Successfully reported this slideshow.              Upcoming SlideShare
×

# Statistika2

Dalam Statistika 2, kita membahas tentang :

Ukuran Pemusatan Data ( Data tunggal dan Data kelompok)
Ukuran Letak (Data tunggal dan Data kelompok)
Ukuran Penyebaran Data ( Data tunggal dan Data kelompok)

• Full Name
Comment goes here.

Are you sure you want to Yes No • Be the first to like this

### Statistika2

1. 1. MODUL MATEMATIKA STATISTIKA 2 KUSNADI, S.Pd www.mate-math.blogspot.com
2. 2. STATISTIKA 2 Standar Kompetensi : Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah. Kompetensi Dasar :  Menghitung ukuran pemusatan data serta penafsirannya.  Menghitung ukuran letak data serta penafsirannya.  Menghitung penyebaran data serta penafsirannya.
3. 3. BAB I PENDAHULUAN A. Deskripsi Modul ini kami susun sebagai salah satu sumber belajar untuk siswa agar dapat dipelajari dengan lebih mudah. Kami menyajikan materi dalam modul ini berusaha mengacu pada pendekatan kontekstual dengan diharapkan matematika akan makin terasa kegunaannya dalam kehidupan sehari-hari. B. Prasyarat Prasyarat untuk mempelajari modul ini adalah anda harus sudah menguasai dasar-dasar sigma/penjumlahan. C. Petunjuk Penggunaan Modul Untuk mempelajari modul ini, hal-hal yang perlu anda lakukan adalah sebagai berikut. 1. Untuk mempelajari modul ini haruslah berurutan, karena materi yang mendahului merupakan prasyarat untuk mempelajari materi berikutnya. 2. Pahamilah contoh-contoh soal yang ada, dan kerjakanlah semua soal latihan yang ada. Jika dalam mengerjakan soal anda menemuickesulitan, kembalilah mempelajari materi yang terkait. 3. Kerjakanlah soal evaluasi dengan cermat. Jika anda menemui kesulitan dalam mengerjakan soal evaluasi, kembalilah mempelajari materi yang terkait. 4. Jika anda mempunyai kesulitan yang tidak dapat anda pecahkan, catatlah, kemudian tanyakan kepada guru pada saat kegiatan tatap muka atau bacalah referensi lain yang berhubungan dengan materi modul ini. Dengan membaca referensi lain, anda juga akan mendapatkan pengetahuan tambahan.
4. 4. D. Tujuan Akhir Setelah mempelajari modul ini diharapkan Anda dapat:  Menentukan rataan, median dan modus.  Memberikan tafsiran terhadap ukuran pemusatan.  Menentukan simpangan rata-rata dan simpangan baku.  Menentukan ragam/varian.
5. 5. BAB II PEMBELAJARAN A. Memahami Rataan Hitung ( Mean) 1.Rataan Hitung dari data tunggal n x = ∑ xi i=1 Contoh: Tentukan rataan hitung dari data: 9 8 4 12 6 9 5 3 Jawab: x = ∑ xi = 1 ( 9+8+4+12+6+9+5+3 ) 8 = 7 2.Rataan hitung dari data berkelompok x = keterangan : xi = titik tengah interval kelas ke i fi = frekuensi interval kelas ke i Contoh : Diketahui distribusi frekuensi : Nilai Frekuensi 41 -50 51 -60 61 – 70 71 – 80 81 – 90 91 – 100 2 5 14 10 6 2 Tentukan rataan hitung dari table diatas. Jawab: Nilai Frekuensi Titik tengah Fi .xi
6. 6. ( fi ) ( xi ) 41 -50 51 -60 61 – 70 71 – 80 81 – 90 91 – 100 2 5 14 10 6 2 45,5 … … … … … 91 … … … … … … … x = = … B. Menentukan rataan hitung dengan rataan sementara 1. Dengan simpangan rata-rata Langkah-langkah : a. pilih rattan sementara (xs) dapat diambil dari salah satu titik tengah b. Tentukan simpangan (di) dari tiap-tiap nilai (xi) terhadap rataan sementara yang dipilih, dengan rumus di = xi - xs c. Rataan sesungguhnya ( yang dicari ) dapat dihitung menggunakan rumus : x = xs + fi . di ∑ fi Contoh : Lengkapilah daftar distribusi frekuensi di bawah ini. Kemudian hitunglah rataan hitungnya dengan mengambil rataan sementara xs = 162 T badan (cm) f xi di = xi - xs fi . di 152 – 154 155 – 157 158 – 160 161 – 163 6 13 12 22 153 … … 162 -9 … … 0 … … … 0
7. 7. 164 – 166 167 – 169 170 – 172 173 - 175 10 11 4 2 … … … … … … … … … … … … ∑f = 80 ∑ = … X = xs + fi.di . ∑ fi = 162 + … = … 2. Dengan pengkodean (ui) Langkah-langkah : a. pilih rattan sementara (xs) dapat diambil dari salah satu titik tengah b. Tentukan kode (ui) dari tiap-tiap nilai (xi) terhadap rataan sementara yang dipilih, dengan rumus ui = xi - xs p c. Rataan sesungguhnya ( yang dicari ) dapat dihitung menggunakan rumus : x = xs + fi . ui . p ∑ fi Keterangan : ui = 0, ± 1, ± 2, … P = panjang interval kelas Contoh : Dengan menggunakan table distribusi frekuensi pada contoh di atas, hitunglah rataan hitung dengan cara pengkodean. T badan (cm) f xi ui = di p fi . ui 152 – 154 155 – 157 158 – 160 161 – 163 164 – 166 6 13 12 22 10 153 … … 162 … -3… … … 0 … … … … 0 …
8. 8. 167 – 169 170 – 172 173 - 175 11 4 2 … … … … … … … … ∑f = 80 ∑ = … X = xs + fi.ui . p ∑ fi = 162 + … = … C. Menentukan modus median dan kuartil. 1. Modus Modus adalah nilai datum yang paling banyak munculatau nilai datum yang mempunyai frekuensi terbesar. Contoh : Diketahui nilai ulangan matematika 10 siswa sbb: 5 6 6 6 7 8 8 8 9 10 Jawab: Modus (Mo) = 6 dan 8 Modus dat kelompok ditentukan dengan rumus Mo = L + d1 . p d1 + d2 Keterangan : Mo = Modus L = Tb = tepi bawah kelas modus d1 = selisih frekuensi kelas modus dengan frekuensi kelas sebelumnya d2 = selisih frekuensi kelas modus dengan frekuensi kelas sesudahnya. P = panjang interval kelas Contoh : Tentukan modus dari data daftar distribusi frekuensi di bawah ini. Nilai Frekuensi
9. 9. 50 – 54 55 – 59 60 – 64 65 – 69 70 – 74 75 – 79 80 – 84 6 9 12 15 20 10 8 ∑ f = 80 Jawab : Kelas Modus 70 -74 L = Tb = 69,5 di = 20 -15 = 5 d2 = 20 – 10 = 10 p = 5 Mo = 69,5 + 5 . 5 5+15 = 69,5 + 1,25 = 70,75 2. Median, kuartil dan desil Median adalah nilai tengah setelah data diurutkan. Quartil ada 3 yaitu : Q1 (kartil bawah), 2 ( Median ) , Q3 ( kuartil atas) Dapat diperoleh dengan rumus : Qi = Li + i / 4 n - ( ∑ f )i . p Fi Ket : Li = tepi bawah yang memuat kuartil bawah Qi (∑f ) = jumlah frekuensi sebelumquartil bawah Qi fi = frekuensi kelas yang memuat kuarti bawah Qi i = 1,2,3 Contoh : Dari table distribusi frekuensi di bawah ini tentukan Q1, Median atau Q2 dan Q3.
10. 10. Nilai frekuensi F kumulatif 15 – 19 20 - 24 25 – 29 30 – 34 35 – 39 40 – 44 45 – 49 3 6 10 15 8 5 3 3 9 19 34 42 47 50 ∑ f = 50 Jawab : Q1 terletak pada data ke ¼ . 50 = 12,5 yaitu pada kelas 25 – 29. Q1 = 24,5 + (12,5 – 9)/10 . 5 = 24,5 + 1,75 = 26,75 Q2 terdapat pada data ke ½ . 50 = 25 yaitu pada kelas 30 -34. Q2 = 29,5 + (15 – 19)/15 . 5 = 29,5 + … =… Q3 = … + … = … Desil adalah suatu nilai yang membagi data menjadi sepuluh bagian yang sama banyak ( setelah data diurutkan). Cara menentukan Desil: a. Untuk data tunggal, dapat ditentukan dengan : Di = i(n + 1)/10 b. Untuk data kelompok, dapat ditentukan dengan : Di = Li + (i/10 n – fk)/fi . p Li = tepi bawah kelas Fk = frekuensi kumulatif sebelum kelas Di Fi = frekuensi kelas Di Contoh : Tentukan D2 dan D7 dari data berikut 3 4 10 5 7 6 5 6 7 4 7 7 10 6
11. 11. Jawab : Data diurutkan terlebih dahulu dari yang terkecil sampai yang terbesar : 3 4 4 5 5 6 6 6 7 7 7 10 D2 teletak pada urutan nilai ke 2(12+1)/10 = 2,6 D2 = x2 + 0,6 ( x3-x2 ) = 4 + 0,6 (4 -4) = 4 + 0 = 4 D7 terletak pada urutan nilai ke 7(12+1)/10 =9,1 D7 = x9 + 0,1 (x10 – x9) = 7 + 0,1 (7-7) = 7 + 0 = 7 Contoh untik data kelompok. Tentukan Desil ke 7 dari data dibawah ini Nilai Frekuensi 50 – 54 55 – 59 60 – 64 65 – 69 70 – 74 75 – 79 80 – 84 6 9 12 15 20 10 8 ∑ f = 80 Jawab: Nilai Frekuensi F kumulatif 50 – 54 55 – 59 60 – 64 65 – 69 70 – 74 75 – 79 80 – 84 6 9 12 15 20 10 8 6 15 27 42 62 72 80
12. 12. D7 terletak pada data ke 7/10 x 80 = 56. Kelas D7 pada interval 70 – 74 Fk = 42 F7 = 20 D7 = 69,5 + 56 – 42 . 5 20 = 69,5 + 3,5 = 73 D. Menentukan Simpangan Rata-rata, Ragam, Simpangan Baku. 1. Simpangan Rata-rata ( Deviasi Rata-rata ) a. Untuk data tunggal SR = ∑| xi – x | n b. Untuk data kelompok SR = ∑Fi | xi – x | ∑fi Ket : xi = ukuran data ke i x = rataan hitung |…| = nilai mutlak 2. Ragam / Varian 1. Ragam data tunggal S2 = ∑( xi – x )2 n 2. Ragam data kelompok S2 = ∑fi ( xi – x )2 ∑fi 3. Simpangan Baku ( Deviasi Standart) Simpangan baku adalah akar pangkat dua dari nilai ragam yang memilikisatuan yang sama dengan data.
13. 13. S = √ S2 1. Untuk data tunggal S = √∑( xi – x )2 n 2. Untuk data kelompok S = √∑fi ( xi – x )2 ∑fi II. Latihan 1. Hasil ulangan matematika dari 15 siswa sbb: 9 7 6 8 9 7 6 4 5 6 8 7 7 8 5 Tentukan nilai rata rata dari data diatas 3. Tabel di bawah ini menunjukkan nilai matematika di suatu kelas. Nilai Frekuensi 40 – 46 47 – 53 54 – 60 61 – 67 68 – 74 75 – 81 82 – 88 2 5 7 10 8 6 2 Tentukan : a) Nilai rata –rata dengan menggunakan rumus data kelompok b) Nilai rata –rata dengan menggunakan rataan sementara c) Nilai rata –rata dengan menggunakan coding d) Q1 dan Q3 e) Median atau Q2 3. Dengan menggunakan data pada table no 2 , tentukan:
14. 14. a. Simpangan Rata-rata b. Ragam/Varian c. Simpangan Baku III. Tes Formatif 1 ( Terlampir) IV. Daftar pustaka Tim penulis MGMP Matematika SMA kota Semarang, Matematika SMA / MA XI A IPA, ( Semarang : CV. Jabbaar Setia, 2008) Tim penyusun KREATIF Matematika, Matematika SMA/MA kelas XI IPA semester gasal, ( Klaten, Viva Pakarindo, 2007) Simangunsong Wilson, Matematika dasar, ( Jakarta: Erlangga, 2005)