4G Mobile Network & Applications


Published on

I use this presentation for opening 4G Mobile Technology seminar sessions. Usually it will be continued with 1 other presentation on LTE, 1 on WiMAX II, and 1 on applications.

Published in: Technology
  • great............very usefull................thnx for sharing.......
    Are you sure you want to  Yes  No
    Your message goes here
  • Very simple but effective presentation. It would be of great use to me if u kindly send me presentation on mohamedtechnical@yahoo.com
    greet gob
    Are you sure you want to  Yes  No
    Your message goes here
  • ery nice presentation. could you send me a copy to raed.2080@hotmail.com
    Are you sure you want to  Yes  No
    Your message goes here
  • Very simple but effective presentation.

    It would be of great use to me if u kindly send me presentation on ssmmiitt123@rediffmail.com.
    Are you sure you want to  Yes  No
    Your message goes here
  • very nice presentation. could you send me a copy to gkeshav207@gmail.com
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

4G Mobile Network & Applications

  1. 1. 4G Mobile Technologies<br />An IEEE Comsoc Indonesia Chapter Lecture<br />
  2. 2. @kuncoro<br />
  3. 3. Mobile Communications<br />
  4. 4. Critical Factors for Wireless Development<br />
  5. 5. Web 2.0<br />
  6. 6. Growth of Advanced Mobile Devices<br />
  7. 7. Data Rate Requirements<br />100<br />INTERACTIVITY<br />4G<br />10<br />EVDO<br />STREAMING<br />HSPA<br />EVDO<br />1<br />EVDO<br />MULTIMEDIA<br />Peak data rate transmission (Mb/s)<br />W-CDMA<br />0.1<br />MESSAGE<br />CDMA-1X<br />EDGE<br />CDMA-2000<br />0.01<br />GPRS<br />GSM<br />0.001<br />
  8. 8. Data Rate vs Mobility<br />Fast<br />LTE<br />4G<br />Medium<br />Mobile<br />WiMAX<br />Slow<br />3G<br />2010<br />Fixed WiMAX<br />Movable<br />WLAN<br />Hiperlan /2<br />Stationary<br />2000<br />0.1<br />1<br />10<br />100<br />
  9. 9. 4G Mobile Technology<br />
  10. 10. GSM<br />UMTS WCDMA<br />GPRS<br />EDGE<br />HSDPA<br />HSUPA<br />EVDO EVDV<br />IS-95<br />CDMA<br />1x<br />WiMAX<br />
  11. 11.
  12. 12. 4G Objectives<br />
  13. 13. 4G Approaches<br />
  14. 14. All-IP Network<br />
  15. 15. Application<br />Network<br />API<br />Services<br />Mobility Mgmt<br />Resource Mgmt<br />QoS Mgmt<br />Convergence Sublayer<br />2G<br />3G<br />WiMAX<br />4G<br />Physical<br />Layered NGMN Architecture<br />
  16. 16. Multiparty Conferencing<br />Resource Sharing<br />Virtual Collaboration<br />Broadcasting<br />Games<br />….<br />Application<br />Service<br />SIP Applications Server<br />Parlay / OSA<br />….<br />SIP<br />Diameter<br />Session<br />Control<br />I-CSCF<br />P-CSCF<br />HSS<br />S-CSCF<br />MGCF<br />SIP<br />H.248<br />MGW<br />Access<br />PSTN<br />WiFi/WiMAX<br />GPRS<br />UMTS<br />
  17. 17. AS<br />S-CSCF<br />HSS<br />P-CSCF<br />IMS<br />IMS<br />Lain<br />I-CSCF<br />GGSN<br />IMS<br />Lain<br />IMS, Internet Multimedia Subsystem<br />CSCF, Call Session Control Function<br /> (Serving, Proxy, Interrogating)<br />GGSN, Gateway GPRS Support Node<br />SGSN, Serving GPRS Support Node<br />UTRAN, UMTS Terrestrial Radio Access Network<br />UMTS, Universal Mobile Telecom System<br />HSS, Home Subscriber Server<br />SGSN<br />RNC<br />UTRAN<br />IMS<br />
  18. 18. AAA<br />PDG<br />S-CSCF<br />HSS<br />WiMAX CSN<br />P-CSCF<br />IMS<br />I-CSCF<br />GGSN<br />IMS<br />Lain<br />SGSN<br />SFM<br />SFA<br />WiMAX ASN<br />RNC<br />IP ROUTER<br />UTRAN<br />ASN<br />Lain<br />
  19. 19. BGCF<br />MGCF<br />BGCF<br />MGCF<br />3GPP2<br />PDF<br />MGW<br />MGW<br />3GPP<br />S-CSCF<br />MRFC<br />P-CSCF<br />S-CSCF<br />MRFC<br />P-CSCF<br />MS<br />UE<br />AS<br />MRFP<br />I-CSCF<br />AAA<br />AS<br />MRFP<br />HSS<br />I-CSCF<br />Data base<br />SLF<br />Position Server<br />PDE<br />
  20. 20. IMS: Enhanced<br />Voice<br />Charging Function<br />Subscriber Profile Function<br />SIP<br />Video Phone<br />CFCS<br />Signalling Function<br />Application Policy Function<br />SIP<br />HTTP<br />RTSP<br />RTSP signal proxy<br />Video Streaming<br />RTSP<br />HTTP signal proxy<br />HTTP<br />TV<br />QoS Policy & Media Function<br />Media Transfer Function<br />RTP<br />HTTP<br />Web<br />
  21. 21. IPv6 Support<br />
  22. 22. Cognitive Radio<br />
  23. 23. Cognitive radio (CR), also related to software-defined radio (SDR), is a type of Radio in which communication systems are aware of their environment and internal state and can make decisions about their radio operating behavior based on that information and predefined objectives.<br />Cognitive Radio<br />
  24. 24. DSA & CR<br />
  25. 25. IEEE 1900 is a suite to support cognitive radio (CR), dynamic spectrum access (DSA), and coexistence.<br />Previous standards s.a. WiFi (802.11), Zigbee (802.15.4), and WiMAX (802.16) have included certain level of CR.<br />CR will be related to dynamic spectrum access (DSA), which is the real-time adjustment of Spectrum Utilization in response to changing circumstances and objectives.<br />The most interesting aspect is coexistence: resource selection to determine the type of wireless/mobile access.<br />IEEE 1900<br />
  26. 26. SCC41 Working Groups<br />
  27. 27. Network Management<br />Metropolitan<br />Short-Range<br />Cellular<br />Network reconfiguration management<br />WiMAX<br />WiMAX II<br />(806.16m)<br />WiFi<br />(802.11g)<br />WiFi NG<br />(802.11m)<br />3G<br />4G<br />DSA-enabled<br />Radios<br />IEEE<br />P1900.4<br />P1900.4<br />Terminal<br />P1900.4<br />Terminal<br />Legacy<br />terminal<br />Terminal reconfiguration management<br />Terminal reconfiguration management<br />Multiplatform Portability<br />
  28. 28. Access Scheme<br />
  29. 29. New access schemes like Orthogonal FDMA (OFDMA), Single Carrier FDMA (SC-FDMA), Interleaved FDMA and Multi-carrier CDMA (MC-CDMA) are gaining more importance for the next generation systems.<br />WiMAX: OFDMA<br />LTE: OFDMA (downlink), IFDMA (uplink) <br />The other important advantage of the above is that they require less complexity for equalization at the receiver. This is an added advantage especially in the MIMO environments since the spatial multiplexing transmission of MIMO systems inherently requires high complexity equalization at the receiver.<br />In addition to improvements in these multiplexing systems, improved modulation techniques are being used. Whereas earlier standards largely used PSK, more efficient systems such as 64QAM are being proposed for use with the LTE<br />Access Scheme<br />
  30. 30. Orthogonal frequency-division multiplexing<br />FDM in which sub-channels overlap without interfering<br />OFDM<br />Single Carrier Transmission<br />(WCDMA etc)<br />5 MHz<br />Subcarriers<br />Orthogonal Frequency<br />Division Multiplexing<br />e.g. 5 MHz<br />
  31. 31. Adaptable to severe channel conditions without complex equalization.<br />Robust against narrow-band co-channel interference.<br />Robust against intersymbol interference (ISI) and fading caused by multipath propagation.<br />High spectral efficiency.<br />Efficient implementation using FFT<br />Low sensitivity to time synchronization errors.<br />Facilitates Single Frequency Networks (SFNs), i.e. transmitter macrodiversity.<br />OFDM Advantages<br />
  32. 32. TDMA/FDMA operation = OFDMA<br />Frequency sub-channels are composed of multiple, non-adjacent carriers <br />OFDMA: Combining TDMA and FDMA<br />
  33. 33. Multipath – The Challenge<br />
  34. 34. OFDM modulates in parallel multiple narrow band sub-carriers<br />Multipath duration becomes short relative to symbol duration<br />Pilot and guard sub-carriers are also inserted<br />Multipath – The Solution<br />
  35. 35. The sub-carriers are converted by IFFT to a time domain signal<br />A guard interval (cyclic prefix) is added to collect multipath<br />A long guard interval (GI) reduces efficiency but enhances multipath handling capability<br />Multipath – The Solution<br />
  36. 36. Narrowband Interference Rejection<br />Easy to Avoid/Reject Narrowband Dominant Interference .<br />Less Interfered Part of the Carrier Can Still Be Used .<br />Interference Rejection/Avoidance<br />
  37. 37. Using shaping on the signal peaks<br />Limiting the PAPR to a constant value by vector reduction<br />PAPR Reduction<br />
  38. 38. Rectangular Spectrum Shape (Brick Wall)<br />Small Frequency Guard band<br />Spectrum Properties<br />
  39. 39. Spectrum Properties<br />
  40. 40. In OFDM, channel impairment are solved in the same way Group Delays are solved, by Channel estimation<br />Group Delay<br />
  41. 41. Phase Noise Effects<br />Phase Noise Effect on S.C<br />Phase Noise Effect on OFDM<br />
  42. 42. Duplexing<br />FDD<br />duplex<br />separation<br />t<br />f<br />TDD<br />guard period<br />t<br />f<br />
  43. 43. FDD (Frequency Division Duplexing) uses one frequency for the downlink, and a second frequency for the uplink.<br />TDD (Time Division Duplexing) uses the same frequency for the downlink and the uplink.<br />In both configuration the access method is OFDMA/TDMA .<br />Duplexing (cont’d)<br />
  44. 44. Spatial Multiplexing<br />
  45. 45. Multiple antenna technologies are emerging to achieve high rate, high reliability, and long range communications.<br />Spatial multiplexing gained importance for its bandwidth conservation and power efficiency. It involves deploying multiple antennas at the transmitter and at the receiver. Independent streams can then be transmitted simultaneously from all the antennas. This increases the data rate into multiple folds with the number equal to minimum of the number of transmit and receive antennas. This is called MIMO (as a branch of intelligent antenna).<br />Spatial Multiplexing<br />
  46. 46. MIMO System<br />Tx<br />Rx<br />y=Hx+n<br />
  47. 47. MIMI Schemes<br />
  48. 48. MIMO Techniques Comparison<br />
  49. 49. MIMO Capabilities<br />
  50. 50. Adaptive MIMO<br />
  51. 51. Space Time Coding<br />A space–time code (STC) is a method employed to improve the reliability of data transmission in wireless communication systems using multiple transmit antennas. STCs rely on transmitting multiple, redundant copies of a data stream to the receiver in the hope that at least some of them may survive the physical path between transmission and reception in a good enough state to allow reliable decoding.<br />
  52. 52. Space Time Coding<br />IFFT<br />Filter<br />DAC<br />RF<br />Tx Diversity Encoder<br />IFFT Input Packing<br />Subcarrier Modulation<br />IFFT<br />Filter<br />DAC<br />RF<br />Diversity Combiner<br />Sub channel Demod<br />Decoder<br />RF<br />ADC<br />Filter<br />FFT<br />
  53. 53. Schedules & Candidates<br />
  54. 54. ITU 4G Schedule<br />
  55. 55.
  56. 56.
  57. 57. LTE & WiMAX II Terminologies<br />
  58. 58. Context-AwareMobile Applications<br />
  59. 59. Location (micro)<br />Geo location<br />Available network<br />User activity<br />Features on device<br />Speed & direction<br />Favourite places<br />Battery power<br />QoC<br />
  60. 60. User-Context<br />User:<br /><ul><li>Interest
  61. 61. Device
  62. 62. Time
  63. 63. Location</li></ul>Admin<br />Service<br />Networks<br />Personalised<br />Services<br />
  64. 64. User layer<br />(anywhere, anytime)<br />Personal<br />Service<br />Platform<br />User experience management<br />Service<br />Discovery<br />Service<br />Composition<br />Pervasiveness<br />Context Management<br />Conventional<br />Service<br />Platform<br />e-Services<br />2G<br />3G<br />LTE<br />WiMAX<br />Network access<br />
  65. 65. Thank You<br />
  66. 66. Kuncoro Wastuwibowo<br />