Antibacterials summary by Laith Yahya

816 views

Published on

I found this presentation that may help you in understanding some basis of the drugs and pathogens :)
By Laith Yahya

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
816
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
19
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Note the D-ala-D-ala vancomycin binding site This crosslinking gives stability and strength to the cell wall
  • Listeria monocytogenes Imipenem: usually has better activity against enterococcus than meropenem or ertapenem. It is bacteriostatic not cidal.
  • Cilastatin: reversible, competitive inhibitor of dehydropeptidase-1 (DHP—1) (enzyme found in the brush border of the proximal tubular cells of the kidneys) Prevents the breakdown of imipenem to inactive metabolites
  • OprD: is different than the one used for cephalosporins
  • Antibacterials summary by Laith Yahya

    1. 1. The Beta-Lactam Antibiotics Cell wall active agents  Prevent the final step in the synthesis of the bacterial cell wall Range from very narrow spectrum to very broad spectrum
    2. 2. β-Lactams β-lactam ring
    3. 3. How do they work?1. The β-lactam binds to Penicillin Binding Protein (PBP)2. PBP is unable to crosslink peptidoglycan chains3. The bacteria is unable to synthesize a stable cell wall4. The bacteria is lysed
    4. 4. Peptidoglycan Synthesis“Penicillin binding protein”
    5. 5. PK/PD The β-lactams are “time-dependent” killers  The effect is directly proportional to the amount of TIME the concentration of the antibiotic at the site of infection is ABOVE the MIC of the organism. The β-lactams are BACTERIOCIDAL… (at therapeutically attainable levels)
    6. 6. “Time Dependant” H Derendorf
    7. 7. “Time Dependant” WA Craig
    8. 8. So many choices…which one to pick? What is the likely organism? What’s its major mode of resistance? Where’s the infection? What’s my local environment?  the UNC Hospital antibiogram What does the micro lab say?  in vitro sensitivity testing
    9. 9. Classification Penicillins  Natural penicillins  PenG, PenVK, Benzathine Pen, Procaine Pen  Aminopenicillins  Ampicillin, Amoxicillin  Anti-Staph penicillins  Oxacillin, Dicloxacillin  Anti-Pseudomonal  [Carboxy] Ticarcillin  [Ureido] Piperacillin
    10. 10. Classification Cephalosporins  1st Generation  Cephalexin, Cefazolin  2nd Generation  Cefoxitin, Cefuroxime, Cefotetan  3rd Generation  Cefotaxime, Ceftriaxone, Ceftazidime  4th Generation  Cefepime
    11. 11. Penicillin G AvailablePO, IM, IV (dosed in units) Drug of Choice (DoC) [2-4 MU IV q4h]  T. pallidum, N. meningitidis, Group A Strep, and Actinomycosis Long-acting forms  Procaine PenG (12 hrs)  Benzathine Pen (5 days) [2.4 MU IM for syphilis] Adverse Reactions – other than skin rash  Penicillin “serum sickness”/drug fever  Jarisch-Herxheimer reaction (1° and 2° syphilis)  Hemolytic anemia, pancytopenia, neutropenia
    12. 12. Ampicillin/Amoxicillin Amp (IV, PO) Amox (PO) Spectrum: PenG + H. flu and some E. coli DoC: Listeria monocytogenes and Enterococcus [Amp 2g IV q4h] Dental Prophylaxis  Amox 1 gram PO x 1 prior to appt. Integral in H. pylori regimens ADRs  Non-allergic rashes (9%) – esp. when associated with a viral illness (mononucleosis - EBV)  Amox better tolerated PO and better absorbed (Amp must be taken on empty stomach)
    13. 13. Oxacillin IV DoC – MSSA, MSSE [2g IV q4h]  Actually less active against Pen susceptible isolates than Pen  More active than Vanc vs. MSSA Significant hepatic metabolism  No need to dose adjust for renal impairment ADRs  Hepatotoxicity (cholestatic hepatitis)  Neutropenia  Kernicterus in neonates
    14. 14. Dicloxicillin Oral NOT equivalent to IV Ox (therapeutically)  Poororal absorption  ~50% (better on empty stomach) Dose: 250-500mg po QID
    15. 15. Piperacillin IV DoC: Pseudomonas Spectrum: most Enterobacteriaceae (E. coli, Proteus, Klebsiella, Enterbacter, Serratia, Citrobacter, Salmonella and Shigella) Most active penicillin vs. Pseudomonas Often used in combination with Aminoglycoside or Cipro/Levofloxacin ADRs  Bleeding (platelet dysfunction)  Neutropenia/Thrombocytopenia
    16. 16. β-Lactamase Inhibitors How do you evade a β-lactamase? 1. Use a non-β-lactam agent 2. Steric Inhibition  Penicillins with large side chains  Cephalosporins 3. β-lactam + β-lactamase inhibitors  Not all β-lactamases are inhibitable (!)
    17. 17. Clavulanic Acid Augmentin (Amox/Clav) PO Spectrum: MSSA and upper respiratory infections (S. pneumo, H. flu, M. catarrhalis) and most anaerobes Clav is responsible for most of the GI side- effects seen with Amox/Clav Variable ratios of Amox/Clav in liquids/tabs/chewtabs
    18. 18. Sulbactam Unasyn (Amp/Sulbactam) Spectrum: Amp + most anaerobes + many enteric Gm (-) rods, OSSA DoC: for GNR mixed infection – E.coli, Proteus, anaerobes when Pseudomonas is not implicated  Diabetic foot (once Pseudomonas ruled out)  Wound infections Sulbactam alone is very active against Acinetobacter spp.
    19. 19. Tazobactam Zosyn (Pip/Tazo) THE most broad-spectrum penicillin Tazobactam may improve the activity of piperacillin vs. gram-negative rods, including anaerobes 4.5g IV q8h = 3.375g IV q6h 4.5g IV q6h for Pseudomonas
    20. 20. The Cephalosporins (generalized) *Not effective vs. Enterococcus or Listeria 1st Generation Gram (+) Decreasing Gram (+) 2 Generation nd and Increasing Gram (-) Gram (-), but also some 3 Generation rd GPC 4th Generation Gram (+) and Gram (-)
    21. 21. Cephalexin/Cefazolin PO/IV Stablevs Staph penicillinase Spectrum: MSSA, PSSP, most E. coli, and some Klebs Can be dose thrice weekly in HD pts  [1.5 grams IV TIW] DoC:surgical prophylaxis, bacterial peritonitis in CAPD pts [1 gm in the dwell bag] ADRs  Positive Coombs’ test (though, hemolytic anemia is rare)
    22. 22. Cefuroxime IV/PO Extensive use in pediatrics Spectrum: Strep pneumo, Viridans Strep, most H. flu, N. meningitidis DoC: uncomplicated CAP (esp. H. flu), UTI/pyelo
    23. 23. Cefotaxime IV Spectrum: Strep pneumo, Neisseria spp., most Gram (-) enterics, M. catarrhalis and H. flu (including β-lactamase +) DoC: bact meningitis (esp. in peds + amp if < 4 weeks), CAP, complicated UTI/pyelonephritis, Bacterial Peritonitis
    24. 24. Ceftriaxone IV Once daily dosing (95% protein bound = long half-life) Spectrum: Strep. pneumoniae, most Enterbacteriaceae, Excretion: 50% urine, 50% bile = no need to adjust for renal insufficiency CSF penetration: 5-15% in meningitis, 1.5% with out inflammation DoC: bacterial meningitis, CAP, Strep. viridans endocarditis (+ gent) ADRs  Cholestasis  Elevated bilirubin (displacement)  Diarrhea
    25. 25. Ceftazidime IV Spectrum: Enteric GNR (including Pseudomonas; some Acinetobacter) No anaerobic activity (same for cefotaxime and ceftriaxone) DoC: Pseudomonas infx
    26. 26. Third Generation Cephs: Issues β-lactamase induction?  ESBLs  De-repression of chromosomal β-lactamases Selective pressure for VRE?
    27. 27. Cefepime IV NON-Spectrum: MRSA, C. diff, Burkholderia, Stenotrophomonas, gram- negative anaerobes Stable vs. de-repressed chromosomal β- lactamases, but not ESBL Less β-lactamase induction than 3 rd Cephs DoC: HAP, febrile neutropenia
    28. 28. Carbapenems Imipenem, Meropenem, Ertapenem Broad-spectrum coverage:  Gram positive: PSSP, MSSA, VSE  Gram negative: most gram-negative organisms (Acinetobacter sp., Pseudomonas sp.) Lack of coverage:  Ertapenem: Pseudomonas sp., Acinetobacter sp.  All: Stenotrophomonas, Legionella sp., MRSA, VRE
    29. 29. Carbapenems Distribution:similar to penicillins Excretion: renal clearance Adverse reactions:  Hypersensitivity: rash, urticaria, cross-reactivity  Imipenem: seizures (rare)  High doses  Renal dysfunction  Most likely can occur with all carbapenems at high doses
    30. 30. Carbapenems Resistance:  Gram negative: usually combination of mechanisms (Carbapenemase production + decreased entry)  Imipenem  Decreased production of OprD (outer membrane protein for carbapenems)  Imipenem utilizes OprD > meropenem, ertapenem  Pseudomonas, Enterobacter  Susceptible to efflux system in Enterobacter  Meropenem: substrate for multi-drug efflux systems  May have increased MIC for meropenem but not imipenem  All: low affinity PBPs
    31. 31. Monobactams Monobactams: Aztreonam Spectrum: ONLY  Gram negative aerobic bacteria Lack of Coverage:  Some resistant P. aeruginosa, E. cloacae, and C. freundii  Acinetobacter sp., Stenotrophomonas sp. Pharmacokinetics:  Well distributed into tissues, esp. inflamed tissues  Excretion: renal clearance Adverse reactions:  Skin rash  No cross-reactivity with Beta-Lactam class
    32. 32. What about penicillin allergies? Literature reports a ceph/pen cross-reactivity of 1 – 10% The cross-reactivity of aztreonam/pen or ceph is essentially 0% The cross-reactivity of carbapenems/penicillins is also around 10% (similar to that of ceph/pen) Decision making:  Severity of reaction  Eos

    ×