Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
ใบความร้ ูที 6.1                                 เรือง กราฟของจํานวนเชิ งซ้ อนกราฟของจํานวนเชิ งซ้ อน     (Graph of Comple...
่                                                         ่  ตัวอยางที 1 จงเขียนเวกเตอร์ในระนาบเชิงซ้อนซึงแทนจํานวนเชิงซ้อ...
แบบฝึ กทักษะที 6.1                                                            ่1. จงเขียนจุดในระนาบจํานวนเชิงซ้อน ซึ งแทนจ...
ใบความร้ ู ที 6.2                                เรือง ค่ าสั มบรณ์ ของจํานวนเชิ งซ้ อน                                   ...
แบบฝึ กทักษะที 6.2         ่                         ่1. จงหาคาสัมบูรณ์ของจํานวนเชิงซ้อนตอไปนี(   1.1 1 − 3i   1.2 2 − 3i ...
Upcoming SlideShare
Loading in …5
×

Math6

2,859 views

Published on

  • Be the first to comment

Math6

  1. 1. ใบความร้ ูที 6.1 เรือง กราฟของจํานวนเชิ งซ้ อนกราฟของจํานวนเชิ งซ้ อน (Graph of Complex Numbers) เนืองจากจํานวนเชิงซ้อนเขียนอยูในรู ปของคู่อนดับ (a, b) หรื อในรู ป a + bi ่ ั ่ ่โดย a เป็ นสวนจริ ง และ b เป็ นสวนจินตภาพ ดังนั( นอาจแทนจํานวนเชิงซ้อน (a, b) บนระนาบพิกดฉาก XY เชนเดียวกบการแทนคู่อนดับ (a, b) ∈ R × R โดยเรี ยกแกน X (แกนนอน) วา ั ่ ั ั ่ ่แกนจริ ง ( real axis ) เรี ยกแกน Y (แกนตั( ง) วาแกนจินตภาพ ( imaginary axis ) และเรี ยก ่ระนาบ XY วาระนาบเชิงซ้อน (complex plane) จํานวนเชิงซ้อน a + bi แทนได้ดวยจุด (a, b) ด้วยเวกเตอร์ ทีมีจุดเริ มต้นที (0,0) และ ้จุด z(a, b) เป็ นจุดสิ( นสุ ด นันคือ z = oz ดังรู ป
  2. 2. ่ ่ ตัวอยางที 1 จงเขียนเวกเตอร์ในระนาบเชิงซ้อนซึงแทนจํานวนเชิงซ้อนตอไปนี( 3 + 2i , 3 − 2i , − 3 + 2i , − 3 − 2i , 3 , − 2i Y X ่ ํตัวอยางที 2 กาหนด z 1 = 7 − 5i และ z 2 = −3 + 4i จงเขียนกราฟแทนจํานวนเชิ งซ้อน z1 + z 2 Y X
  3. 3. แบบฝึ กทักษะที 6.1 ่1. จงเขียนจุดในระนาบจํานวนเชิงซ้อน ซึ งแทนจํานวนเชิงซ้อนตอไปนี( 1.1 (3,2) , (−3,4) , (−2,−3) , (0,−2) , (−3,0) 1.2 3 − 2i , − 3 − 2i , − 3 + 2i , 3 + 2i , 3i , 3 ่2. จงเขียนเวกเตอร์ ในระนาบเชิ งซ้อน ซึ งแทนจํานวนเชิงซ้อนตอไปนี( 3 + 4i , i(3 + 4i) , i 2 (3 + 4i) , i 3 (3 + 4i) ่3. ถ้า z1 = 6 − 5i และ z 2 = −3 + 4i จงเขียนกราฟแทนจํานวนเชิงซ้อนตอไปนี( 3.1 z1 + z 2 3.2 z1 − z 2 ่4. ถ้า z = 3 + 2i จงเขียนกราฟแทนจํานวนเชิงซ้อนในข้อตอไปนี( 4.1 z 4.2 z 4.3 z 2 4.4 − z 4.5 1 z
  4. 4. ใบความร้ ู ที 6.2 เรือง ค่ าสั มบรณ์ ของจํานวนเชิ งซ้ อน ูค่ าสั มบรณ์ ของจํานวนเชิ งซ้ อน (Absolute value of Complex Numbers ) ู ่ บทนิยาม ให้ z = a + bi เป็ นจํานวนเชิ งซ้อน คาสัมบูรณ์ (absolute value หรื อ modulus) ของจํานวนเชิงซ้อน คือ z = a + bi = a 2 + b 2 ่ ่ ่ ํ ั จากบทนิยาม จะเห็นวาคาสัมบูรณ์ของ a + bi คือระยะทางระหวางจุดกาเนิ ด (0,0) กบจุด (a, b) นันเอง ่ตัวอย่ างที 1 คาสัมบูรณ์ของ 3 + 2i คือ 3 + 2i = 32 + 2 2 = 13 ่ คาสัมบูรณ์ของ − 2i คือ − 2i = 0 2 + (−2) 2 = 2 ่ คาสัมบูรณ์ของ − 5 คือ − 5 = (−5) 2 + 0 2 = 5สมบัติของค่ าสั มบรณ์ ของจํานวนเชิ งซ้ อน ู ่ ให้ z , z1 และ z 2 เป็ นจํานวนเชิงซ้อน จะได้วา 1. z เป็ นจํานวนจริ งและ z ≥ 0 ็่ 2. z = 0 กตอเมือ z = 0 3. z 2 = z ⋅ z 4. z = − z = z 1 1 5. = เมือ z ≠ 0 นันคือ z −1 = z −1 z z 6. z1 ⋅ z 2 = z1 ⋅ z 2 z1 z1 7. = เมือ z2 ≠ 0 z2 z2 8. z n = z n เมือ n ∈ I ทีทําให้ z n เป็ นจํานวนเชิงซ้อน 9. z1 + z 2 ≤ z1 + z 2 10. z1 − z 2 ≥ z1 − z 2 11. i = 1 12. ถ้า z = a เมือ a ∈ R แล้ว z = a ถ้า z = bi เมือ b ∈ R แล้ว z = bi
  5. 5. แบบฝึ กทักษะที 6.2 ่ ่1. จงหาคาสัมบูรณ์ของจํานวนเชิงซ้อนตอไปนี( 1.1 1 − 3i 1.2 2 − 3i 1.3 4 + 3i 1.4 − 5 + 12i 1.5 5 + 2 3i 1.6 − 3 − i 1.7 − 3 − 4i 1.8 4i ํ ่2. กาหนด z = 6 − 8i และ z 2 = −3 + 4i จงหาค่าสัมบูรณ์ของจํานวนเชิงซ้อนในข้อตอไปนี( 2.1 z 2.2 z 2.3 −z 2.4 z⋅z 2.5 z2 2.6 z ⋅ z1 1 2.7 z 2.8 z −1 2.9 z + z1 2.10 z − z1

×