Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Basic logic gates

  • Be the first to comment

Basic logic gates

  1. 1. Basic Logic Gates
  2. 2. Basic Logic Gates and Basic Digital Design• NOT, AND, and OR Gates• NAND and NOR Gates• DeMorgan’s Theorem• Exclusive-OR (XOR) Gate• Multiple-input Gates
  3. 3. NOT Gate -- Inverter X Y 0 1 1 0
  4. 4. NOT• Y = ~X (Verilog)• Y = !X (ABEL)• Y = not X (VHDL)• Y = X’•Y = X•Y = X (textook)• not(Y,X) (Verilog)
  5. 5. NOTX ~X ~~X = X X ~X ~~X 0 1 0 1 0 1
  6. 6. AND Gate AND X Y ZX 0 0 0 0 1 0 Z 1 0 0Y 1 1 1 Z = X & Y
  7. 7. AND•X & Y (Verilog and ABEL)• X and Y (VHDL) V•X Y U•X Y•X * Y• XY (textbook)• and(Z,X,Y) (Verilog)
  8. 8. OR Gate OR X Y ZX 0 0 0 Z 0 1 1Y 1 0 1 1 1 1Z = X | Y
  9. 9. OR•X | Y (Verilog)•X # Y (ABEL)• X or Y (VHDL)•X + Y (textbook)•X V Y•X U Y• or(Z,X,Y) (Verilog)
  10. 10. Basic Logic Gates and Basic Digital Design• NOT, AND, and OR Gates• NAND and NOR Gates• DeMorgan’s Theorem• Exclusive-OR (XOR) Gate• Multiple-input Gates
  11. 11. NAND Gate NAND X Y ZX 0 0 1 0 1 1 Z 1 0 1Y 1 1 0 Z = ~(X & Y) nand(Z,X,Y)
  12. 12. NAND Gate NOT-AND X Y W ZX 0 0 0 1 W 0 1 0 1 Z 1 0 0 1Y 1 1 1 0 W = X & Y Z = ~W = ~(X & Y)
  13. 13. NOR Gate NOR X Y ZX 0 0 1 Z 0 1 0Y 1 0 0 1 1 0Z = ~(X | Y)nor(Z,X,Y)
  14. 14. NOR Gate NOT-OR X Y W ZX 0 0 0 1 W Z 0 1 1 0Y 1 0 1 0 1 1 1 0W = X | YZ = ~W = ~(X | Y)
  15. 15. Basic Logic Gates and Basic Digital Design• NOT, AND, and OR Gates• NAND and NOR Gates• DeMorgan’s Theorem• Exclusive-OR (XOR) Gate• Multiple-input Gates
  16. 16. NAND Gate X Z X Z = Y YZ = ~(X & Y) Z = ~X | ~Y X Y W Z X Y ~X ~Y Z 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0
  17. 17. De Morgan’s Theorem-1~(X & Y) = ~X | ~Y• NOT all variables• Change & to | and | to &• NOT the result
  18. 18. NOR GateX X Z ZY YZ = ~(X | Y) Z = ~X & ~Y X Y Z X Y ~X ~Y Z 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0
  19. 19. De Morgan’s Theorem-2~(X | Y) = ~X & ~Y• NOT all variables• Change & to | and | to &• NOT the result
  20. 20. De Morgan’s Theorem• NOT all variables• Change & to | and | to &• NOT the result• --------------------------------------------• ~X | ~Y = ~(~~X & ~~Y) = ~(X & Y)• ~(X & Y) = ~~(~X | ~Y) = ~X | ~Y• ~X & !Y = ~(~~X | ~~Y) = ~(X | Y)• ~(X | Y) = ~~(~X & ~Y) = ~X & ~Y
  21. 21. Basic Logic Gates and Basic Digital Design• NOT, AND, and OR Gates• NAND and NOR Gates• DeMorgan’s Theorem• Exclusive-OR (XOR) Gate• Multiple-input Gates
  22. 22. Exclusive-OR Gate XOR X Y ZX Z 0 0 0Y 0 1 1Z = X ^ Y 1 0 1xor(Z,X,Y) 1 1 0
  23. 23. XOR•X ^ Y (Verilog)•X $ Y (ABEL)•X @ YgX ⊕ Y (textbook)• xor(Z,X,Y) (Verilog)
  24. 24. Exclusive-NOR Gate XNOR X Y ZX Z 0 0 1Y 0 1 0Z = ~(X ^ Y) 1 0 0Z = X ~^ Y 1 1 1xnor(Z,X,Y)
  25. 25. XNOR• X ~^ Y (Verilog)• !(X $ Y) (ABEL)•X @ YgX e Y• xnor(Z,X,Y) (Verilog)
  26. 26. Basic Logic Gates and Basic Digital Design• NOT, AND, and OR Gates• NAND and NOR Gates• DeMorgan’s Theorem• Exclusive-OR (XOR) Gate• Multiple-input Gates
  27. 27. Multiple-input Gates Z1 Z2 Z3 Z4
  28. 28. Multiple-input AND Gate Z1Output Z 1 is HIGH only if all inputs are HIGH An open input will float HIGH
  29. 29. Multiple-input OR Gate Z2Output Z 2 is LOW only if all inputs are LOW
  30. 30. Multiple-input NAND Gate Z3Output Z 3 is LOW only if all inputs are HIGH
  31. 31. Multiple-input NOR Gate Z4Output Z 4 is HIGH only if all inputs are LOW

×