SlideShare a Scribd company logo
1 of 40
A Statistician’s View on Big
Data and Data Science
Dr. Diego Kuonen, CStat PStat CSci
Statoo Consulting
Statistical Consulting + Data Analysis + Data Mining Services
Morgenstrasse 129, 3018 Berne, Switzerland

www.statoo.info

‘IBM Developer Days 2013’, Zurich, Switzerland — November 20, 2013
Abstract
There is no question that big data has hit the business, government and scientific sectors. The demand for skills in data science
is unprecedented in sectors where value, competitiveness and efficiency are driven by data. However, there is plenty of misleading
hype around the terms big data and data science. This presentation gives a professional statistician’s view on these terms and
illustrates the connection between data science and statistics.
About myself
• PhD in Statistics, Swiss Federal Institute of Technology (EPFL), Lausanne,
Switzerland.
• MSc in Mathematics, EPFL, Lausanne, Switzerland.
• CStat (‘Chartered Statistician’), Royal Statistical Society, United Kingdo m.
• PStat (‘Accredited Professional Statistician’), American Statistical Association,
United States of America.
• CSci (‘Chartered Scientist’), Science Council, United Kingdom.
• Elected Member, International Statistical Institute, Netherlands.
• CEO, Statoo Consulting, Switzerland.
• Lecturer in Statistics, University of Geneva, Switzerland.
• President of the Swiss Statistical Society.
2
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
About Statoo Consulting
• Founded Statoo Consulting in 2001.
• Statoo Consulting is a software-vendor independent Swiss consulting firm specialised in statistical consulting and training, data analysis and data mining services.
• Statoo Consulting offers consulting and training in statistical thinking, statistics
and data mining in English, French and German.

Are you drowning in uncertainty and starving for knowledge?
Have you ever been Statooed?

3
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
Who has already been Statooed?
• Statoo Consulting’s clients include Swiss and international companies like
ABB;
Alcan Aluminium Valais;
Alstom;
Arkema, France;
AstraZeneca, United Kingdom;
Barry Callebaut, Belgium;
Bayer Consumer Care;
Berna Biotech;
BMW, Germany;
Bosch, Germany;
Cargill;
Cr´dit Lyonnais, United Kingdom;
e
CSL Behring;
F. Hoffmann-La Roche;
GfK Telecontrol;
GlaxoSmithKline, United Kingdom;
H. Lundbeck, Denmark;
Lombard Odier Darier Hentsch;
Lonza;
McNeil, Sweden;
Merck Serono;
Mobiliar;

Nagra Kudelski Group;
Nestl´ Frisco Findus;
e
Nestl´ Research Center;
e
Novartis Pharma;
Novelis;
Novo Nordisk;
Pfizer, United Kingdom;
Philip Morris International;
Pioneer Hi-Bred, Germany;
PostFinance;
Procter & Gamble Manufacturing, Germany;
publisuisse;
Rodenstock, Germany;
Sanofi-Aventis, France;
Saudi Arabian Oil Company, Saudi Arabia;
Smith & Nephew Orthopaedics;
Swisscom Innovations;
Swissmedic;
The Baloise Insurance Company;
tl — Public Transport for the Lausanne Region;
Wacker Chemie, Germany;
upc cablecom;

4
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
as well as Swiss and international government agencies, nonprofit organisations, offices, research institutes and universities like
Lausanne Hotel School;
Institute for International Research, Dubai, United Arab Emirates;
Paul Scherrer Institute (PSI);
Statistical Office of the City of Berne;
Swiss Armed Forces;
Swiss Federal Institute for Forest, Snow and Landscape Research;
Swiss Federal Institutes of Technology Lausanne and Zurich;
Swiss Federal Office for Migration;
Swiss Federal Research Stations Agroscope Changins–W¨denswil and
a
Reckenholz–T¨nikon;
a
Swiss Federal Statistical Office;
Swiss Institute of Bioinformatics;
Swiss State Secretariat for Economic Affairs (SECO);
The Gold Standard Foundation;
Unit of Education Research of the Department of Education, Canton of
Geneva;
Universities of Applied Sciences of Northwestern Switzerland, Technology
Buchs NTB and Western Switzerland;
Universities of Berne, Fribourg, Geneva, Lausanne, Neuchatel and Zurich.

5
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
Contents
Contents

6

1. Demystifying the ‘big data’ hype

7

2. Demystifying the ‘data science’ hype

13

3. What distinguishes data science from statistics?

29

4. Conclusion

31

6
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
1. Demystifying the ‘big data’ hype
• There is no question that ‘big data’ has hit the business, government and scientific
sectors.
Indeed, the term ‘big data’ has acquired the trappings of religion!
However, there are a lot of examples of companies that were into ‘big data’ before
it was called ‘big data’ — a term coined in 1998 by two researchers.
• But, what exactly is ‘big data’ ?
In short, the term ‘big data’ applies to information that can not be processed or
handled using traditional processes or tools.
Big data is an architecture and most related challenges are IT focused!

7
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
• The following characteristics — known as ‘the four Vs’ or ‘V4 ’ — provide one
standard definition of big data:
– ‘Volume’ : ‘data at rest’, i.e. the amount of data (

‘data explosion problem’);

– ‘Variety’ : ‘data in many forms’, i.e. different types of data (e.g. structured,
semi-structured and unstructured, e.g. text, web or multimedia data such as
images, videos, audio) , data sources (e.g. internal, external, public) and data
resolutions;
– ‘Velocity’ : ‘data in motion’, i.e. the speed by which data are generated and
need to be handled;
– ‘Veracity’ : ‘data in doubt’, i.e. the varying levels of noise and processing errors.

8
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
• Volume is often the least important issue: it is definitely not a requirement to have
a minimum of a petabyte of data, say.
Bigger challenges are variety and velocity, and possibly most important is veracity
and the related quality and correctness of the data.
Especially the combination of different data sources (such as combining company
data with social networking data and public data) provides a lot of insights and this
can also happen with ‘smaller’ data sets.
• The above standard definition of big data is vulnerable to the criticism of sceptics
that these Vs have always been there.
Nevertheless, the definition provides a business framework to communicate about
how to solve different data processing challenges.
But, what is new?

9
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
“Big Data’ ... is the simple yet seemingly revolutionary
belief that data are valuable. ... I believe that ‘big’
actually means important (think big deal). Scientists
have long known that data could create new knowledge
but now the rest of the world, including government
and management in particular, has realised that data
can create value, principally financial but also environmental and social value.’
Sean Patrick Murphy, 2013

Source: interview with Sean Patrick Murphy, a senior scientist at Johns Hopkins University
Applied Physics Laboratory, in the Big Data Innovation Magazine, September 2013.

10
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
Source: ‘Analytics: A Blueprint for Value — Converting Big Data and Analytics Insights into Results’,
IBM Institute for Business Value, October 2013 (see ibm.co/9levers).
11
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
‘Big data and analytics based on it promise to change
virtually every industry and business function over the
next decade. Any organisation — and any individual
within it — that gets started early with big data can
gain ‘significant’ competitive edge.’
Thomas H. Davenport and Jinho Kim, 2013

Source: Davenport, T. H. & Kim, J. (2013). Keeping Up with the Quants: Your Guide to
Understanding and Using Analytics. Boston, MA: Harvard Business Review Press.

12
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
2. Demystifying the ‘data science’ hype
• The demand for ‘data scientists’ — the ‘magicians of the big data era’ — is
unprecedented in sectors where value, competitiveness and efficiency are driven by
data.
• The Data Science Association defined in October 2013 the terms ‘data science’ and
‘data scientists’ within their Data Science Code of Professional Conduct as follows
(see www.datascienceassn.org/code-conduct):
– Data science is the scientific study of the creation, validation
and transformation of data to create meaning.
– A data scientist is a professional who uses scientific methods
to liberate and create meaning from raw data.

13
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
• ‘Data-Driven Decision making’ (DDD) refers to the practice of basing decisions
on data, rather than purely on intuition:

Source: Provost, F. & Fawcett, T. (2013). Data Science for Business. Sebastopol, CA: O’Reilly Media.
14
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
• Data science has been dubbed by the Harvard Business Review (Thomas H. Davenport and D. J. Patil, October 2012) as
‘the sexiest job in the 21st century ’
and by The New York Times (April 11, 2013) as a
‘ hot new field [that] promises to revolutionise industries
from business to government, health care to academia’.

But, is data science really new and ‘sexy’ ?

15
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
• The term ‘data science’ was originally coined in 1998 by the statistician Chien-Fu
Jeff Wu when he gave his inaugural lecture at the University of Michigan.
Wu argued that statisticians should be renamed data scientists since they spent
most of their time manipulating and experimenting with data.
• In 2001, the statistician William S. Cleveland introduced the notion of data science
as an independent discipline.
Cleveland extended the field of statistics to incorporate ‘advances in computing
with data’ in his article ‘Data science: an action plan for expanding the technical
areas of the field of statistics’ (International Statistical Review, 69, 21–26).

16
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
• Although the term data scientist may be relatively new, this profession has existed
for a long time!
• For example, Napoleon Bonaparte (‘Napoleon I’) used mathematical models to help
make decisions on battlefields.
These models were developed by mathematicians — Napoleon’s own data scientists!
• Another (famous) example of that same time period is the following map (‘carte
figurative’) drawn by the French engineer Charles Joseph Minard in 1861 to show the
tremendous losses of Napoleon’s army during his Russian campaign in 1812-1813,
where more than 97% of the soldiers died.

Sources: Van der Lans, R. (2013). The data scientist at work. BeyeNETWORK, October 24, 2013
(www.b-eye-network.com/view/17102).
Tufte, E. R. (2001). The Visual Display of Quantitative Information (2nd edition).
Cheshire, CT: Graphics Press.

17
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
Minard was clearly a data scientist!

18
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
‘I keep saying the sexy job in the next ten years will be
statisticians. People think I am joking, but who would
have guessed that computer engineers would’ve been
the sexy job of the 1990s?’
Hal Varian, 2009

Source: interview with Google’s chief economist in the The McKinsey Quarterly, January 2009.

19
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
‘And with ongoing advances in high-performance computing and the explosion of data, statistics will remain
a positive social influence around the globe. I would
venture to say that statistician could be the sexy job
of the century.’
James (Jim) Goodnight, 2010

20
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
‘I think he [Hal Varian] is behind — using statistics
has been the sexy job of the last 30 years. It has just
taken awhile for organisations to catch on.’
James (Jim) Goodnight, 2011

21
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
• Looking at all the ‘crazy’ hype in the media over the past years around the terms
big data and data science, it seems that data scientist is just a ‘sexed up’ term for
statistician.
It looks like statisticians just needed a good marketing campaign!

22
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
But, what is statistics?
– Statistics can be defined as the science of ‘learning from data’ (or of making
sense out of data).
It includes everything from planning for the collection of data and subsequent
data management to end-of-the-line activities such as drawing conclusions of
numerical facts called data and presentation of results.
– Statistics is concerned with the study of uncertainty and with the study of decision making in the face of uncertainty.

23
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
• However, data science is not just a rebranding of statistics , large-scale statistics
or statistical science!
• Data science is rather a rebranding of ‘data mining’ !

‘The terms ‘data science’ and ‘data mining’ often are
used interchangeably, and the former has taken a life
of its own as various individuals and organisations try
to capitalise on the current hype surrounding it.’
Foster Provost and Tom Fawcett, 2013

24
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
The data science Venn diagram

Source: Drew Conway, September 2010 (drewconway.com/zia/2013/3/26/the-data-science-venn-diagram).
25
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
‘Although the buzzwords describing the field have changed — from ‘Knowledge Discovery’ to ‘Data Mining’
to ‘Predictive Analytics’, and now to ‘Data Science’,
the essence has remained the same — discovery of
what is true and useful in the mountains of data.’
Gregory Piatetsky-Shapiro, 2012

26
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
But, what is data mining?
We think of data mining as the non-trivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns or structures or models or trends or relationships in data to make crucial decisions.

‘Non-trivial’: it is not a straightforward computation of predefined quantities like
computing the average value of a set of numbers.
‘Valid’: the patterns hold in general, i.e. being valid on new data in the face of
uncertainty.
‘Novel’: the patterns were not known beforehand.
‘Potentially useful’: lead to some benefit to the user.
‘Understandable’: the patterns are interpretable and comprehensible — if not
immediately then after some postprocessing.
27
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
‘Statistics has been the most successful information
science. Those who ignore statistics are condemned
to re-invent it.’
Brad Efron, 1997

28
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
3. What distinguishes data science from statistics?
• Statistics traditionally is concerned with analysing primary (e.g. experimental) data
that have been collected to check specific ‘hypotheses’ (ideas).
Primary data analysis or top-down (confirmatory) analysis.
‘Hypothesis evaluation or testing’ .
• Data science or data mining, on the other hand, typically is concerned with analysing
secondary (e.g. observational) data that have been collected for other reasons.
Secondary data analysis or bottom-up (exploratory) analysis.
‘Hypothesis generation’ .
Knowledge discovery.

29
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
‘Neither exploratory nor confirmatory is sufficient alone.
To try to replace either by the other is madness. We
need them both.’
John W. Tukey, 1980

30
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
4. Conclusion
• Data, and the capability to extract useful knowledge from data, should be regarded
as key strategic assets.
• Extracting useful knowledge from data to solve business problems must be treated
systematically by following a process with reasonably well-defined stages.
Like statistics, data science (or data mining) is not only modelling and prediction,
nor a product that can be bought, but a whole iterative problem solving cycle/process
that must be mastered through team effort.
Phases of the reference model of the methodology called CRISP-DM (‘CRoss
Industry Standard Process for Data Mining’; see www.statoo.com/CRISP-DM.pdf):

31
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
32
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
‘If I had only one hour to save the world, I would spend
fifty-five minutes defining the problem, and only five
minutes finding the solution.’
Albert Einstein

33
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
• There in convincing ‘evidence’ that data-driven decision making and big data technologies substantially improve business performance.
• Statistical rigour is necessary to justify the inferential leap from data to knowledge.
• The challenges from a statistical perspective include the quality of the data, the
confidentiality of the data, the characteristics of the sample, the validity of generalisation and the balance of humans and computers.

34
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
‘The numbers have no way of speaking for themselves.
We speak for them. We imbue them with meaning. ...
Data-driven predictions can succeed — and they can
fail. It is when we deny our role in the process that
the odds of failure rise. Before we demand more of
our data, we need to demand more of ourselves.’
Nate Silver, 2012

Source: Silver, N. (2012). The Signal and The Noise: Why Most Predictions Fail but Some Don’t.
New York, NY: The Penguin Press.

35
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
‘As big data [data science] and statistics engage with
one another, it is critical to remember that the two
fields are united by one common goal: to draw reliable
conclusions from available data.’
Kaiser Fung, 2013

Source: Fung, K. (2013). The pending marriage of big data and statistics. Significance, 10(4), 22–25.

36
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
‘Most of my life I went to parties and heard a little
groan when people heard what I did. Now they are all
excited to meet me.’
Robert Tibshirani, 2012

Source: interview with Robert Tibshirani, a statistics professor at Stanford University,
in The New York Times on January 26, 2012.

37
Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
Have you been Statooed?
Dr. Diego Kuonen, CStat PStat CSci
Statoo Consulting
Morgenstrasse 129
3018 Berne
Switzerland
email

kuonen@statoo.com

web

www.statoo.info

facebook.com/Statoo.Consulting
Copyright c 2001–2013 by Statoo Consulting, Switzerland. All rights reserved.
No part of this presentation may be reprinted, reproduced, stored in, or introduced
into a retrieval system or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, scanning or otherwise), without the prior written
permission of Statoo Consulting, Switzerland.
Warranty: none.
Trademarks: Statoo is a registered trademark of Statoo Consulting, Switzerland.
Other product names, company names, marks, logos and symbols referenced herein
may be trademarks or registered trademarks of their respective owners.

Presentation code: ‘IBM.DeveloperDays.2013’.
Typesetting: L EX, version 2 . PDF producer: pdfTEX, version 3.141592-1.21a-2.2 (Web2C 7.5.4).
AT
Compilation date: 25.11.2013.

More Related Content

What's hot

Big Data & Analytics (Conceptual and Practical Introduction)
Big Data & Analytics (Conceptual and Practical Introduction)Big Data & Analytics (Conceptual and Practical Introduction)
Big Data & Analytics (Conceptual and Practical Introduction)Yaman Hajja, Ph.D.
 
Data Scientist vs Data Analyst vs Data Engineer - Role & Responsibility, Skil...
Data Scientist vs Data Analyst vs Data Engineer - Role & Responsibility, Skil...Data Scientist vs Data Analyst vs Data Engineer - Role & Responsibility, Skil...
Data Scientist vs Data Analyst vs Data Engineer - Role & Responsibility, Skil...Simplilearn
 
Introduction of data science
Introduction of data scienceIntroduction of data science
Introduction of data scienceTanujaSomvanshi1
 
Introduction to data science.pptx
Introduction to data science.pptxIntroduction to data science.pptx
Introduction to data science.pptxSadhanaParameswaran
 
Introduction to Data Science and Analytics
Introduction to Data Science and AnalyticsIntroduction to Data Science and Analytics
Introduction to Data Science and AnalyticsSrinath Perera
 
introduction to data science
introduction to data scienceintroduction to data science
introduction to data sciencebhavesh lande
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data ScienceSrishti44
 
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...Edureka!
 
Data science | What is Data science
Data science | What is Data scienceData science | What is Data science
Data science | What is Data scienceShilpaKrishna6
 
Data Science Training | Data Science Tutorial | Data Science Certification | ...
Data Science Training | Data Science Tutorial | Data Science Certification | ...Data Science Training | Data Science Tutorial | Data Science Certification | ...
Data Science Training | Data Science Tutorial | Data Science Certification | ...Edureka!
 
Data Science Introduction
Data Science IntroductionData Science Introduction
Data Science IntroductionGang Tao
 
Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...
Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...
Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...Edureka!
 
A Practical-ish Introduction to Data Science
A Practical-ish Introduction to Data ScienceA Practical-ish Introduction to Data Science
A Practical-ish Introduction to Data ScienceMark West
 
Data science life cycle
Data science life cycleData science life cycle
Data science life cycleManoj Mishra
 
Data Science Training | Data Science Tutorial for Beginners | Data Science wi...
Data Science Training | Data Science Tutorial for Beginners | Data Science wi...Data Science Training | Data Science Tutorial for Beginners | Data Science wi...
Data Science Training | Data Science Tutorial for Beginners | Data Science wi...Edureka!
 
Introduction to Data Science (Data Summit, 2017)
Introduction to Data Science (Data Summit, 2017)Introduction to Data Science (Data Summit, 2017)
Introduction to Data Science (Data Summit, 2017)Caserta
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data ScienceANOOP V S
 
Data science & data scientist
Data science & data scientistData science & data scientist
Data science & data scientistVijayMohan Vasu
 

What's hot (20)

Big Data & Analytics (Conceptual and Practical Introduction)
Big Data & Analytics (Conceptual and Practical Introduction)Big Data & Analytics (Conceptual and Practical Introduction)
Big Data & Analytics (Conceptual and Practical Introduction)
 
Data Scientist vs Data Analyst vs Data Engineer - Role & Responsibility, Skil...
Data Scientist vs Data Analyst vs Data Engineer - Role & Responsibility, Skil...Data Scientist vs Data Analyst vs Data Engineer - Role & Responsibility, Skil...
Data Scientist vs Data Analyst vs Data Engineer - Role & Responsibility, Skil...
 
Introduction of data science
Introduction of data scienceIntroduction of data science
Introduction of data science
 
Introduction to data science.pptx
Introduction to data science.pptxIntroduction to data science.pptx
Introduction to data science.pptx
 
Data science
Data scienceData science
Data science
 
Introduction to Data Science and Analytics
Introduction to Data Science and AnalyticsIntroduction to Data Science and Analytics
Introduction to Data Science and Analytics
 
introduction to data science
introduction to data scienceintroduction to data science
introduction to data science
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
 
Data science | What is Data science
Data science | What is Data scienceData science | What is Data science
Data science | What is Data science
 
Data Science Training | Data Science Tutorial | Data Science Certification | ...
Data Science Training | Data Science Tutorial | Data Science Certification | ...Data Science Training | Data Science Tutorial | Data Science Certification | ...
Data Science Training | Data Science Tutorial | Data Science Certification | ...
 
Data Engineering Basics
Data Engineering BasicsData Engineering Basics
Data Engineering Basics
 
Data Science Introduction
Data Science IntroductionData Science Introduction
Data Science Introduction
 
Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...
Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...
Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...
 
A Practical-ish Introduction to Data Science
A Practical-ish Introduction to Data ScienceA Practical-ish Introduction to Data Science
A Practical-ish Introduction to Data Science
 
Data science life cycle
Data science life cycleData science life cycle
Data science life cycle
 
Data Science Training | Data Science Tutorial for Beginners | Data Science wi...
Data Science Training | Data Science Tutorial for Beginners | Data Science wi...Data Science Training | Data Science Tutorial for Beginners | Data Science wi...
Data Science Training | Data Science Tutorial for Beginners | Data Science wi...
 
Introduction to Data Science (Data Summit, 2017)
Introduction to Data Science (Data Summit, 2017)Introduction to Data Science (Data Summit, 2017)
Introduction to Data Science (Data Summit, 2017)
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Data science & data scientist
Data science & data scientistData science & data scientist
Data science & data scientist
 

Viewers also liked

Data By The People, For The People
Data By The People, For The PeopleData By The People, For The People
Data By The People, For The PeopleDaniel Tunkelang
 
Hands-on Deep Learning in Python
Hands-on Deep Learning in PythonHands-on Deep Learning in Python
Hands-on Deep Learning in PythonImry Kissos
 
Hadoop and Machine Learning
Hadoop and Machine LearningHadoop and Machine Learning
Hadoop and Machine Learningjoshwills
 
How to Interview a Data Scientist
How to Interview a Data ScientistHow to Interview a Data Scientist
How to Interview a Data ScientistDaniel Tunkelang
 
10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning Systems10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning SystemsXavier Amatriain
 
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Data Science London
 
How to Become a Data Scientist
How to Become a Data ScientistHow to Become a Data Scientist
How to Become a Data Scientistryanorban
 
A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013Philip Zheng
 
Introduction to Mahout and Machine Learning
Introduction to Mahout and Machine LearningIntroduction to Mahout and Machine Learning
Introduction to Mahout and Machine LearningVarad Meru
 
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...Sebastian Raschka
 
Deep Learning for Natural Language Processing
Deep Learning for Natural Language ProcessingDeep Learning for Natural Language Processing
Deep Learning for Natural Language ProcessingDevashish Shanker
 
Machine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification RulesMachine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification RulesPier Luca Lanzi
 
Myths and Mathemagical Superpowers of Data Scientists
Myths and Mathemagical Superpowers of Data ScientistsMyths and Mathemagical Superpowers of Data Scientists
Myths and Mathemagical Superpowers of Data ScientistsDavid Pittman
 
Tutorial on Deep learning and Applications
Tutorial on Deep learning and ApplicationsTutorial on Deep learning and Applications
Tutorial on Deep learning and ApplicationsNhatHai Phan
 
Tips for data science competitions
Tips for data science competitionsTips for data science competitions
Tips for data science competitionsOwen Zhang
 
Deep neural networks
Deep neural networksDeep neural networks
Deep neural networksSi Haem
 
Introduction to Big Data/Machine Learning
Introduction to Big Data/Machine LearningIntroduction to Big Data/Machine Learning
Introduction to Big Data/Machine LearningLars Marius Garshol
 
Artificial neural network
Artificial neural networkArtificial neural network
Artificial neural networkDEEPASHRI HK
 
10 R Packages to Win Kaggle Competitions
10 R Packages to Win Kaggle Competitions10 R Packages to Win Kaggle Competitions
10 R Packages to Win Kaggle CompetitionsDataRobot
 
Artificial Intelligence Presentation
Artificial Intelligence PresentationArtificial Intelligence Presentation
Artificial Intelligence Presentationlpaviglianiti
 

Viewers also liked (20)

Data By The People, For The People
Data By The People, For The PeopleData By The People, For The People
Data By The People, For The People
 
Hands-on Deep Learning in Python
Hands-on Deep Learning in PythonHands-on Deep Learning in Python
Hands-on Deep Learning in Python
 
Hadoop and Machine Learning
Hadoop and Machine LearningHadoop and Machine Learning
Hadoop and Machine Learning
 
How to Interview a Data Scientist
How to Interview a Data ScientistHow to Interview a Data Scientist
How to Interview a Data Scientist
 
10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning Systems10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning Systems
 
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
 
How to Become a Data Scientist
How to Become a Data ScientistHow to Become a Data Scientist
How to Become a Data Scientist
 
A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013
 
Introduction to Mahout and Machine Learning
Introduction to Mahout and Machine LearningIntroduction to Mahout and Machine Learning
Introduction to Mahout and Machine Learning
 
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
 
Deep Learning for Natural Language Processing
Deep Learning for Natural Language ProcessingDeep Learning for Natural Language Processing
Deep Learning for Natural Language Processing
 
Machine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification RulesMachine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification Rules
 
Myths and Mathemagical Superpowers of Data Scientists
Myths and Mathemagical Superpowers of Data ScientistsMyths and Mathemagical Superpowers of Data Scientists
Myths and Mathemagical Superpowers of Data Scientists
 
Tutorial on Deep learning and Applications
Tutorial on Deep learning and ApplicationsTutorial on Deep learning and Applications
Tutorial on Deep learning and Applications
 
Tips for data science competitions
Tips for data science competitionsTips for data science competitions
Tips for data science competitions
 
Deep neural networks
Deep neural networksDeep neural networks
Deep neural networks
 
Introduction to Big Data/Machine Learning
Introduction to Big Data/Machine LearningIntroduction to Big Data/Machine Learning
Introduction to Big Data/Machine Learning
 
Artificial neural network
Artificial neural networkArtificial neural network
Artificial neural network
 
10 R Packages to Win Kaggle Competitions
10 R Packages to Win Kaggle Competitions10 R Packages to Win Kaggle Competitions
10 R Packages to Win Kaggle Competitions
 
Artificial Intelligence Presentation
Artificial Intelligence PresentationArtificial Intelligence Presentation
Artificial Intelligence Presentation
 

Similar to A Statistician's View on Big Data and Data Science (Version 1)

A Statistician's View on Big Data and Data Science (Version 2)
A Statistician's View on Big Data and Data Science (Version 2)A Statistician's View on Big Data and Data Science (Version 2)
A Statistician's View on Big Data and Data Science (Version 2)Prof. Dr. Diego Kuonen
 
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 8)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 8)A Statistician's 'Big Tent' View on Big Data and Data Science (Version 8)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 8)Prof. Dr. Diego Kuonen
 
A Statistician's View on Big Data and Data Science in Pharmaceutical Developm...
A Statistician's View on Big Data and Data Science in Pharmaceutical Developm...A Statistician's View on Big Data and Data Science in Pharmaceutical Developm...
A Statistician's View on Big Data and Data Science in Pharmaceutical Developm...Prof. Dr. Diego Kuonen
 
A Statistician's View on Big Data and Data Science (Version 3)
A Statistician's View on Big Data and Data Science (Version 3)A Statistician's View on Big Data and Data Science (Version 3)
A Statistician's View on Big Data and Data Science (Version 3)Prof. Dr. Diego Kuonen
 
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 6)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 6)A Statistician's 'Big Tent' View on Big Data and Data Science (Version 6)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 6)Prof. Dr. Diego Kuonen
 
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 5)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 5)A Statistician's 'Big Tent' View on Big Data and Data Science (Version 5)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 5)Prof. Dr. Diego Kuonen
 
A Swiss Statistician's 'Big Tent' Overview of Big Data and Data Science in Ph...
A Swiss Statistician's 'Big Tent' Overview of Big Data and Data Science in Ph...A Swiss Statistician's 'Big Tent' Overview of Big Data and Data Science in Ph...
A Swiss Statistician's 'Big Tent' Overview of Big Data and Data Science in Ph...Prof. Dr. Diego Kuonen
 
A Statistician's Introductory View on Big Data and Data Science (Version 7)
A Statistician's Introductory View on Big Data and Data Science (Version 7)A Statistician's Introductory View on Big Data and Data Science (Version 7)
A Statistician's Introductory View on Big Data and Data Science (Version 7)Prof. Dr. Diego Kuonen
 
A Statistician's `Big Tent' View on Big Data and Data Science in Health Scien...
A Statistician's `Big Tent' View on Big Data and Data Science in Health Scien...A Statistician's `Big Tent' View on Big Data and Data Science in Health Scien...
A Statistician's `Big Tent' View on Big Data and Data Science in Health Scien...Prof. Dr. Diego Kuonen
 
A Swiss Statistician's 'Big Tent' View on Big Data and Data Science (Version 10)
A Swiss Statistician's 'Big Tent' View on Big Data and Data Science (Version 10)A Swiss Statistician's 'Big Tent' View on Big Data and Data Science (Version 10)
A Swiss Statistician's 'Big Tent' View on Big Data and Data Science (Version 10)Prof. Dr. Diego Kuonen
 
Big Data as the Fuel and Analytics as the Engine of the Digital Transformation
Big Data as the Fuel and Analytics as the Engine of the Digital TransformationBig Data as the Fuel and Analytics as the Engine of the Digital Transformation
Big Data as the Fuel and Analytics as the Engine of the Digital TransformationProf. Dr. Diego Kuonen
 
Big Data, Data-Driven Decision Making and Statistics Towards Data-Informed Po...
Big Data, Data-Driven Decision Making and Statistics Towards Data-Informed Po...Big Data, Data-Driven Decision Making and Statistics Towards Data-Informed Po...
Big Data, Data-Driven Decision Making and Statistics Towards Data-Informed Po...Prof. Dr. Diego Kuonen
 
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 9)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 9)A Statistician's 'Big Tent' View on Big Data and Data Science (Version 9)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 9)Prof. Dr. Diego Kuonen
 
The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...
The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...
The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...Prof. Dr. Diego Kuonen
 
The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...
The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...
The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...Prof. Dr. Diego Kuonen
 
Glocalised Smart Statistics and Analytics of Things: Core Challenges and Key ...
Glocalised Smart Statistics and Analytics of Things: Core Challenges and Key ...Glocalised Smart Statistics and Analytics of Things: Core Challenges and Key ...
Glocalised Smart Statistics and Analytics of Things: Core Challenges and Key ...Prof. Dr. Diego Kuonen
 
Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...
Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...
Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...Prof. Dr. Diego Kuonen
 
Overview of Big Data, Data Science and Statistics, along with Digitalisation,...
Overview of Big Data, Data Science and Statistics, along with Digitalisation,...Overview of Big Data, Data Science and Statistics, along with Digitalisation,...
Overview of Big Data, Data Science and Statistics, along with Digitalisation,...Prof. Dr. Diego Kuonen
 
Big Data as the Fuel and Visual Analytics as the Engine Mount of the Digital ...
Big Data as the Fuel and Visual Analytics as the Engine Mount of the Digital ...Big Data as the Fuel and Visual Analytics as the Engine Mount of the Digital ...
Big Data as the Fuel and Visual Analytics as the Engine Mount of the Digital ...Prof. Dr. Diego Kuonen
 
Production Processes of Official Statistics & Data Innovation Processes Augme...
Production Processes of Official Statistics & Data Innovation Processes Augme...Production Processes of Official Statistics & Data Innovation Processes Augme...
Production Processes of Official Statistics & Data Innovation Processes Augme...Prof. Dr. Diego Kuonen
 

Similar to A Statistician's View on Big Data and Data Science (Version 1) (20)

A Statistician's View on Big Data and Data Science (Version 2)
A Statistician's View on Big Data and Data Science (Version 2)A Statistician's View on Big Data and Data Science (Version 2)
A Statistician's View on Big Data and Data Science (Version 2)
 
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 8)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 8)A Statistician's 'Big Tent' View on Big Data and Data Science (Version 8)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 8)
 
A Statistician's View on Big Data and Data Science in Pharmaceutical Developm...
A Statistician's View on Big Data and Data Science in Pharmaceutical Developm...A Statistician's View on Big Data and Data Science in Pharmaceutical Developm...
A Statistician's View on Big Data and Data Science in Pharmaceutical Developm...
 
A Statistician's View on Big Data and Data Science (Version 3)
A Statistician's View on Big Data and Data Science (Version 3)A Statistician's View on Big Data and Data Science (Version 3)
A Statistician's View on Big Data and Data Science (Version 3)
 
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 6)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 6)A Statistician's 'Big Tent' View on Big Data and Data Science (Version 6)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 6)
 
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 5)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 5)A Statistician's 'Big Tent' View on Big Data and Data Science (Version 5)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 5)
 
A Swiss Statistician's 'Big Tent' Overview of Big Data and Data Science in Ph...
A Swiss Statistician's 'Big Tent' Overview of Big Data and Data Science in Ph...A Swiss Statistician's 'Big Tent' Overview of Big Data and Data Science in Ph...
A Swiss Statistician's 'Big Tent' Overview of Big Data and Data Science in Ph...
 
A Statistician's Introductory View on Big Data and Data Science (Version 7)
A Statistician's Introductory View on Big Data and Data Science (Version 7)A Statistician's Introductory View on Big Data and Data Science (Version 7)
A Statistician's Introductory View on Big Data and Data Science (Version 7)
 
A Statistician's `Big Tent' View on Big Data and Data Science in Health Scien...
A Statistician's `Big Tent' View on Big Data and Data Science in Health Scien...A Statistician's `Big Tent' View on Big Data and Data Science in Health Scien...
A Statistician's `Big Tent' View on Big Data and Data Science in Health Scien...
 
A Swiss Statistician's 'Big Tent' View on Big Data and Data Science (Version 10)
A Swiss Statistician's 'Big Tent' View on Big Data and Data Science (Version 10)A Swiss Statistician's 'Big Tent' View on Big Data and Data Science (Version 10)
A Swiss Statistician's 'Big Tent' View on Big Data and Data Science (Version 10)
 
Big Data as the Fuel and Analytics as the Engine of the Digital Transformation
Big Data as the Fuel and Analytics as the Engine of the Digital TransformationBig Data as the Fuel and Analytics as the Engine of the Digital Transformation
Big Data as the Fuel and Analytics as the Engine of the Digital Transformation
 
Big Data, Data-Driven Decision Making and Statistics Towards Data-Informed Po...
Big Data, Data-Driven Decision Making and Statistics Towards Data-Informed Po...Big Data, Data-Driven Decision Making and Statistics Towards Data-Informed Po...
Big Data, Data-Driven Decision Making and Statistics Towards Data-Informed Po...
 
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 9)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 9)A Statistician's 'Big Tent' View on Big Data and Data Science (Version 9)
A Statistician's 'Big Tent' View on Big Data and Data Science (Version 9)
 
The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...
The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...
The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...
 
The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...
The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...
The Power of Data Insights - Big Data as the Fuel and Analytics as the Engine...
 
Glocalised Smart Statistics and Analytics of Things: Core Challenges and Key ...
Glocalised Smart Statistics and Analytics of Things: Core Challenges and Key ...Glocalised Smart Statistics and Analytics of Things: Core Challenges and Key ...
Glocalised Smart Statistics and Analytics of Things: Core Challenges and Key ...
 
Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...
Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...
Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...
 
Overview of Big Data, Data Science and Statistics, along with Digitalisation,...
Overview of Big Data, Data Science and Statistics, along with Digitalisation,...Overview of Big Data, Data Science and Statistics, along with Digitalisation,...
Overview of Big Data, Data Science and Statistics, along with Digitalisation,...
 
Big Data as the Fuel and Visual Analytics as the Engine Mount of the Digital ...
Big Data as the Fuel and Visual Analytics as the Engine Mount of the Digital ...Big Data as the Fuel and Visual Analytics as the Engine Mount of the Digital ...
Big Data as the Fuel and Visual Analytics as the Engine Mount of the Digital ...
 
Production Processes of Official Statistics & Data Innovation Processes Augme...
Production Processes of Official Statistics & Data Innovation Processes Augme...Production Processes of Official Statistics & Data Innovation Processes Augme...
Production Processes of Official Statistics & Data Innovation Processes Augme...
 

More from Prof. Dr. Diego Kuonen

WB-Neujahrsgespräch vom 6. Januar 2020
WB-Neujahrsgespräch vom 6. Januar 2020WB-Neujahrsgespräch vom 6. Januar 2020
WB-Neujahrsgespräch vom 6. Januar 2020Prof. Dr. Diego Kuonen
 
"Data as the Fuel and Analytics as the Engine of the Digital Transformation -...
"Data as the Fuel and Analytics as the Engine of the Digital Transformation -..."Data as the Fuel and Analytics as the Engine of the Digital Transformation -...
"Data as the Fuel and Analytics as the Engine of the Digital Transformation -...Prof. Dr. Diego Kuonen
 
Big Data, Data Science, Machine Intelligence and Learning: Demystification, C...
Big Data, Data Science, Machine Intelligence and Learning: Demystification, C...Big Data, Data Science, Machine Intelligence and Learning: Demystification, C...
Big Data, Data Science, Machine Intelligence and Learning: Demystification, C...Prof. Dr. Diego Kuonen
 
Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...
Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...
Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...Prof. Dr. Diego Kuonen
 
(Big) Data as the Fuel and Analytics as the Engine of the Digital Transformation
(Big) Data as the Fuel and Analytics as the Engine of the Digital Transformation(Big) Data as the Fuel and Analytics as the Engine of the Digital Transformation
(Big) Data as the Fuel and Analytics as the Engine of the Digital TransformationProf. Dr. Diego Kuonen
 
Data as Fuel and Analytics as Engine of the Digital Transformation: Demysti c...
Data as Fuel and Analytics as Engine of the Digital Transformation: Demystic...Data as Fuel and Analytics as Engine of the Digital Transformation: Demystic...
Data as Fuel and Analytics as Engine of the Digital Transformation: Demysti c...Prof. Dr. Diego Kuonen
 
Big Data, Data Science, Machine Intelligence and Learning: Demystification, T...
Big Data, Data Science, Machine Intelligence and Learning: Demystification, T...Big Data, Data Science, Machine Intelligence and Learning: Demystification, T...
Big Data, Data Science, Machine Intelligence and Learning: Demystification, T...Prof. Dr. Diego Kuonen
 
Demystifying Big Data, Data Science and Statistics, along with Machine Intell...
Demystifying Big Data, Data Science and Statistics, along with Machine Intell...Demystifying Big Data, Data Science and Statistics, along with Machine Intell...
Demystifying Big Data, Data Science and Statistics, along with Machine Intell...Prof. Dr. Diego Kuonen
 
"Diego Kuonen, maître des «mégadonnées»"
"Diego Kuonen, maître des «mégadonnées»""Diego Kuonen, maître des «mégadonnées»"
"Diego Kuonen, maître des «mégadonnées»"Prof. Dr. Diego Kuonen
 

More from Prof. Dr. Diego Kuonen (11)

WB-Neujahrsgespräch vom 6. Januar 2020
WB-Neujahrsgespräch vom 6. Januar 2020WB-Neujahrsgespräch vom 6. Januar 2020
WB-Neujahrsgespräch vom 6. Januar 2020
 
"Data as the Fuel and Analytics as the Engine of the Digital Transformation -...
"Data as the Fuel and Analytics as the Engine of the Digital Transformation -..."Data as the Fuel and Analytics as the Engine of the Digital Transformation -...
"Data as the Fuel and Analytics as the Engine of the Digital Transformation -...
 
Big Data, Data Science, Machine Intelligence and Learning: Demystification, C...
Big Data, Data Science, Machine Intelligence and Learning: Demystification, C...Big Data, Data Science, Machine Intelligence and Learning: Demystification, C...
Big Data, Data Science, Machine Intelligence and Learning: Demystification, C...
 
WB-Interview vom 14. November 2018
WB-Interview vom 14. November 2018WB-Interview vom 14. November 2018
WB-Interview vom 14. November 2018
 
Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...
Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...
Data as the Fuel and Analytics as the Engine of the Digital Transformation: D...
 
(Big) Data as the Fuel and Analytics as the Engine of the Digital Transformation
(Big) Data as the Fuel and Analytics as the Engine of the Digital Transformation(Big) Data as the Fuel and Analytics as the Engine of the Digital Transformation
(Big) Data as the Fuel and Analytics as the Engine of the Digital Transformation
 
Data as Fuel and Analytics as Engine of the Digital Transformation: Demysti c...
Data as Fuel and Analytics as Engine of the Digital Transformation: Demystic...Data as Fuel and Analytics as Engine of the Digital Transformation: Demystic...
Data as Fuel and Analytics as Engine of the Digital Transformation: Demysti c...
 
"Demain, le statisticien augmenté"
"Demain, le statisticien augmenté""Demain, le statisticien augmenté"
"Demain, le statisticien augmenté"
 
Big Data, Data Science, Machine Intelligence and Learning: Demystification, T...
Big Data, Data Science, Machine Intelligence and Learning: Demystification, T...Big Data, Data Science, Machine Intelligence and Learning: Demystification, T...
Big Data, Data Science, Machine Intelligence and Learning: Demystification, T...
 
Demystifying Big Data, Data Science and Statistics, along with Machine Intell...
Demystifying Big Data, Data Science and Statistics, along with Machine Intell...Demystifying Big Data, Data Science and Statistics, along with Machine Intell...
Demystifying Big Data, Data Science and Statistics, along with Machine Intell...
 
"Diego Kuonen, maître des «mégadonnées»"
"Diego Kuonen, maître des «mégadonnées»""Diego Kuonen, maître des «mégadonnées»"
"Diego Kuonen, maître des «mégadonnées»"
 

Recently uploaded

Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
Cyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptx
Cyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptxCyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptx
Cyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptxMasterG
 
Top 10 CodeIgniter Development Companies
Top 10 CodeIgniter Development CompaniesTop 10 CodeIgniter Development Companies
Top 10 CodeIgniter Development CompaniesTopCSSGallery
 
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Skynet Technologies
 
Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxFIDO Alliance
 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard37
 
Event-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream ProcessingEvent-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream ProcessingScyllaDB
 
Microsoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - QuestionnaireMicrosoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - QuestionnaireExakis Nelite
 
How to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfHow to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfdanishmna97
 
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Paige Cruz
 
Generative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfGenerative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfalexjohnson7307
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc
 
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdfFrisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdfAnubhavMangla3
 
ChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityVictorSzoltysek
 
Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe中 央社
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctBrainSell Technologies
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)Samir Dash
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024Lorenzo Miniero
 
How to Check GPS Location with a Live Tracker in Pakistan
How to Check GPS Location with a Live Tracker in PakistanHow to Check GPS Location with a Live Tracker in Pakistan
How to Check GPS Location with a Live Tracker in Pakistandanishmna97
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxFIDO Alliance
 

Recently uploaded (20)

Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
Cyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptx
Cyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptxCyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptx
Cyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptx
 
Top 10 CodeIgniter Development Companies
Top 10 CodeIgniter Development CompaniesTop 10 CodeIgniter Development Companies
Top 10 CodeIgniter Development Companies
 
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
 
Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptx
 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptx
 
Event-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream ProcessingEvent-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream Processing
 
Microsoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - QuestionnaireMicrosoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - Questionnaire
 
How to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfHow to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cf
 
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
 
Generative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfGenerative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdf
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
 
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdfFrisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
 
ChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps Productivity
 
Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage Intacct
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024
 
How to Check GPS Location with a Live Tracker in Pakistan
How to Check GPS Location with a Live Tracker in PakistanHow to Check GPS Location with a Live Tracker in Pakistan
How to Check GPS Location with a Live Tracker in Pakistan
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptx
 

A Statistician's View on Big Data and Data Science (Version 1)

  • 1. A Statistician’s View on Big Data and Data Science Dr. Diego Kuonen, CStat PStat CSci Statoo Consulting Statistical Consulting + Data Analysis + Data Mining Services Morgenstrasse 129, 3018 Berne, Switzerland www.statoo.info ‘IBM Developer Days 2013’, Zurich, Switzerland — November 20, 2013
  • 2. Abstract There is no question that big data has hit the business, government and scientific sectors. The demand for skills in data science is unprecedented in sectors where value, competitiveness and efficiency are driven by data. However, there is plenty of misleading hype around the terms big data and data science. This presentation gives a professional statistician’s view on these terms and illustrates the connection between data science and statistics.
  • 3. About myself • PhD in Statistics, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. • MSc in Mathematics, EPFL, Lausanne, Switzerland. • CStat (‘Chartered Statistician’), Royal Statistical Society, United Kingdo m. • PStat (‘Accredited Professional Statistician’), American Statistical Association, United States of America. • CSci (‘Chartered Scientist’), Science Council, United Kingdom. • Elected Member, International Statistical Institute, Netherlands. • CEO, Statoo Consulting, Switzerland. • Lecturer in Statistics, University of Geneva, Switzerland. • President of the Swiss Statistical Society. 2 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 4. About Statoo Consulting • Founded Statoo Consulting in 2001. • Statoo Consulting is a software-vendor independent Swiss consulting firm specialised in statistical consulting and training, data analysis and data mining services. • Statoo Consulting offers consulting and training in statistical thinking, statistics and data mining in English, French and German. Are you drowning in uncertainty and starving for knowledge? Have you ever been Statooed? 3 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 5. Who has already been Statooed? • Statoo Consulting’s clients include Swiss and international companies like ABB; Alcan Aluminium Valais; Alstom; Arkema, France; AstraZeneca, United Kingdom; Barry Callebaut, Belgium; Bayer Consumer Care; Berna Biotech; BMW, Germany; Bosch, Germany; Cargill; Cr´dit Lyonnais, United Kingdom; e CSL Behring; F. Hoffmann-La Roche; GfK Telecontrol; GlaxoSmithKline, United Kingdom; H. Lundbeck, Denmark; Lombard Odier Darier Hentsch; Lonza; McNeil, Sweden; Merck Serono; Mobiliar; Nagra Kudelski Group; Nestl´ Frisco Findus; e Nestl´ Research Center; e Novartis Pharma; Novelis; Novo Nordisk; Pfizer, United Kingdom; Philip Morris International; Pioneer Hi-Bred, Germany; PostFinance; Procter & Gamble Manufacturing, Germany; publisuisse; Rodenstock, Germany; Sanofi-Aventis, France; Saudi Arabian Oil Company, Saudi Arabia; Smith & Nephew Orthopaedics; Swisscom Innovations; Swissmedic; The Baloise Insurance Company; tl — Public Transport for the Lausanne Region; Wacker Chemie, Germany; upc cablecom; 4 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 6. as well as Swiss and international government agencies, nonprofit organisations, offices, research institutes and universities like Lausanne Hotel School; Institute for International Research, Dubai, United Arab Emirates; Paul Scherrer Institute (PSI); Statistical Office of the City of Berne; Swiss Armed Forces; Swiss Federal Institute for Forest, Snow and Landscape Research; Swiss Federal Institutes of Technology Lausanne and Zurich; Swiss Federal Office for Migration; Swiss Federal Research Stations Agroscope Changins–W¨denswil and a Reckenholz–T¨nikon; a Swiss Federal Statistical Office; Swiss Institute of Bioinformatics; Swiss State Secretariat for Economic Affairs (SECO); The Gold Standard Foundation; Unit of Education Research of the Department of Education, Canton of Geneva; Universities of Applied Sciences of Northwestern Switzerland, Technology Buchs NTB and Western Switzerland; Universities of Berne, Fribourg, Geneva, Lausanne, Neuchatel and Zurich. 5 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 7. Contents Contents 6 1. Demystifying the ‘big data’ hype 7 2. Demystifying the ‘data science’ hype 13 3. What distinguishes data science from statistics? 29 4. Conclusion 31 6 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 8. 1. Demystifying the ‘big data’ hype • There is no question that ‘big data’ has hit the business, government and scientific sectors. Indeed, the term ‘big data’ has acquired the trappings of religion! However, there are a lot of examples of companies that were into ‘big data’ before it was called ‘big data’ — a term coined in 1998 by two researchers. • But, what exactly is ‘big data’ ? In short, the term ‘big data’ applies to information that can not be processed or handled using traditional processes or tools. Big data is an architecture and most related challenges are IT focused! 7 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 9. • The following characteristics — known as ‘the four Vs’ or ‘V4 ’ — provide one standard definition of big data: – ‘Volume’ : ‘data at rest’, i.e. the amount of data ( ‘data explosion problem’); – ‘Variety’ : ‘data in many forms’, i.e. different types of data (e.g. structured, semi-structured and unstructured, e.g. text, web or multimedia data such as images, videos, audio) , data sources (e.g. internal, external, public) and data resolutions; – ‘Velocity’ : ‘data in motion’, i.e. the speed by which data are generated and need to be handled; – ‘Veracity’ : ‘data in doubt’, i.e. the varying levels of noise and processing errors. 8 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 10. • Volume is often the least important issue: it is definitely not a requirement to have a minimum of a petabyte of data, say. Bigger challenges are variety and velocity, and possibly most important is veracity and the related quality and correctness of the data. Especially the combination of different data sources (such as combining company data with social networking data and public data) provides a lot of insights and this can also happen with ‘smaller’ data sets. • The above standard definition of big data is vulnerable to the criticism of sceptics that these Vs have always been there. Nevertheless, the definition provides a business framework to communicate about how to solve different data processing challenges. But, what is new? 9 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 11. “Big Data’ ... is the simple yet seemingly revolutionary belief that data are valuable. ... I believe that ‘big’ actually means important (think big deal). Scientists have long known that data could create new knowledge but now the rest of the world, including government and management in particular, has realised that data can create value, principally financial but also environmental and social value.’ Sean Patrick Murphy, 2013 Source: interview with Sean Patrick Murphy, a senior scientist at Johns Hopkins University Applied Physics Laboratory, in the Big Data Innovation Magazine, September 2013. 10 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 12. Source: ‘Analytics: A Blueprint for Value — Converting Big Data and Analytics Insights into Results’, IBM Institute for Business Value, October 2013 (see ibm.co/9levers). 11 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 13. ‘Big data and analytics based on it promise to change virtually every industry and business function over the next decade. Any organisation — and any individual within it — that gets started early with big data can gain ‘significant’ competitive edge.’ Thomas H. Davenport and Jinho Kim, 2013 Source: Davenport, T. H. & Kim, J. (2013). Keeping Up with the Quants: Your Guide to Understanding and Using Analytics. Boston, MA: Harvard Business Review Press. 12 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 14. 2. Demystifying the ‘data science’ hype • The demand for ‘data scientists’ — the ‘magicians of the big data era’ — is unprecedented in sectors where value, competitiveness and efficiency are driven by data. • The Data Science Association defined in October 2013 the terms ‘data science’ and ‘data scientists’ within their Data Science Code of Professional Conduct as follows (see www.datascienceassn.org/code-conduct): – Data science is the scientific study of the creation, validation and transformation of data to create meaning. – A data scientist is a professional who uses scientific methods to liberate and create meaning from raw data. 13 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 15. • ‘Data-Driven Decision making’ (DDD) refers to the practice of basing decisions on data, rather than purely on intuition: Source: Provost, F. & Fawcett, T. (2013). Data Science for Business. Sebastopol, CA: O’Reilly Media. 14 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 16. • Data science has been dubbed by the Harvard Business Review (Thomas H. Davenport and D. J. Patil, October 2012) as ‘the sexiest job in the 21st century ’ and by The New York Times (April 11, 2013) as a ‘ hot new field [that] promises to revolutionise industries from business to government, health care to academia’. But, is data science really new and ‘sexy’ ? 15 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 17. • The term ‘data science’ was originally coined in 1998 by the statistician Chien-Fu Jeff Wu when he gave his inaugural lecture at the University of Michigan. Wu argued that statisticians should be renamed data scientists since they spent most of their time manipulating and experimenting with data. • In 2001, the statistician William S. Cleveland introduced the notion of data science as an independent discipline. Cleveland extended the field of statistics to incorporate ‘advances in computing with data’ in his article ‘Data science: an action plan for expanding the technical areas of the field of statistics’ (International Statistical Review, 69, 21–26). 16 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 18. • Although the term data scientist may be relatively new, this profession has existed for a long time! • For example, Napoleon Bonaparte (‘Napoleon I’) used mathematical models to help make decisions on battlefields. These models were developed by mathematicians — Napoleon’s own data scientists! • Another (famous) example of that same time period is the following map (‘carte figurative’) drawn by the French engineer Charles Joseph Minard in 1861 to show the tremendous losses of Napoleon’s army during his Russian campaign in 1812-1813, where more than 97% of the soldiers died. Sources: Van der Lans, R. (2013). The data scientist at work. BeyeNETWORK, October 24, 2013 (www.b-eye-network.com/view/17102). Tufte, E. R. (2001). The Visual Display of Quantitative Information (2nd edition). Cheshire, CT: Graphics Press. 17 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 19. Minard was clearly a data scientist! 18 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 20. ‘I keep saying the sexy job in the next ten years will be statisticians. People think I am joking, but who would have guessed that computer engineers would’ve been the sexy job of the 1990s?’ Hal Varian, 2009 Source: interview with Google’s chief economist in the The McKinsey Quarterly, January 2009. 19 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 21. ‘And with ongoing advances in high-performance computing and the explosion of data, statistics will remain a positive social influence around the globe. I would venture to say that statistician could be the sexy job of the century.’ James (Jim) Goodnight, 2010 20 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 22. ‘I think he [Hal Varian] is behind — using statistics has been the sexy job of the last 30 years. It has just taken awhile for organisations to catch on.’ James (Jim) Goodnight, 2011 21 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 23. • Looking at all the ‘crazy’ hype in the media over the past years around the terms big data and data science, it seems that data scientist is just a ‘sexed up’ term for statistician. It looks like statisticians just needed a good marketing campaign! 22 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 24. But, what is statistics? – Statistics can be defined as the science of ‘learning from data’ (or of making sense out of data). It includes everything from planning for the collection of data and subsequent data management to end-of-the-line activities such as drawing conclusions of numerical facts called data and presentation of results. – Statistics is concerned with the study of uncertainty and with the study of decision making in the face of uncertainty. 23 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 25. • However, data science is not just a rebranding of statistics , large-scale statistics or statistical science! • Data science is rather a rebranding of ‘data mining’ ! ‘The terms ‘data science’ and ‘data mining’ often are used interchangeably, and the former has taken a life of its own as various individuals and organisations try to capitalise on the current hype surrounding it.’ Foster Provost and Tom Fawcett, 2013 24 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 26. The data science Venn diagram Source: Drew Conway, September 2010 (drewconway.com/zia/2013/3/26/the-data-science-venn-diagram). 25 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 27. ‘Although the buzzwords describing the field have changed — from ‘Knowledge Discovery’ to ‘Data Mining’ to ‘Predictive Analytics’, and now to ‘Data Science’, the essence has remained the same — discovery of what is true and useful in the mountains of data.’ Gregory Piatetsky-Shapiro, 2012 26 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 28. But, what is data mining? We think of data mining as the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns or structures or models or trends or relationships in data to make crucial decisions. ‘Non-trivial’: it is not a straightforward computation of predefined quantities like computing the average value of a set of numbers. ‘Valid’: the patterns hold in general, i.e. being valid on new data in the face of uncertainty. ‘Novel’: the patterns were not known beforehand. ‘Potentially useful’: lead to some benefit to the user. ‘Understandable’: the patterns are interpretable and comprehensible — if not immediately then after some postprocessing. 27 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 29. ‘Statistics has been the most successful information science. Those who ignore statistics are condemned to re-invent it.’ Brad Efron, 1997 28 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 30. 3. What distinguishes data science from statistics? • Statistics traditionally is concerned with analysing primary (e.g. experimental) data that have been collected to check specific ‘hypotheses’ (ideas). Primary data analysis or top-down (confirmatory) analysis. ‘Hypothesis evaluation or testing’ . • Data science or data mining, on the other hand, typically is concerned with analysing secondary (e.g. observational) data that have been collected for other reasons. Secondary data analysis or bottom-up (exploratory) analysis. ‘Hypothesis generation’ . Knowledge discovery. 29 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 31. ‘Neither exploratory nor confirmatory is sufficient alone. To try to replace either by the other is madness. We need them both.’ John W. Tukey, 1980 30 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 32. 4. Conclusion • Data, and the capability to extract useful knowledge from data, should be regarded as key strategic assets. • Extracting useful knowledge from data to solve business problems must be treated systematically by following a process with reasonably well-defined stages. Like statistics, data science (or data mining) is not only modelling and prediction, nor a product that can be bought, but a whole iterative problem solving cycle/process that must be mastered through team effort. Phases of the reference model of the methodology called CRISP-DM (‘CRoss Industry Standard Process for Data Mining’; see www.statoo.com/CRISP-DM.pdf): 31 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 33. 32 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 34. ‘If I had only one hour to save the world, I would spend fifty-five minutes defining the problem, and only five minutes finding the solution.’ Albert Einstein 33 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 35. • There in convincing ‘evidence’ that data-driven decision making and big data technologies substantially improve business performance. • Statistical rigour is necessary to justify the inferential leap from data to knowledge. • The challenges from a statistical perspective include the quality of the data, the confidentiality of the data, the characteristics of the sample, the validity of generalisation and the balance of humans and computers. 34 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 36. ‘The numbers have no way of speaking for themselves. We speak for them. We imbue them with meaning. ... Data-driven predictions can succeed — and they can fail. It is when we deny our role in the process that the odds of failure rise. Before we demand more of our data, we need to demand more of ourselves.’ Nate Silver, 2012 Source: Silver, N. (2012). The Signal and The Noise: Why Most Predictions Fail but Some Don’t. New York, NY: The Penguin Press. 35 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 37. ‘As big data [data science] and statistics engage with one another, it is critical to remember that the two fields are united by one common goal: to draw reliable conclusions from available data.’ Kaiser Fung, 2013 Source: Fung, K. (2013). The pending marriage of big data and statistics. Significance, 10(4), 22–25. 36 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 38. ‘Most of my life I went to parties and heard a little groan when people heard what I did. Now they are all excited to meet me.’ Robert Tibshirani, 2012 Source: interview with Robert Tibshirani, a statistics professor at Stanford University, in The New York Times on January 26, 2012. 37 Copyright c 2001–2013, Statoo Consulting, Switzerland. All rights reserved.
  • 39. Have you been Statooed? Dr. Diego Kuonen, CStat PStat CSci Statoo Consulting Morgenstrasse 129 3018 Berne Switzerland email kuonen@statoo.com web www.statoo.info facebook.com/Statoo.Consulting
  • 40. Copyright c 2001–2013 by Statoo Consulting, Switzerland. All rights reserved. No part of this presentation may be reprinted, reproduced, stored in, or introduced into a retrieval system or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, scanning or otherwise), without the prior written permission of Statoo Consulting, Switzerland. Warranty: none. Trademarks: Statoo is a registered trademark of Statoo Consulting, Switzerland. Other product names, company names, marks, logos and symbols referenced herein may be trademarks or registered trademarks of their respective owners. Presentation code: ‘IBM.DeveloperDays.2013’. Typesetting: L EX, version 2 . PDF producer: pdfTEX, version 3.141592-1.21a-2.2 (Web2C 7.5.4). AT Compilation date: 25.11.2013.