Laurentiu Pestritu - fundamentals of insulation

1,094 views

Published on

Published in: Business
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,094
On SlideShare
0
From Embeds
0
Number of Embeds
9
Actions
Shares
0
Downloads
57
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Laurentiu Pestritu - fundamentals of insulation

  1. 1. Fundamentals of insulationFundamentals of insulation Kuwait, February 2012 Product Manager Insulation ‐ ME, India & Africa Product Manager Insulation ‐ ME, India & Africa Dr. Laurenţiu Pestriţu MBE Dr. Laurenţiu Pestriţu, MBE Laurenţiu Pestriţu, 
  2. 2. PROGRAM 17:00 ‐ 17:00 ‐ 17:30  The insulation  Why should we insulate? y  Aerofoam NBR insulation  Aerofoam XLPE insulationFebruary 2012,February 2012, Kuwait
  3. 3. THE INSULATION Definition Insulation – a material that reduces or prevents the transmission of heat or sound or electricityFebruary 2012,February 2012, Kuwait
  4. 4. THE INSULATION Classification INSULATING MATERIALS Open cell: Open cell: Closed cell: Closed cell:  Rockwool  polyurethane p y  mineral wool  polystyrene  glass wool g  glass g  cork  polyethylene  (polyurethane) (p y )  elastomeric  (polystyrene)February 2012,February 2012, Kuwait
  5. 5. WHY INSULATE? Scope Refrigeration and AC Refrigeration and  Refrigeration and AC Targets:    Targets:    1. Condensation control . Condensation control 2. Minimizing thermal loss . Minimizing thermal loss  Minimizing thermal loss  Heating Target: Target: ‐ minimizing thermal lossFebruary 2012,February 2012, Kuwait
  6. 6. WHY INSULATE? Selection criteria Temperature  Thermal conductivity  of the agent  ( ) Vapor barrier ()  Vapor barrier ( Ease of installation Ease of installation Fire resistence Fire resistence (flexible insulation) ‐ Class O ‐ Class O ‐February 2012,February 2012, Kuwait
  7. 7. WHY INSULATE? Thermal  conductivity  0,024 Air  0,034 0 034 Cross linked PE Cross linked PE  0,035 Elastomeric insulaton  0,200 Wood  0,550 0 550 Water W  0,840 Concrete λ‐value 0.9 0.8 0.7 07 0.6 0.5 0.4 0.3 0.2 0.1 0 Air Aerofoam  Aerofoam  Aerofoam Aerofoam Wood Water Concrete XPE NBRFebruary 2012,February 2012, Kuwait
  8. 8. WHY INSULATE? Theory ‐ Theory ‐ condensation Refrigeration and AC Refrigeration and AC Targets:    Targets:    1. Condensation control . Condensation control 2. Minimizing thermal loss . Minimizing thermal loss  Minimizing thermal loss February 2012,February 2012, Kuwait
  9. 9. INSULATION Theory ‐ Theory ‐ condensation For HVAC scopes F HVAC Can be used only closed‐cell insulation materials:February 2012,February 2012, Kuwait
  10. 10. INSULATION Important  aspects  Top 5 important aspects regarding  Top 5 important aspects regarding  closed cell insulation l d ll i l ti 1) Strong water vapor resistance factor ‐  2)    Low thermal conductivity  2) Low thermal conductivity – λ 3)    Use of right insulation thickness 4)    Correct installation – tightness of the glued joints 5)    Keeping the minimum distance among insulated objects ) h d l d bFebruary 2012,February 2012, Kuwait
  11. 11. INSULATION Important  aspects λ µ Heat flow (λ) and diffusion flow (µ) are caused by the difference in the line and ambient temperaturesFebruary 2012,February 2012, Kuwait
  12. 12. INSULATION .  1.  value 1. STRONG WATER VAPOR BARRIER . STRONG WATER VAPOR BARRIER Water vapor diffusion resistance factor ‐  Water vapor diffusion resistance factor ‐   7000February 2012,February 2012, Kuwait
  13. 13. INSULATION .  1.  value Tline + 6°C  RH  0% There is pressure difference of water vapor between ambient air and closed cell structure of insulation (due to temperature difference between the line and the ambient). The pressure difference is creating a diffusion flow which is forcing the ambient water vapors into the insulation (towards lower temperature). Tamb +  + 22°C February 2012,February 2012, Kuwait RH  70%
  14. 14. INSULATION .  1.  value Tline + 6°C  RH  0% For poor quality materials (with low  value) insulation will get wet. ill Therefore one should apply high quality insulation materials (i.e. with high value of water vapour diffusion resistance factor ) Tamb +  + 22°C February 2012,February 2012, Kuwait RH  70%
  15. 15. INSULATION .  1.  value Tline + 6°C  RH  0% Thanks to strong  value water vapor penetration is very slow and kept at limited level. p  > 7000 Tamb +  + 22°C February 2012,February 2012, Kuwait RH  70%
  16. 16. INSULATION .  1.  value THE DIFFERENCE BETWEEN HIGH AND LOW  THE DIFFERENCE BETWEEN HIGH AND LOW   < 7000   7000 Vapors   diffusion Vapors   diffusionFebruary 2012,February 2012, Kuwait
  17. 17. INSULATION 2. λ value . λ value 2. LOW THERMAL CONDUCTIVITY  . LOW THERMAL CONDUCTIVITY   ≤ 0,035 Low  Low quality materials Low quality materials High   High quality materials High quality materials 10 yrs 10February 2012,February 2012, Kuwait
  18. 18. INSULATION 3. Insulation  . I thickness 3. USING THE CORRECT INSULATION THICKNESS . USING THE CORRECT INSULATION THICKNESS Depending on the pipe diameter the minimum insulation thickness should be calculated (other influencing parameters are: ambient are: temperature,line temperature, relative humidity, surface coefficient, thermal conductivity) Φ 114 mm Thickness: 19 mm   Diameter: 15 mm Thickness: 24,5 mm   Diameter: 114 mmFebruary 2012,February 2012, Kuwait
  19. 19. INSULATION 3. Insulation  . I thickness The influence of pipe diameter size towards the  heat flow (and towards the insulation thickness)  Plain surface Curved surface A1 A1 A1 0 0 0 A2 A2 A2 A bigger insulation thickness is required for pipes with  bigger diametersFebruary 2012,February 2012, Kuwait
  20. 20. INSULATION 4. Correct  . Correct  installation 4. TIGHTNESS OF INSULATION GLUING . TIGHTNESS OF INSULATION GLUING Installation must be done with products which assure a good  Installation m st be done ith prod cts hich ass re a good gluing at the joints and on the entire length of the pipe.  Tline 6°C RH 0% RH     0 RH      Rigid insulation Ri id i l i may oftenf contain spaces (due to wrong cutting) where condensation can appear. appear.February 2012,February 2012, Kuwait
  21. 21. INSULATION 4. Correct  . Correct  installation Tight joints The system integrity (tight joints) is assured by following a right  installation procedure and by using the right adhesive.  The adhesive glues the insulation surfaces through a chemical  reaction which has as result the “cold vulcanization”.  “cold vulcanization”  g guarantees the  required tightnessFebruary 2012,February 2012, Kuwait
  22. 22. INSULATION 5. Surface  . Surface  coefficient (h) 5. KEEPING THE MINIMUM DISTANCE  . KEEPING THE MINIMUM DISTANCE  AMONG INSULATED OBJECTS hr h = hr + hcv h hcv = convective  contribution of  t ib ti f surface coefficient hr = radiative contribution of  hcv surface coefficientFebruary 2012,February 2012, Kuwait
  23. 23. INSULATION 5. Surface  . Surface  coefficient (h) Aerofoam Aerofoam with steel  (flat /  painted Aerofoam mat) cladding with alu  h l (silver)  cladding  Aerofoam A f not painted  10 W m2 . K 8 W  5,7 WFebruary 2012,February 2012, m2 . K m2 . K Kuwait
  24. 24. INSULATION 5. Surface  . Surface  coefficient (h) Surface coefficient h Without  With steel  With alu  cladding   / Cladding (flat / mat)  (flat / mat) (silver)  (silver) Static area Static area insulation  cladding cladding painted 3 Value of  surface  coeff. h   [W/m2K] 10 8 5,7 , Insulation  Insulation thickness s) ( 0 so 1,5 * so 1,9 * so  3,0 * soFebruary 2012,February 2012, Kuwait
  25. 25. INSULATION 5. Surface  . Surface  coefficient (h) Higher probability of forming condensation  in the static areas Lack of air flow (convection)February 2012,February 2012, Kuwait
  26. 26. INSULATION 5. Surface  . Surface  coefficient (h) Recommended distances among the insulated objects  for small objects:  100 mm 100 mm  for big objects:  1000 mm 1000 mm  100 mm     100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm  100 mm  1000 mm   1000 mm 1000 mmFebruary 2012,February 2012, Kuwait
  27. 27. INSULATION 5. Surface  . Surface  coefficient (h) Especially important for chilled water pipe works Pipe works in  office and hotel  buildingsFebruary 2012,February 2012, Kuwait
  28. 28. INSULATION 5. Surface  . Surface  coefficient (h) Effects of not keeping the right distance among the  insulated objects CondensationFebruary 2012,February 2012, Kuwait
  29. 29. THE INSULATION Classification INSULATING MATERIALS Open cell: Open cell: Closed cell: Closed cell:  Rockwool  polyurethane p y  mineral wool  polystyrene  glass wool g  glass g  cork  polyethylene  (polyurethane) (p y )  elastomeric  (polystyrene)February 2012,February 2012, Kuwait
  30. 30. INSULATION Features Cross linked PE at a glance… Cross linked PE at a glance… Almost zero water vapour permeability and water absorption – vapour water barrier as per ASHRAE and British Standards Passed a wide range of fire and smoke tests for building materials t i l Passed toxicity levels of combustion gases as per ISO5659 IMO Resolution MSC61 Safe, fast and easy installation ‐ integrated materialFebruary 2012,February 2012, Kuwait
  31. 31. INSULATION Features No loose fibres that may cause irritations both on installation and service Environmentally friendly: ‐ CFC and HCFC free ‐ does not contain nor use in its production substances that contribute to Ozone Depletion Potential (ODP) and Global Warming Potential (GWP)February 2012,February 2012, Kuwait
  32. 32. INSULATION Applications Application types Square ducts Round ducts Walls Pipes Storage tanks Raised floorsFebruary 2012,February 2012, Kuwait
  33. 33. INSULATION Properties Vital Insulation Properties  1. Thermal Conductivity – defines the thermal performance of y p the material The lower the value, the better the thermal performance. Varies according to mean temperature. Varies according to mean temperature. Symbol: λ, Units: W/mK, Standard: ASTM C518 2. 2 Water Vapour Permeability – the diffusion of water vapors into the insulation The more permissive is the material , the higher the thermal conductivity will become over time time. Varies with temperature and relative humidity. Unit: g/h.m2, Standard: ASTM E96 3. Water Absorption – amount of water a material can absorb More water absorbed means lower thermal performance of the material  over time. ti Varies with density of the material.February 2012,February 2012, Kuwait Standard: BS EN 12087
  34. 34. INSULATION Water absorption Water Absorption Cross linked PE: 0 Cross linked PE: 0.3% Mineral Fiber: 100% Mineral Fiber: 100% Water absorption Water absorption (% by volume) 100 90 80 70 60 50 40 30 20 10 0February 2012,February 2012, Kuwait
  35. 35. INSULATION Comparative  performance Comparison of insulation performance Fibreglass NBR XLPE Resin bonded  Extruded PVC  Crossed‐linked  Name N glass fibers Nitrile Rubber polyethylene foam Type of material Open cell Closed cell Closed cell Thermal conductivity [W/mK] Thermal conductivity [W/mK] 0.036 0.038 0 036‐0 038 0.035 0 035 0.034 0 034 Water vapour permeability 75 perm‐in 0.02 perm‐in 0.00 perm‐in Condensation control No Yes Partial Integrated product Integrated product No Partial Yes Fibre free product No Yes Yes Reliability in time Low High High Ease of installation Environmentally friendlyFebruary 2012,February 2012, Kuwait
  36. 36. INSULATION Comparative  costing Comparison of installation costs Condition: Indoor installation of AC ducts Estimate for  Item  10,000m2 duct  S/N XLPE (13mm) FIBERGLASS (25mm) ELASTOMERIC (13mm) Description work Insulation  1 10,000 m2 18 180,000.00 6.5 65,000.00 14 140,000.00 Material 2 Adhesive Glue 3,000 liters NIL 0.00 10 30,000.00 10 30,000.00 (4 US  3 1st coat foster 608 NIL 0.00 60 36,480.00 0 0.00 Gallons) 4 canvas cloth 1,186 rolls NIL 0.00 15 17,790.00 0 0.00 (4 US  5 2nd coat foster 660 NIL 0.00 100 66,000.00 0 0.00 Gallons) labor and  6 1,000 manhours 5.5 5,500.00 16 16,000.00 5.5 5,500.00 fabrication Total Cost of Labor and Materials AED 185,500.00 AED 231,270.00 AED 175,500.00 Cost savings compared to fiberglass 19.79% 24.11%February 2012,February 2012, Kuwait
  37. 37. INSULATION Comparative  performance Comparison of insulation performance Condition: Installation of AC ducts in conditioned areas Internal External % Insulation Thermal Heat Surface Surface Tline Tamb ∆T Reduction Thickness Thi k Conductivity C d ti it Flow Q Fl Insulation Material Coefficient Coefficient of Heat (°C) (°C) (°C) 2 L (mm) λ (W/mK) (W/m K) fi fo Flow XLPE 13 22 5.7 57 0.034 0 034 9 30 21 34.81 34 81 79% NBR 13 22 10 0.036 9 30 21 41.46 75% Fiberglass  17.5 22 10 0.037 12 25 13 21.021 72% Assuming at least 30% compression of fibreglass l ffb l As per BS5422: ΔT fi internal surface coefficient Q = 1/f + L/λ + 1/f fo external surface coefficient i o Galvanized sheet metal  8 W/m2KFebruary 2012,February 2012, Bright reflective surface  5.7 W/m2K Kuwait White painted surface  10 W/m2K
  38. 38. Questions?

×