the appearance of this text box.
# Votes: 0
# Persons: 0
Closed
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 2
What is special about 1996?
Closed
A.
B.
C.
D.
First recombinant DNA 
implementation
First sequenced 
genomes published
Structure of DNA 
discovered
Anti sense RNA 
discovered
26.7%
66.7%
0.0%
6.7%
State of the field in 1995
Components
and  physiology
?
But no robust 
understanding of their 
relationships
Prepare to react
Posting messages is anonymous
TXT 1
2
Internet 1
2
Twitter 1
2
The text on this slide will instruct your audience on how to post. This
text will only appear once you start a free or a credit session.
Please note that the text and appearance of this slide (font, size,
color, etc.) cannot be changed.
What remained to be discovered in 2000?
1. Your audience's
responses will appear
here. Please feel free
to change the font,
color etc. This text
disappears after
starting your session
and slideshow.
2. Your audience's
responses will appear
here. Please feel free
to change the font,
color etc. This text
disappears after
starting your session
and slideshow.
3. Your audience's
responses will appear
here. Please feel free
to change the font,
color etc. This text
disappears after
starting your session
and slideshow.
Internet This text box will be used to describe the different message sending methods.
TXT The applicable explanations will be inserted after you have started a session.
Twitter It is possible to move, resize and modify the appearance of this text box.
# Messages:
0 (0%
correct)
What remained to be discovered
• Origin of Life
• Why present day diseases tend to elude 
molecule based therapies
• Why diseases are ‘undemocratic’
• How diseases are multifactorial
• Why individuals and cell populations are 
heterogeneous
• Why diseases are sometimes unpredictable
It was time for 
Systems Biology
• i.e. a new Science
• aiming to understand
• principles governing
• how the biological 
functions
• arise from the
interactions
Now it is also time 
for Systems Medicine
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 3
Where Systems Biology made the difference
genomicstranscriptomics
proteomics
metabolomics
structural biology
biophysics biology
biochemistry
physiology
Systems Biology: 
‐integrates different types of data into predictive models
‐makes data predictive and function predictable
‐uniquely shows how networking produces (dis‐)function
Example 1: the genome wide metabolic map:
components integration into function
food1
food2
food3
Data concerning all metabolic genes have hereby been integrated into a predictive format
Predicting how every molecule in our body is made by our body
Example 2: The old (<2000)  paradigm was: 
Disease is due to a sick molecule
Impaired function
+ X
Cause
If you think that this was (is) not a 
dominant view of disease, then
consider:
‘This is the key disfunction in this disease’
‘Key gene’
‘Blockbuster drug’
‘The rate limiting …..’
The search for the oncogene
First paradigm: Disease is caused by a single factor
• Pest
• Malaria
• Tuberculosis
• Cancer
• Obesity
• Heart disease
• ….
• Ulcers…..
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 4
What (type of) evidence would show that a
disease is monofactorial?
1. Your audience's
responses will appear
here. Please feel free
to change the font,
color etc. This text
disappears after
starting your session
and slideshow.
2. Your audience's
responses will appear
here. Please feel free
to change the font,
color etc. This text
disappears after
starting your session
and slideshow.
3. Your audience's
responses will appear
here. Please feel free
to change the font,
color etc. This text
disappears after
starting your session
and slideshow.
Internet This text box will be used to describe the different message sending methods.
TXT The applicable explanations will be inserted after you have started a session.
Twitter It is possible to move, resize and modify the appearance of this text box.
# Messages:
0
What (type of) evidence is there then for
most diseases that they are
monofactorial?
Cancer Diabetes Heart dis Malaria TBC
Quarantaine helps     
Single pathology     
Immunization helps     
Mendelian inheritance     
GWAS  giving factors with high penetrance     
Single drug helps      
Is there from embryo onwards     
How could we explain all these features of present
day diseases?
A. In reality each disease is: many different yet similar
diseases
B. Diseases are due to a malfunctioning network
C. Gene redundancy
D. Many proteins consists of multiple polypeptide chains
E. Proteins can become phosphorylated
F. Diseases do not have a genetic origin
The question will open when you
start your session and slideshow.
Internet This text box will be used to describe the different message sending methods.
TXT The applicable explanations will be inserted after you have started a session.
Twitter It is possible to move, resize and modify the appearance of this text box.
# Votes: 17
Closed
How could we explain all these features of present
day diseases?
Internet This text box will be used to describe the different message sending methods.
TXT The applicable explanations will be inserted after you have started a session.
Twitter It is possible to move, resize and modify the appearance of this text box.
Closed
A.
B.
C.
D.
E.
F.
In reality each disease is: many different yet 
similar diseases
Diseases are due to a malfunctioning network
Gene redundancy
Many proteins consists of multiple polypeptide 
chains
Proteins can become phosphorylated
Diseases do not have a genetic origin
23.5%
76.5%
0.0%
0.0%
0.0%
0.0%
The old paradigm: 
Disease is due to a sick molecule
Impaired function
+ X
Cause
Our new paradigm: Network disease
Impaired function
X
Cause 3
X
Cause 1
X
Cause 2
A network disease 
is caused by a 
combination of 
possibly remote 
factors
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 5
The new paradigm: Network disease
Impaired function
Cause 3
Cause 1
Cause 2
A network disease 
is caused by a 
combination of 
possibly remote 
factors
Why is this?
The impaired function depends on a commodity 
that is delivered by a number of parallel pathways
Therefore the disease does not appear until all
three pathways have been incapacitated
X
X
X
The new paradigm: Network disease
Impaired function
Cause 3
Cause 1
A network disease 
is caused by a 
combination of 
possibly remote 
factors and these 
need not be the 
same factors
Why is this?
The impaired function depends on a commodity 
that is delivered by a number of parallel pathways
Therefore the disease does not appear until all
three pathways have been incapacitated
X
X
X
Cause 2
The new paradigm: Network disease
Impaired function
X
Cause 3
X
Cause 1
X
SNP 2
A network disease is 
caused by a 
combination of 
possibly remote 
factors that differ 
between individual 
patients (because 
they already have the 
factors as SNPs)
Diseases are multifactorial in three ways
• Multiple faults required for the disease
• For each fault there are alternative faults
• Differences between individual patients
Indeed, 
If the problem sits with the network then we 
need to deal with the network
From the molecules 
and the network is needed for comprehension
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 6
Impaired function
to the network
The example cancer
The Oncogene
In the 1980’s everyone searched for 
the oncogene.
It was never found………..
The oncogene…?..; No: there are many! The oncogene…?..; No: there are many!
The Hallmarks of cancer
Hanahan & Weinberg
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 7
Major Systems Biology accomplishments
for the understanding of disease
• Systems Biology has shown that there is little basis of 
looking for the molecule that causes a disease (for most 
diseases):
– It is a network malfunction
• Systems Biology acknowledges complexity such as 
through epigenetics rather than simplifying away from it
– Genetic network, epigenetic network, transcription‐tranlation
network, signaling network, metabolic network all integrated
• Systems Biology shows that there are three different 
aspects to multifactorial disease
– More than one cause; not always the same set of causes for
the same disease; different between individuals
In a GWAS one does not find genes that correlate
with breast cancer for more than 10%. Is this
because
A. Breast cancer is caused by lack of a factor that is
delivered by three alternative pathways?
B. it is caused by at least one pathway with more than10
gene products on it?
The question will open when you
start your session and slideshow.
Internet This text box will be used to describe the different message sending methods.
TXT The applicable explanations will be inserted after you have started a session.
Twitter It is possible to move, resize and modify the appearance of this text box.
# Votes: 19
Closed
In a GWAS one does not find genes that correlate
with breast cancer for more than 10%. Is this
because
A.
B.
Breast cancer is caused by 
lack of a factor that is 
delivered by three 
alternative pathways?
it is caused by at least one 
pathway with more than10 
gene products on it?
36.8%
63.2%
Internet This text box will be used to describe the different message sending methods.
TXT The applicable explanations will be inserted after you have started a session.
Twitter It is possible to move, resize and modify the appearance of this text box.
Closed
Towards Precision Biology and Medicine
• The Future in 2000
– What remained to be discovered
• Life at the edge and the origin of Life
– How to get your Carbon and Gibbs energy precisely (‐‐> Thierry Mondeel)
• Towards precision medicine
– Individualized medicine from PKU to Parkinson’s? (Alexey Kolodkin)
– Transcription dynamics, cell‐cell heterogeneity and cancer ( Stephania
Astrologo)
– How understanding might matter: the Janus head of acute and chronic 
inflammation
• Serving the community 
– Infrastructure systems Biology Europe (ISBE@NL): make me a model coalition 
(Alexey Kolodkin)
– Replica models, virtual human
Towards Precision Biology and Medicine
• The Future in 2000
– What remained to be discovered
• Life at the edge and the origin of Life
– How to get your Carbon and Gibbs energy precisely (‐‐> Thierry Mondeel)
• Towards precision medicine
– Individualized medicine from PKU to Parkinson’s? (Alexey Kolodkin)
– Transcription dynamics, cell‐cell heterogeneity and cancer ( Stephania
Astrologo)
– How understanding might matter: the Janus head of acute and chronic 
inflammation
• Serving the community 
– Infrastructure systems Biology Europe (ISBE@NL): make me a model coalition 
(Alexey Kolodkin)
– Replica models, virtual human
The early Earth
• H2
• CO
• CO2
• No O2
Life needs organic (complexed) Carbon (similated CO or CO2)
Gibbs energy (ATP)
Are there organisms that can do this?
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 8
The genome wide metabolic map, i.e. 
all the network can make from any nutrition
food1
food2
food3
Predicted flux distribution to produce acetate on the 
Schuchmann and Müller GEMM: makes no net ATP
Possible!
Extend the C. ljungdahlii GEMM with Schuchman’s reactions
Try all combinations of electron donor alternatives
The menu
Towards Precision Biology and Medicine
• The Future in 2000
– What remained to be discovered
• Life at the edge and the origin of Life
– How to get your Carbon and Gibbs energy precisely (‐‐> Thierry Mondeel)
• Towards precision medicine
– Individualized medicine from PKU to Parkinson’s? (Alexey Kolodkin)
– Transcription dynamics, cell‐cell heterogeneity and cancer ( Stephania
Astrologo)
– How understanding might matter: the Janus head of acute and chronic 
inflammation
• Serving the community 
– Infrastructure systems Biology Europe (ISBE@NL): make me a model coalition 
(Alexey Kolodkin)
– Replica models, virtual human
Inborn errors of metabolism
Vital constituent
food
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 9
Vital constituent
food
The network topology predicting disease for inborn errors of 
metabolism
Would this work?
Could it lead to cures?
Could it help manage toxicity?
50
Would this work?
Could it lead to cures?
51
Example of map utilization tyrosine metabolism:
nurture
Phenylketone   urine
✗
Protein
Nutrition
dopa
dopamine
Nor‐epinephrin
OK
Phe
Tyr
✗
Example of map utilization tyrosine metabolism:
nurture
Phenylketone   urine
✗
Protein
Nutrition
dopa
dopamine
Nor‐epinephrin
Phe
Tyr
✗
OKX
Phe is essential amino acid
✗ ✗
Example of map utilization tyrosine metabolism:
nature
Phenylketone   urine
✗
Protein
Nutrition
dopa
dopamine
Nor‐epinephrin
Phe
(Tyr)
✗ OKX
Phenylketonuria (PKU) = IEM
✗ ✗
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 10
Can one use the map to design a 
therapy?
Example of map utilization tyrosine metabolism:
nature
Phenylketone   urine
✗
Protein
Nutrition
dopa
dopamine
Nor‐epinephrin
Phe
Tyr
✗
Phenylketonuria (PKU) = IEM
✗ OK✗
✗ ✗
Example of map utilization tyrosine metabolism:
nature
Phenylketone   urine
✗
Protein
Nutrition
dopa
dopamine
Nor‐epinephrin
Phe
Tyr
✗
Phenylketonuria (PKU) = IEM
✗
✗ ✗
Nutrition therapy
PKU: lack of brain development
Why brain specifically?
Why does PKU lead to mental retardation
specifically?
A. Brain is the only tissue that contains protein
B. Blood brain barrier causes a difficulty
The question will open when you
start your session and slideshow.
Internet This text box will be used to describe the different message sending methods.
TXT The applicable explanations will be inserted after you have started a session.
Twitter It is possible to move, resize and modify the appearance of this text box.
# Votes: 0
Closed
Why does PKU lead to mental retardation
specifically?
A.
B.
Brain is the only 
tissue that 
contains protein
Blood brain 
barrier causes a 
difficulty
0.0%
0.0%
Closed
We will set these example results to zero once
you've started your session and your slide show.
In the meantime, feel free to change the looks of
your results (e.g. the colors).
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 11
Example of map utilization tyrosine metabolism:
Brain: adrenalin
Phenylketone   urine
✗
Protein
Nutrition
dopa
dopamine
Nor‐epinephrin
Epinephrin=adrenalin
Phe
Tyr
✗ OKX
✗
✗
✗
✗
✗ ✗
Another riddle
Reduced Phe‐intake therapy works
better than Tyr supplementation:
Apparently the problem is not just lack
of tyrosine for protein synthesis
Tyr enters brain in exchange for Phe
63
Phe
Tyr
B
B
B
Westerhoff on Systems Toxicology; slide
Mapping beyond the pathway
64
Also other diseases?
Yes, multiple related diseases
Phenylketonuria (PKU)
Example of map utilization tyrosine metabolism:
Multiple tyrosinemias
Phenylketone   urine
✗
Protein
`
Nutrition
dopa
dopamine
Nor‐epinephrin
Phe
Tyr
✗
alkaptonuria
tyrosinaemia III
✗
tyrosinaemia I
✗
✗
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 12
Can it help design drug therapy?
67
Example of map utilization tyrosine metabolism:
(Cautioning vis‐à‐vis) drug therapy
Phenylketone   urine
✗
Protein
`
Nutrition
dopa
dopamine
Nor‐epinephrin
Phe
Tyr
✗
alkaptonuria
|‐‐‐‐‐‐‐‐ Nitisinone?
tyrosinaemia III
✗
Associations with unrelated 
diseases?
Phe Tyr Dopamine
Neuron 
functioning
Energy supply
PKU
ROS 
management
Astrocytes
Synuc
DJ1
Other mutation
Mitochondria
Parkinson’s 
disease
Westerhoff on Live maps for Life 
70
Detailed model of ROS management: in silico discovery
Alexey Kolodkin The menu
Posters: all breaks
Poster flashes
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 13
Towards Precision Biology and Medicine
• The Future in 2000
– What remained to be discovered
• Life at the edge and the origin of Life
– How to get your Carbon and Gibbs energy precisely (‐‐> Thierry Mondeel)
• Towards precision medicine
– Individualized medicine from PKU to Parkinson’s? (Alexey Kolodkin)
– Transcription dynamics, cell‐cell heterogeneity and cancer ( Stephania
Astrologo)
– How understanding might matter: the Janus head of acute and chronic 
inflammation
• Serving the community 
– Infrastructure systems Biology Europe (ISBE@NL): make me a model coalition 
(Alexey Kolodkin)
– Replica models, virtual human
The Janus head of cells and
Is Life computable/predictable?
Or is it just too chaotic?
The Janus head of cells;
is it predictable which way it turns?
Social (multicellular organism)
Selfish (Unicellular or cancer)
Reason to doubt predictability
• For many diseases, falling ill is not democratic 
(i.e. unequal probabilities)
• Approved drugs only work for 40% 
• There is just too much noise in Biology (??)
Heisenberg’s uncertainty principle
• If one looks at a particle that arrives at a precise 
time, then its energy will remain uncertain
• If one looks at the average of particles arriving 
over a long period of time, then one knows their 
average energy much more precisely
∆ · ∆
7/4/2016 Westerhoff:  77
Drug therapy uncertainty principle?
• Drug effectiveness for any individual patient: low 
certainty
• For the average effect on multiple patients:
much certainty
• When more interaction information available 
(genome sequence; nutrition) more certainty also 
for the individual (individualized systems medicine)
∆ · ∆ 	 ′
7/4/2016 Westerhoff:  78
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 14
Example:
Uncertain prediction of Cetuximab
effect on colon cancer
Zalcberg et al, NEJM 2008
(K‐ras wild type)
SU
RV
I
VA
L
Time in months
Some colon cancer patients respond positively to treatment with EGFR 
receptor antagonists, whereas others respond much less: Δeffect is large for
any individual (uncertain prediction)
7/4/2016 Westerhoff:  79
The Bohr‐Einstein debate
Bohr: Fundamentally we cannot know energy and
time precisely for any particle: the particle is a 
wave of uncertainty.  This means that in every
new experiment the particle at time t=0 will have 
a different energy.
Einstein:  Gott würfelt nicht (God does not throw
dice):  it is just that we do not have sufficient
information about the individual particles.
Statistical:  One measures many particles anyway, 
or one over a long time: E can be measured
through the average
7/4/2016 Westerhoff:  80
Patients with mutated K‐
ras: no effect of
cetuximab
SU
RV 
I 
VA
L
Time in months Zalcberg et al, NEJM 2008
But for a small group of patients where we have information, we can
predict: 
Patients with tumors with K‐ras mutations do not respond
Colon Cancer
7/4/2016 Westerhoff:  81
Conclusion
Individualized systems medicine may 
reduce the impredictability
Knowledge removes uncertainty 
(Einstein)
The Bohr‐Einstein debate
Bohr: Fundamentally we cannot know energy and
time precisely for any particle: the particle is a 
wave of uncertainty.  This means that in every
new experiment the particle at time t=0 will have 
a different energy.
Einstein:  Gott würfelt nicht (God does not throw
dice):  it is just that we do not have sufficient
information about the individual particles.
Statistical:  One measures many particles anyway, 
or one over a long time: E can be measured
through the average
7/4/2016 Westerhoff:  83
But Albert, there 
is also intrinsic 
noise!
Indeed, cancer may be an exception
• Based on intrinsic noise (somatic mutations) 
and selection
• Indeed, clonal cell lines still show differences 
between individual cells
• The individual cells in tissues differ between 
each other due to genetic mutations and 
epigenetic mutations
But shouldn’t noise be small because 
molecule numbers are large?
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 15
In most traditional pathways noise is small 
because molecule numbers are large
Non-equilibrium pathways: Fano factor is also approximately
equal to 1
Molecule numbers are >>10000. Where does cell-cell
heterogeneity come from then?
7/4/2016 Westerhoff:  85
=1%
DNA
mRNA
Protein
1 2
3 4
But Biology is ‘hierarchical’ and 
complex
7/4/2016 Westerhoff:  86
0 50 100 150 200 250 300
0
50
100
150
# of Protein Molecules
# of Simulations
0 50 100 150 200 250 300
0
50
100
150
# of Product Molecules
# of Simulations
1 2
3 4
DNA
mRNA
Protein
ProductSubstrate
5 6
1
3
5
= 0.5*DNA
= 0.5*mRNA
= 0.5*Protein*Substrate
2
4
6
= 0.1*mRNA
= 0.1*Protein
= 0.1*Product
0 20 40 60
0
20
40
60
80
100
Time
# of Molecules
DNA
mRNA
Protein
Product
1.0098
3.5313
13.0332
0
5
10
15
mRNA Protein Product
Fano Factor (σ2/µ)
Hierarchies explain noise
7/4/2016 Westerhoff:  87
Can we understand noise in 
biology?
Yes, caused by hierarchies
and other mechanisms
But this does not explain mRNA 
noise
But with RNA bursting, can this give rise to 2 distinct subpopulations?
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 16
State oscillations
Stochastic mRNA bursting
Can bursting give rise to bimodality
(two distinct subpopulations)?
Stephania Astrologo (poster here):  Yes
Conclusion: There could be a non 
permanent Janus head (heterogeneity) 
due to bursting
But this would not make the 
aberrant (tumor) cells selectable
Could you think of a way in which this
dynamic heterogeneity could lead to
tumorigenesis?
1. Your audience's
responses will appear
here. Please feel free
to change the font,
color etc. This text
disappears after
starting your session
and slideshow.
2. Your audience's
responses will appear
here. Please feel free
to change the font,
color etc. This text
disappears after
starting your session
and slideshow.
3. Your audience's
responses will appear
here. Please feel free
to change the font,
color etc. This text
disappears after
starting your session
and slideshow.
Internet This text box will be used to describe the different message sending methods.
TXT The applicable explanations will be inserted after you have started a session.
Twitter It is possible to move, resize and modify the appearance of this text box.
# Messages:
0 (0%
correct)
Unless there is capture of the state, because it 
produces a single event such as metastasis 
Selection pressure for 
tumorigenesis?
X
Could (epi)mutations also give rise to, 
then selectable heterogeneity?
• Chiara Damiani:  Yes
• She developed an FBA method that generates 
diverse in silico cells with diverse functions
Systems Medicine course Como 2016 26/09/2016
Westerhoff et al Page 17
The menu Towards Precision Biology and Medicine
• The Future in 2000
– What remained to be discovered
• Life at the edge and the origin of Life
– How to get your Carbon and Gibbs energy precisely (‐‐> Thierry Mondeel)
• Towards precision medicine
– Individualized medicine from PKU to Parkinson’s? (Alexey Kolodkin)
– Transcription dynamics, cell‐cell heterogeneity and cancer ( Stephania
Astrologo)
– How understanding might matter: the Janus head of acute and chronic 
inflammation
• Serving the community 
– Infrastructure systems Biology Europe (ISBE@NL): make me a model coalition 
(Alexey Kolodkin)
– Replica models, virtual human
Systems Biology and 
Medicine:
Understanding disease 
by understanding the 
networks of Life
Hans V. Westerhoff
and friends:
Thierry Mondeel
Stefania Astrologo
Alexey Kolodkin
Ablikim Abulikemu
Samrina Rehman
Malkhey Verma
Lilia Alberghina and SYSBIO-IT

Recommended

Closing session - Hans V. Westerhoff by
Closing session - Hans V. WesterhoffClosing session - Hans V. Westerhoff
Closing session - Hans V. WesterhoffLake Como School of Advanced Studies
553 views15 slides
Exploratory Adaptation in Random Networks - Naama Brenner by
Exploratory Adaptation in Random Networks - Naama Brenner Exploratory Adaptation in Random Networks - Naama Brenner
Exploratory Adaptation in Random Networks - Naama Brenner Lake Como School of Advanced Studies
227 views31 slides
Impact of Environmental Noise in communities of neutral species - Jordi Hidalgo by
Impact of Environmental Noise in communities of neutral species - Jordi HidalgoImpact of Environmental Noise in communities of neutral species - Jordi Hidalgo
Impact of Environmental Noise in communities of neutral species - Jordi HidalgoLake Como School of Advanced Studies
524 views25 slides
Traditional vs Nontraditional Methods for Network Analytics - Ernesto Estrada by
Traditional vs Nontraditional Methods for Network Analytics - Ernesto EstradaTraditional vs Nontraditional Methods for Network Analytics - Ernesto Estrada
Traditional vs Nontraditional Methods for Network Analytics - Ernesto EstradaLake Como School of Advanced Studies
1.2K views125 slides
Exploratory Adaptation in Random Networks - Naama Brenner by
Exploratory Adaptation in Random Networks - Naama Brenner Exploratory Adaptation in Random Networks - Naama Brenner
Exploratory Adaptation in Random Networks - Naama Brenner Lake Como School of Advanced Studies
379 views31 slides
Reciprocity between robustness and plasticity as a universal quantitative law... by
Reciprocity between robustness and plasticity as a universal quantitative law...Reciprocity between robustness and plasticity as a universal quantitative law...
Reciprocity between robustness and plasticity as a universal quantitative law...Lake Como School of Advanced Studies
343 views43 slides

More Related Content

Viewers also liked

Social and economical networks from (big-)data - Esteban Moro II by
Social and economical networks from (big-)data - Esteban Moro IISocial and economical networks from (big-)data - Esteban Moro II
Social and economical networks from (big-)data - Esteban Moro IILake Como School of Advanced Studies
1.3K views68 slides
Temporal networks - Alain Barrat by
Temporal networks - Alain BarratTemporal networks - Alain Barrat
Temporal networks - Alain BarratLake Como School of Advanced Studies
1.8K views178 slides
Gene expression noise, regulation, and noise propagation - Erik van Nimwegen by
Gene expression noise, regulation, and noise propagation - Erik van NimwegenGene expression noise, regulation, and noise propagation - Erik van Nimwegen
Gene expression noise, regulation, and noise propagation - Erik van NimwegenLake Como School of Advanced Studies
1.1K views49 slides
Mesoscale Structures in Networks - Mason A. Porter by
Mesoscale Structures in Networks - Mason A. PorterMesoscale Structures in Networks - Mason A. Porter
Mesoscale Structures in Networks - Mason A. PorterLake Como School of Advanced Studies
970 views116 slides
Integrative analysis and visualization of clinical and molecular data for can... by
Integrative analysis and visualization of clinical and molecular data for can...Integrative analysis and visualization of clinical and molecular data for can...
Integrative analysis and visualization of clinical and molecular data for can...Lake Como School of Advanced Studies
2K views102 slides
Spatial network, Theory and applications - Marc Barthelemy by
Spatial network, Theory and applications - Marc BarthelemySpatial network, Theory and applications - Marc Barthelemy
Spatial network, Theory and applications - Marc BarthelemyLake Como School of Advanced Studies
1.8K views118 slides

Viewers also liked(13)

Similar to Systems Biology and Medicine: Understanding disease by understanding the networks of Life - Hans V. Westerhoff and friends

Informative Research Papers by
Informative Research PapersInformative Research Papers
Informative Research PapersHelp With College Papers Singapore
5 views19 slides
HEALTHCARE MULTILINGUAL AND BICULTURAL CHALLENGES5Mult by
HEALTHCARE MULTILINGUAL AND BICULTURAL CHALLENGES5MultHEALTHCARE MULTILINGUAL AND BICULTURAL CHALLENGES5Mult
HEALTHCARE MULTILINGUAL AND BICULTURAL CHALLENGES5MultSusanaFurman449
3 views4489 slides
Manoj Saxena, GM IBM Watson -- Keynote at Innotech 2011 by
Manoj Saxena, GM IBM Watson -- Keynote at Innotech 2011Manoj Saxena, GM IBM Watson -- Keynote at Innotech 2011
Manoj Saxena, GM IBM Watson -- Keynote at Innotech 2011Manoj Saxena
1.9K views21 slides
Smokers Need Higher Health Care Premiums Essay by
Smokers Need Higher Health Care Premiums EssaySmokers Need Higher Health Care Premiums Essay
Smokers Need Higher Health Care Premiums EssayMindi Schneider
2 views80 slides
Educational Model to Illustrate HIV Infection Cycle by
Educational Model to Illustrate HIV Infection CycleEducational Model to Illustrate HIV Infection Cycle
Educational Model to Illustrate HIV Infection Cyclekcmurphy3
186 views1 slide
Informative Speech On Stress Research Paper by
Informative Speech On Stress Research PaperInformative Speech On Stress Research Paper
Informative Speech On Stress Research PaperCollege Paper Writing Service Singapore
6 views19 slides

Similar to Systems Biology and Medicine: Understanding disease by understanding the networks of Life - Hans V. Westerhoff and friends(20)

HEALTHCARE MULTILINGUAL AND BICULTURAL CHALLENGES5Mult by SusanaFurman449
HEALTHCARE MULTILINGUAL AND BICULTURAL CHALLENGES5MultHEALTHCARE MULTILINGUAL AND BICULTURAL CHALLENGES5Mult
HEALTHCARE MULTILINGUAL AND BICULTURAL CHALLENGES5Mult
SusanaFurman4493 views
Manoj Saxena, GM IBM Watson -- Keynote at Innotech 2011 by Manoj Saxena
Manoj Saxena, GM IBM Watson -- Keynote at Innotech 2011Manoj Saxena, GM IBM Watson -- Keynote at Innotech 2011
Manoj Saxena, GM IBM Watson -- Keynote at Innotech 2011
Manoj Saxena1.9K views
Smokers Need Higher Health Care Premiums Essay by Mindi Schneider
Smokers Need Higher Health Care Premiums EssaySmokers Need Higher Health Care Premiums Essay
Smokers Need Higher Health Care Premiums Essay
Mindi Schneider2 views
Educational Model to Illustrate HIV Infection Cycle by kcmurphy3
Educational Model to Illustrate HIV Infection CycleEducational Model to Illustrate HIV Infection Cycle
Educational Model to Illustrate HIV Infection Cycle
kcmurphy3186 views
MedWeb 3.0 @ CAIS 2013 by Timothy Cook
MedWeb 3.0  @ CAIS 2013MedWeb 3.0  @ CAIS 2013
MedWeb 3.0 @ CAIS 2013
Timothy Cook707 views
Educational Model to Illustrate HIV Infection Cycle by kcmurphy3
Educational Model to Illustrate HIV Infection CycleEducational Model to Illustrate HIV Infection Cycle
Educational Model to Illustrate HIV Infection Cycle
kcmurphy3403 views
Mark2Cure: a crowdsourcing platform for biomedical literature annotation by Benjamin Good
Mark2Cure: a crowdsourcing platform for biomedical literature annotationMark2Cure: a crowdsourcing platform for biomedical literature annotation
Mark2Cure: a crowdsourcing platform for biomedical literature annotation
Benjamin Good758 views
Pathophysiology Of Ageing by Leanne Uhl
Pathophysiology Of AgeingPathophysiology Of Ageing
Pathophysiology Of Ageing
Leanne Uhl2 views
Types Of Therapies For Cancer Treatment Essay by Lindsey Williams
Types Of Therapies For Cancer Treatment EssayTypes Of Therapies For Cancer Treatment Essay
Types Of Therapies For Cancer Treatment Essay
The Imprefections Of The Societies In The Maze Runner,... by Heidi Brown
The Imprefections Of The Societies In The Maze Runner,...The Imprefections Of The Societies In The Maze Runner,...
The Imprefections Of The Societies In The Maze Runner,...
Heidi Brown2 views
Why People Favourite Tweets (and a bit about usefulness and style) - Content ... by Max L. Wilson
Why People Favourite Tweets (and a bit about usefulness and style) - Content ...Why People Favourite Tweets (and a bit about usefulness and style) - Content ...
Why People Favourite Tweets (and a bit about usefulness and style) - Content ...
Max L. Wilson3.3K views
Clinical Genomics and Medicine by Warren Kibbe
Clinical Genomics and MedicineClinical Genomics and Medicine
Clinical Genomics and Medicine
Warren Kibbe2.7K views
IT and me reflections Kim Solez by Kim Solez ,
IT and me reflections Kim SolezIT and me reflections Kim Solez
IT and me reflections Kim Solez
Kim Solez ,488 views
Biology 100 – Winter 2021 NAME _____________________________.docx by richardnorman90310
Biology 100 – Winter 2021 NAME _____________________________.docxBiology 100 – Winter 2021 NAME _____________________________.docx
Biology 100 – Winter 2021 NAME _____________________________.docx

More from Lake Como School of Advanced Studies

Electromagnetic counterparts of Gravitational Waves - Elena Pian by
Electromagnetic counterparts of Gravitational Waves - Elena PianElectromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena PianLake Como School of Advanced Studies
1.1K views57 slides
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with... by
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...Lake Como School of Advanced Studies
508 views51 slides
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut... by
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...Lake Como School of Advanced Studies
444 views43 slides
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana by
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLake Como School of Advanced Studies
466 views44 slides
Gravitational waves data analysis - Walter Del Pozzo by
Gravitational waves data analysis - Walter Del PozzoGravitational waves data analysis - Walter Del Pozzo
Gravitational waves data analysis - Walter Del PozzoLake Como School of Advanced Studies
610 views100 slides
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch... by
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...Lake Como School of Advanced Studies
497 views80 slides

More from Lake Como School of Advanced Studies(20)

Recently uploaded

"How can I develop my learning path in bioinformatics? by
"How can I develop my learning path in bioinformatics?"How can I develop my learning path in bioinformatics?
"How can I develop my learning path in bioinformatics?Bioinformy
23 views13 slides
Artificial Intelligence Helps in Drug Designing and Discovery.pptx by
Artificial Intelligence Helps in Drug Designing and Discovery.pptxArtificial Intelligence Helps in Drug Designing and Discovery.pptx
Artificial Intelligence Helps in Drug Designing and Discovery.pptxabhinashsahoo2001
126 views22 slides
별헤는 사람들 2023년 12월호 전명원 교수 자료 by
별헤는 사람들 2023년 12월호 전명원 교수 자료별헤는 사람들 2023년 12월호 전명원 교수 자료
별헤는 사람들 2023년 12월호 전명원 교수 자료sciencepeople
37 views30 slides
Distinct distributions of elliptical and disk galaxies across the Local Super... by
Distinct distributions of elliptical and disk galaxies across the Local Super...Distinct distributions of elliptical and disk galaxies across the Local Super...
Distinct distributions of elliptical and disk galaxies across the Local Super...Sérgio Sacani
31 views12 slides
journal of engineering and applied science.pdf by
journal of engineering and applied science.pdfjournal of engineering and applied science.pdf
journal of engineering and applied science.pdfKSAravindSrivastava
7 views7 slides
MILK LIPIDS 2.pptx by
MILK LIPIDS 2.pptxMILK LIPIDS 2.pptx
MILK LIPIDS 2.pptxabhinambroze18
7 views15 slides

Recently uploaded(20)

"How can I develop my learning path in bioinformatics? by Bioinformy
"How can I develop my learning path in bioinformatics?"How can I develop my learning path in bioinformatics?
"How can I develop my learning path in bioinformatics?
Bioinformy23 views
Artificial Intelligence Helps in Drug Designing and Discovery.pptx by abhinashsahoo2001
Artificial Intelligence Helps in Drug Designing and Discovery.pptxArtificial Intelligence Helps in Drug Designing and Discovery.pptx
Artificial Intelligence Helps in Drug Designing and Discovery.pptx
abhinashsahoo2001126 views
별헤는 사람들 2023년 12월호 전명원 교수 자료 by sciencepeople
별헤는 사람들 2023년 12월호 전명원 교수 자료별헤는 사람들 2023년 12월호 전명원 교수 자료
별헤는 사람들 2023년 12월호 전명원 교수 자료
sciencepeople37 views
Distinct distributions of elliptical and disk galaxies across the Local Super... by Sérgio Sacani
Distinct distributions of elliptical and disk galaxies across the Local Super...Distinct distributions of elliptical and disk galaxies across the Local Super...
Distinct distributions of elliptical and disk galaxies across the Local Super...
Sérgio Sacani31 views
Pollination By Nagapradheesh.M.pptx by MNAGAPRADHEESH
Pollination By Nagapradheesh.M.pptxPollination By Nagapradheesh.M.pptx
Pollination By Nagapradheesh.M.pptx
MNAGAPRADHEESH16 views
application of genetic engineering 2.pptx by SankSurezz
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptx
SankSurezz9 views
How to be(come) a successful PhD student by Tom Mens
How to be(come) a successful PhD studentHow to be(come) a successful PhD student
How to be(come) a successful PhD student
Tom Mens473 views
himalay baruah acid fast staining.pptx by HimalayBaruah
himalay baruah acid fast staining.pptxhimalay baruah acid fast staining.pptx
himalay baruah acid fast staining.pptx
HimalayBaruah7 views
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance... by InsideScientific
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...
InsideScientific49 views
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... by ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI5 views
Conventional and non-conventional methods for improvement of cucurbits.pptx by gandhi976
Conventional and non-conventional methods for improvement of cucurbits.pptxConventional and non-conventional methods for improvement of cucurbits.pptx
Conventional and non-conventional methods for improvement of cucurbits.pptx
gandhi97618 views
Nitrosamine & NDSRI.pptx by NileshBonde4
Nitrosamine & NDSRI.pptxNitrosamine & NDSRI.pptx
Nitrosamine & NDSRI.pptx
NileshBonde413 views
A training, certification and marketing scheme for informal dairy vendors in ... by ILRI
A training, certification and marketing scheme for informal dairy vendors in ...A training, certification and marketing scheme for informal dairy vendors in ...
A training, certification and marketing scheme for informal dairy vendors in ...
ILRI13 views

Systems Biology and Medicine: Understanding disease by understanding the networks of Life - Hans V. Westerhoff and friends

  • 1. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 1 Systems Biology and  Medicine: Understanding disease  by understanding the  networks of Life Hans V. Westerhoff and friends Synthetic Systems Biology, SILS, NISB, the University of Amsterdam, and Molecular Cell Physiology, NISB, VU University Amsterdam, Amsterdam, NL, EU, and Manchester Centre for Integrative Systems Biology, Manchester, UK, EU The second Systems Biology & Systems Medicine  (SyBSyM) School,  25‐29 September 2016, Como Please logon to wifi:  SVILUPPOCOMO  PASSWORD:  SEE NOTES OR grumello20 Towards Individualized  Systems Medicine Hans V. Westerhoff and friends Synthetic Systems Biology, SILS, NISB, the University of Amsterdam, and Molecular Cell Physiology, NISB, VU University Amsterdam, Amsterdam, NL, EU, and Manchester Centre for Integrative Systems Biology, Manchester, UK, EU The first Systems Biology & Systems Medicine  (SyBSyM) School,  21‐27 September 2014, Como Systems Medicine 2016 A unique course: Small and intensive The menu Prepare to vote Voting is anonymous TXT 1 2 Internet 1 2 Twitter 1 2 The text on this slide will instruct your audience on how to vote. This text will only appear once you start a free or a credit session. Please note that the text and appearance of this slide (font, size, color, etc.) cannot be changed. What is special about 1996? A. First recombinant DNA implementation B. First sequenced genomes published C. Structure of DNA discovered D. Anti sense RNA discovered The question will open when you start your session and slideshow. Internet This text box will be used to describe the different message sending methods. TXT The applicable explanations will be inserted after you have started a session. Twitter It is possible to move, resize and modify the appearance of this text box. # Votes: 0 # Persons: 0 Closed
  • 2. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 2 What is special about 1996? Closed A. B. C. D. First recombinant DNA  implementation First sequenced  genomes published Structure of DNA  discovered Anti sense RNA  discovered 26.7% 66.7% 0.0% 6.7% State of the field in 1995 Components and  physiology ? But no robust  understanding of their  relationships Prepare to react Posting messages is anonymous TXT 1 2 Internet 1 2 Twitter 1 2 The text on this slide will instruct your audience on how to post. This text will only appear once you start a free or a credit session. Please note that the text and appearance of this slide (font, size, color, etc.) cannot be changed. What remained to be discovered in 2000? 1. Your audience's responses will appear here. Please feel free to change the font, color etc. This text disappears after starting your session and slideshow. 2. Your audience's responses will appear here. Please feel free to change the font, color etc. This text disappears after starting your session and slideshow. 3. Your audience's responses will appear here. Please feel free to change the font, color etc. This text disappears after starting your session and slideshow. Internet This text box will be used to describe the different message sending methods. TXT The applicable explanations will be inserted after you have started a session. Twitter It is possible to move, resize and modify the appearance of this text box. # Messages: 0 (0% correct) What remained to be discovered • Origin of Life • Why present day diseases tend to elude  molecule based therapies • Why diseases are ‘undemocratic’ • How diseases are multifactorial • Why individuals and cell populations are  heterogeneous • Why diseases are sometimes unpredictable It was time for  Systems Biology • i.e. a new Science • aiming to understand • principles governing • how the biological  functions • arise from the interactions Now it is also time  for Systems Medicine
  • 3. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 3 Where Systems Biology made the difference genomicstranscriptomics proteomics metabolomics structural biology biophysics biology biochemistry physiology Systems Biology:  ‐integrates different types of data into predictive models ‐makes data predictive and function predictable ‐uniquely shows how networking produces (dis‐)function Example 1: the genome wide metabolic map: components integration into function food1 food2 food3 Data concerning all metabolic genes have hereby been integrated into a predictive format Predicting how every molecule in our body is made by our body Example 2: The old (<2000)  paradigm was:  Disease is due to a sick molecule Impaired function + X Cause If you think that this was (is) not a  dominant view of disease, then consider: ‘This is the key disfunction in this disease’ ‘Key gene’ ‘Blockbuster drug’ ‘The rate limiting …..’ The search for the oncogene First paradigm: Disease is caused by a single factor • Pest • Malaria • Tuberculosis • Cancer • Obesity • Heart disease • …. • Ulcers…..
  • 4. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 4 What (type of) evidence would show that a disease is monofactorial? 1. Your audience's responses will appear here. Please feel free to change the font, color etc. This text disappears after starting your session and slideshow. 2. Your audience's responses will appear here. Please feel free to change the font, color etc. This text disappears after starting your session and slideshow. 3. Your audience's responses will appear here. Please feel free to change the font, color etc. This text disappears after starting your session and slideshow. Internet This text box will be used to describe the different message sending methods. TXT The applicable explanations will be inserted after you have started a session. Twitter It is possible to move, resize and modify the appearance of this text box. # Messages: 0 What (type of) evidence is there then for most diseases that they are monofactorial? Cancer Diabetes Heart dis Malaria TBC Quarantaine helps      Single pathology      Immunization helps      Mendelian inheritance      GWAS  giving factors with high penetrance      Single drug helps       Is there from embryo onwards      How could we explain all these features of present day diseases? A. In reality each disease is: many different yet similar diseases B. Diseases are due to a malfunctioning network C. Gene redundancy D. Many proteins consists of multiple polypeptide chains E. Proteins can become phosphorylated F. Diseases do not have a genetic origin The question will open when you start your session and slideshow. Internet This text box will be used to describe the different message sending methods. TXT The applicable explanations will be inserted after you have started a session. Twitter It is possible to move, resize and modify the appearance of this text box. # Votes: 17 Closed How could we explain all these features of present day diseases? Internet This text box will be used to describe the different message sending methods. TXT The applicable explanations will be inserted after you have started a session. Twitter It is possible to move, resize and modify the appearance of this text box. Closed A. B. C. D. E. F. In reality each disease is: many different yet  similar diseases Diseases are due to a malfunctioning network Gene redundancy Many proteins consists of multiple polypeptide  chains Proteins can become phosphorylated Diseases do not have a genetic origin 23.5% 76.5% 0.0% 0.0% 0.0% 0.0% The old paradigm:  Disease is due to a sick molecule Impaired function + X Cause Our new paradigm: Network disease Impaired function X Cause 3 X Cause 1 X Cause 2 A network disease  is caused by a  combination of  possibly remote  factors
  • 5. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 5 The new paradigm: Network disease Impaired function Cause 3 Cause 1 Cause 2 A network disease  is caused by a  combination of  possibly remote  factors Why is this? The impaired function depends on a commodity  that is delivered by a number of parallel pathways Therefore the disease does not appear until all three pathways have been incapacitated X X X The new paradigm: Network disease Impaired function Cause 3 Cause 1 A network disease  is caused by a  combination of  possibly remote  factors and these  need not be the  same factors Why is this? The impaired function depends on a commodity  that is delivered by a number of parallel pathways Therefore the disease does not appear until all three pathways have been incapacitated X X X Cause 2 The new paradigm: Network disease Impaired function X Cause 3 X Cause 1 X SNP 2 A network disease is  caused by a  combination of  possibly remote  factors that differ  between individual  patients (because  they already have the  factors as SNPs) Diseases are multifactorial in three ways • Multiple faults required for the disease • For each fault there are alternative faults • Differences between individual patients Indeed,  If the problem sits with the network then we  need to deal with the network From the molecules  and the network is needed for comprehension
  • 6. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 6 Impaired function to the network The example cancer The Oncogene In the 1980’s everyone searched for  the oncogene. It was never found……….. The oncogene…?..; No: there are many! The oncogene…?..; No: there are many! The Hallmarks of cancer Hanahan & Weinberg
  • 7. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 7 Major Systems Biology accomplishments for the understanding of disease • Systems Biology has shown that there is little basis of  looking for the molecule that causes a disease (for most  diseases): – It is a network malfunction • Systems Biology acknowledges complexity such as  through epigenetics rather than simplifying away from it – Genetic network, epigenetic network, transcription‐tranlation network, signaling network, metabolic network all integrated • Systems Biology shows that there are three different  aspects to multifactorial disease – More than one cause; not always the same set of causes for the same disease; different between individuals In a GWAS one does not find genes that correlate with breast cancer for more than 10%. Is this because A. Breast cancer is caused by lack of a factor that is delivered by three alternative pathways? B. it is caused by at least one pathway with more than10 gene products on it? The question will open when you start your session and slideshow. Internet This text box will be used to describe the different message sending methods. TXT The applicable explanations will be inserted after you have started a session. Twitter It is possible to move, resize and modify the appearance of this text box. # Votes: 19 Closed In a GWAS one does not find genes that correlate with breast cancer for more than 10%. Is this because A. B. Breast cancer is caused by  lack of a factor that is  delivered by three  alternative pathways? it is caused by at least one  pathway with more than10  gene products on it? 36.8% 63.2% Internet This text box will be used to describe the different message sending methods. TXT The applicable explanations will be inserted after you have started a session. Twitter It is possible to move, resize and modify the appearance of this text box. Closed Towards Precision Biology and Medicine • The Future in 2000 – What remained to be discovered • Life at the edge and the origin of Life – How to get your Carbon and Gibbs energy precisely (‐‐> Thierry Mondeel) • Towards precision medicine – Individualized medicine from PKU to Parkinson’s? (Alexey Kolodkin) – Transcription dynamics, cell‐cell heterogeneity and cancer ( Stephania Astrologo) – How understanding might matter: the Janus head of acute and chronic  inflammation • Serving the community  – Infrastructure systems Biology Europe (ISBE@NL): make me a model coalition  (Alexey Kolodkin) – Replica models, virtual human Towards Precision Biology and Medicine • The Future in 2000 – What remained to be discovered • Life at the edge and the origin of Life – How to get your Carbon and Gibbs energy precisely (‐‐> Thierry Mondeel) • Towards precision medicine – Individualized medicine from PKU to Parkinson’s? (Alexey Kolodkin) – Transcription dynamics, cell‐cell heterogeneity and cancer ( Stephania Astrologo) – How understanding might matter: the Janus head of acute and chronic  inflammation • Serving the community  – Infrastructure systems Biology Europe (ISBE@NL): make me a model coalition  (Alexey Kolodkin) – Replica models, virtual human The early Earth • H2 • CO • CO2 • No O2 Life needs organic (complexed) Carbon (similated CO or CO2) Gibbs energy (ATP) Are there organisms that can do this?
  • 8. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 8 The genome wide metabolic map, i.e.  all the network can make from any nutrition food1 food2 food3 Predicted flux distribution to produce acetate on the  Schuchmann and Müller GEMM: makes no net ATP Possible! Extend the C. ljungdahlii GEMM with Schuchman’s reactions Try all combinations of electron donor alternatives The menu Towards Precision Biology and Medicine • The Future in 2000 – What remained to be discovered • Life at the edge and the origin of Life – How to get your Carbon and Gibbs energy precisely (‐‐> Thierry Mondeel) • Towards precision medicine – Individualized medicine from PKU to Parkinson’s? (Alexey Kolodkin) – Transcription dynamics, cell‐cell heterogeneity and cancer ( Stephania Astrologo) – How understanding might matter: the Janus head of acute and chronic  inflammation • Serving the community  – Infrastructure systems Biology Europe (ISBE@NL): make me a model coalition  (Alexey Kolodkin) – Replica models, virtual human Inborn errors of metabolism Vital constituent food
  • 9. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 9 Vital constituent food The network topology predicting disease for inborn errors of  metabolism Would this work? Could it lead to cures? Could it help manage toxicity? 50 Would this work? Could it lead to cures? 51 Example of map utilization tyrosine metabolism: nurture Phenylketone   urine ✗ Protein Nutrition dopa dopamine Nor‐epinephrin OK Phe Tyr ✗ Example of map utilization tyrosine metabolism: nurture Phenylketone   urine ✗ Protein Nutrition dopa dopamine Nor‐epinephrin Phe Tyr ✗ OKX Phe is essential amino acid ✗ ✗ Example of map utilization tyrosine metabolism: nature Phenylketone   urine ✗ Protein Nutrition dopa dopamine Nor‐epinephrin Phe (Tyr) ✗ OKX Phenylketonuria (PKU) = IEM ✗ ✗
  • 10. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 10 Can one use the map to design a  therapy? Example of map utilization tyrosine metabolism: nature Phenylketone   urine ✗ Protein Nutrition dopa dopamine Nor‐epinephrin Phe Tyr ✗ Phenylketonuria (PKU) = IEM ✗ OK✗ ✗ ✗ Example of map utilization tyrosine metabolism: nature Phenylketone   urine ✗ Protein Nutrition dopa dopamine Nor‐epinephrin Phe Tyr ✗ Phenylketonuria (PKU) = IEM ✗ ✗ ✗ Nutrition therapy PKU: lack of brain development Why brain specifically? Why does PKU lead to mental retardation specifically? A. Brain is the only tissue that contains protein B. Blood brain barrier causes a difficulty The question will open when you start your session and slideshow. Internet This text box will be used to describe the different message sending methods. TXT The applicable explanations will be inserted after you have started a session. Twitter It is possible to move, resize and modify the appearance of this text box. # Votes: 0 Closed Why does PKU lead to mental retardation specifically? A. B. Brain is the only  tissue that  contains protein Blood brain  barrier causes a  difficulty 0.0% 0.0% Closed We will set these example results to zero once you've started your session and your slide show. In the meantime, feel free to change the looks of your results (e.g. the colors).
  • 11. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 11 Example of map utilization tyrosine metabolism: Brain: adrenalin Phenylketone   urine ✗ Protein Nutrition dopa dopamine Nor‐epinephrin Epinephrin=adrenalin Phe Tyr ✗ OKX ✗ ✗ ✗ ✗ ✗ ✗ Another riddle Reduced Phe‐intake therapy works better than Tyr supplementation: Apparently the problem is not just lack of tyrosine for protein synthesis Tyr enters brain in exchange for Phe 63 Phe Tyr B B B Westerhoff on Systems Toxicology; slide Mapping beyond the pathway 64 Also other diseases? Yes, multiple related diseases Phenylketonuria (PKU) Example of map utilization tyrosine metabolism: Multiple tyrosinemias Phenylketone   urine ✗ Protein ` Nutrition dopa dopamine Nor‐epinephrin Phe Tyr ✗ alkaptonuria tyrosinaemia III ✗ tyrosinaemia I ✗ ✗
  • 12. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 12 Can it help design drug therapy? 67 Example of map utilization tyrosine metabolism: (Cautioning vis‐à‐vis) drug therapy Phenylketone   urine ✗ Protein ` Nutrition dopa dopamine Nor‐epinephrin Phe Tyr ✗ alkaptonuria |‐‐‐‐‐‐‐‐ Nitisinone? tyrosinaemia III ✗ Associations with unrelated  diseases? Phe Tyr Dopamine Neuron  functioning Energy supply PKU ROS  management Astrocytes Synuc DJ1 Other mutation Mitochondria Parkinson’s  disease Westerhoff on Live maps for Life  70 Detailed model of ROS management: in silico discovery Alexey Kolodkin The menu Posters: all breaks Poster flashes
  • 13. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 13 Towards Precision Biology and Medicine • The Future in 2000 – What remained to be discovered • Life at the edge and the origin of Life – How to get your Carbon and Gibbs energy precisely (‐‐> Thierry Mondeel) • Towards precision medicine – Individualized medicine from PKU to Parkinson’s? (Alexey Kolodkin) – Transcription dynamics, cell‐cell heterogeneity and cancer ( Stephania Astrologo) – How understanding might matter: the Janus head of acute and chronic  inflammation • Serving the community  – Infrastructure systems Biology Europe (ISBE@NL): make me a model coalition  (Alexey Kolodkin) – Replica models, virtual human The Janus head of cells and Is Life computable/predictable? Or is it just too chaotic? The Janus head of cells; is it predictable which way it turns? Social (multicellular organism) Selfish (Unicellular or cancer) Reason to doubt predictability • For many diseases, falling ill is not democratic  (i.e. unequal probabilities) • Approved drugs only work for 40%  • There is just too much noise in Biology (??) Heisenberg’s uncertainty principle • If one looks at a particle that arrives at a precise  time, then its energy will remain uncertain • If one looks at the average of particles arriving  over a long period of time, then one knows their  average energy much more precisely ∆ · ∆ 7/4/2016 Westerhoff:  77 Drug therapy uncertainty principle? • Drug effectiveness for any individual patient: low  certainty • For the average effect on multiple patients: much certainty • When more interaction information available  (genome sequence; nutrition) more certainty also  for the individual (individualized systems medicine) ∆ · ∆ ′ 7/4/2016 Westerhoff:  78
  • 14. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 14 Example: Uncertain prediction of Cetuximab effect on colon cancer Zalcberg et al, NEJM 2008 (K‐ras wild type) SU RV I VA L Time in months Some colon cancer patients respond positively to treatment with EGFR  receptor antagonists, whereas others respond much less: Δeffect is large for any individual (uncertain prediction) 7/4/2016 Westerhoff:  79 The Bohr‐Einstein debate Bohr: Fundamentally we cannot know energy and time precisely for any particle: the particle is a  wave of uncertainty.  This means that in every new experiment the particle at time t=0 will have  a different energy. Einstein:  Gott würfelt nicht (God does not throw dice):  it is just that we do not have sufficient information about the individual particles. Statistical:  One measures many particles anyway,  or one over a long time: E can be measured through the average 7/4/2016 Westerhoff:  80 Patients with mutated K‐ ras: no effect of cetuximab SU RV  I  VA L Time in months Zalcberg et al, NEJM 2008 But for a small group of patients where we have information, we can predict:  Patients with tumors with K‐ras mutations do not respond Colon Cancer 7/4/2016 Westerhoff:  81 Conclusion Individualized systems medicine may  reduce the impredictability Knowledge removes uncertainty  (Einstein) The Bohr‐Einstein debate Bohr: Fundamentally we cannot know energy and time precisely for any particle: the particle is a  wave of uncertainty.  This means that in every new experiment the particle at time t=0 will have  a different energy. Einstein:  Gott würfelt nicht (God does not throw dice):  it is just that we do not have sufficient information about the individual particles. Statistical:  One measures many particles anyway,  or one over a long time: E can be measured through the average 7/4/2016 Westerhoff:  83 But Albert, there  is also intrinsic  noise! Indeed, cancer may be an exception • Based on intrinsic noise (somatic mutations)  and selection • Indeed, clonal cell lines still show differences  between individual cells • The individual cells in tissues differ between  each other due to genetic mutations and  epigenetic mutations But shouldn’t noise be small because  molecule numbers are large?
  • 15. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 15 In most traditional pathways noise is small  because molecule numbers are large Non-equilibrium pathways: Fano factor is also approximately equal to 1 Molecule numbers are >>10000. Where does cell-cell heterogeneity come from then? 7/4/2016 Westerhoff:  85 =1% DNA mRNA Protein 1 2 3 4 But Biology is ‘hierarchical’ and  complex 7/4/2016 Westerhoff:  86 0 50 100 150 200 250 300 0 50 100 150 # of Protein Molecules # of Simulations 0 50 100 150 200 250 300 0 50 100 150 # of Product Molecules # of Simulations 1 2 3 4 DNA mRNA Protein ProductSubstrate 5 6 1 3 5 = 0.5*DNA = 0.5*mRNA = 0.5*Protein*Substrate 2 4 6 = 0.1*mRNA = 0.1*Protein = 0.1*Product 0 20 40 60 0 20 40 60 80 100 Time # of Molecules DNA mRNA Protein Product 1.0098 3.5313 13.0332 0 5 10 15 mRNA Protein Product Fano Factor (σ2/µ) Hierarchies explain noise 7/4/2016 Westerhoff:  87 Can we understand noise in  biology? Yes, caused by hierarchies and other mechanisms But this does not explain mRNA  noise But with RNA bursting, can this give rise to 2 distinct subpopulations?
  • 16. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 16 State oscillations Stochastic mRNA bursting Can bursting give rise to bimodality (two distinct subpopulations)? Stephania Astrologo (poster here):  Yes Conclusion: There could be a non  permanent Janus head (heterogeneity)  due to bursting But this would not make the  aberrant (tumor) cells selectable Could you think of a way in which this dynamic heterogeneity could lead to tumorigenesis? 1. Your audience's responses will appear here. Please feel free to change the font, color etc. This text disappears after starting your session and slideshow. 2. Your audience's responses will appear here. Please feel free to change the font, color etc. This text disappears after starting your session and slideshow. 3. Your audience's responses will appear here. Please feel free to change the font, color etc. This text disappears after starting your session and slideshow. Internet This text box will be used to describe the different message sending methods. TXT The applicable explanations will be inserted after you have started a session. Twitter It is possible to move, resize and modify the appearance of this text box. # Messages: 0 (0% correct) Unless there is capture of the state, because it  produces a single event such as metastasis  Selection pressure for  tumorigenesis? X Could (epi)mutations also give rise to,  then selectable heterogeneity? • Chiara Damiani:  Yes • She developed an FBA method that generates  diverse in silico cells with diverse functions
  • 17. Systems Medicine course Como 2016 26/09/2016 Westerhoff et al Page 17 The menu Towards Precision Biology and Medicine • The Future in 2000 – What remained to be discovered • Life at the edge and the origin of Life – How to get your Carbon and Gibbs energy precisely (‐‐> Thierry Mondeel) • Towards precision medicine – Individualized medicine from PKU to Parkinson’s? (Alexey Kolodkin) – Transcription dynamics, cell‐cell heterogeneity and cancer ( Stephania Astrologo) – How understanding might matter: the Janus head of acute and chronic  inflammation • Serving the community  – Infrastructure systems Biology Europe (ISBE@NL): make me a model coalition  (Alexey Kolodkin) – Replica models, virtual human Systems Biology and  Medicine: Understanding disease  by understanding the  networks of Life Hans V. Westerhoff and friends: Thierry Mondeel Stefania Astrologo Alexey Kolodkin Ablikim Abulikemu Samrina Rehman Malkhey Verma Lilia Alberghina and SYSBIO-IT