Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

เฉลยค่ากลางของข้อมูล

เฉลยค่ากลางของข้อมูล

  • Be the first to comment

เฉลยค่ากลางของข้อมูล

  1. 1. 1 เฉลยใบงานที่ 1.1 ชื่อ…………………………………….ชั้น……………….เลขที่…………. 1. คะแนนสอบกลางภาคของนักเรียนชั้นมัธยมศึกษาปีที่ 6 วิชาคณิตศาสตร์รอบรู้ 5 จานวน 20 คน ดังนี้ 1 4 5 5 6 7 8 9 10 11 11 12 12 13 14 14 15 16 17 20 จงสร้างตารางแจกแจงความถี่โดยให้จานวนอันตรภาคชั้นเท่ากันทุกชั้น จานวน 5 ชั้น พิสัย = ค่าสูง – ค่าต่า = 20 - 1 ความกว้างของอันตรภาคชั้น = จานวนชั้น พิสัย = 5 19 = 3.8  4 สร้างตารางแจกแจงความถี่จานวน 4 ชั้น ได้ดังนี้ คะแนน ความถี่ 1 - 4 2 5 - 8 5 9 - 12 6 13 - 16 5 17 - 20 2 รวม 20 2. ความสูงของนักเรียนชั้นมัธยมศึกษาปีที่ 4 จานวน 30 คน ดังนี้ 157 154 148 145 150 149 155 160 159 165 163 169 178 179 149 153 156 168 170 167 169 158 155 164 165 168 174 162 169 155 จงสร้างตารางแจกแจงความถี่ของข้อมูลโดยให้จานวนอันตรภาคชั้นเท่ากันทุกชั้น จานวน 7 ชั้น พิสัย = ค่าสูง – ค่าต่า = 179 -145 = 34 ความกว้างของอันตรภาคชั้น = จานวนชั้น พิสัย = 7 34  5 อันตรภาคชั้น ความถี่ (f) 145 - 149 4 150 - 154 3 155 - 159 7 160 - 164 4 165 - 169 8 170 – 174 2 175 - 179 2 รวม 30
  2. 2. 2 เฉลยใบกิจกรรมที่ 1.1 การหาค่าเฉลี่ยเลขคณิต มัธยฐาน และฐานนิยม ของข้อมูลที่ยังไม่แจกแจงความถี่ 1. จงหาค่าเฉลี่ยเลขคณิต มัธยฐาน และฐานนิยม เติมคาตอบลงในตาราง ข้อมูล ค่าเฉลี่ยเลขคณิต มัธยฐาน ฐานนิยม 1. 11 , 13 , 13 , 16 , 17 , 20 15 14.5 13 2. 15 , 14 , 16 , 17 , 15 , 14 , 14 15 15 14 3. 10 , 15 , 10 , 5 , 20 , 20 , 10 , 12 12.75 11 10 4. 157 , 156 , 160 , 156 , 175 , 160 , 150 159.14 157 156 , 160 5. 10 , 15 , 9 , 8 , 11 , 12 , 17 , 16 , 20 , 14 13.2 13 ไม่มี 2. ตารางแจกแจงความถี่แสดงคะแนนสอบปลายภาควิชาคณิตศาสตร์รอบรู้ 5ของนักเรียนชั้นมัธยมศึกษาปีที่ 6 จานวน 50 คน ดังนี้ 1) จงหาค่าเฉลี่ยเลขคณิต มัธยฐาน ฐานนิยม ค่าเฉลี่ยเรขาคณิต และค่าเฉลี่ยฮาร์โมนิค ตารางที่ 1 หาค่าเฉลี่ยเลขคณิต คะแนน ความถี่ (f) จุดกึ่งกลางชั้น (x) ความถี่ x จุดกึ่งกลางชั้น 10 - 14 3 12 36 15 – 19 7 17 119 20 – 24 10 22 220 25 – 29 14 27 378 30 – 34 9 32 288 35 - 39 7 37 259 รวม 50 1300 วิธีทา ค่าเฉลี่ยเลขคณิต  X = ลจานวนข้อมู )ััั้ นดกึ่งกลางชความถี่xจุ(ผลรวมของ = N Xf N i ii1 = 50 1300 = 26 ดังนั้น คะแนนเฉลี่ยของการสอบ เท่ากับ 26 คะแนน @@@ ตารางที่ 2 หามัธยฐานและฐานนิยม คะแนน ความถี่ (f) ความถี่สะสม (cf) 10 - 14 3 3 15 – 19 7 10 20 – 24 10 20 25 – 29 14 34 30 – 34 9 43 35 - 39 7 50 รวม 50 หามัธยฐาน หาฐานนิยม
  3. 3. 3 วิธีทา ใช้วิธีตั้งอัตราส่วน 1. หาความถี่สะสม 2. ตาแหน่งของมัธยฐาน = 2 N = 2 50 = 25 อันตรภาคชั้น 20 – 24 ขอบบนเท่ากับ 24.5 ให้ x เป็นค่าของมัธยฐาน วงเล็บใหญ่ วงเล็บเล็ก = วงเล็บใหญ่ วงเล็บเล็ก 2429 5.24  x = 2034 2025   x – 24.5 = 5 14 5 x = 1.79 x = 24.5 + 1.79 = 26.29 ดังนั้นมัธยฐานของคะแนนสอบเท่ากับ 26.29 คะแนน อันตรภาคชั้นที่มีความถี่สูงสุด คือ 25 – 29 ขอบล่าง (L) = 24.5 ฐานนิยม ( Mo) = L +        22 1 dd d i d1 = 14 – 10 = 4 , d2 = 14 – 9 = 5 แทนค่า ฐานนิยม ( Mo)= 24.5 +        94 4 x 5 = 24.5 + 2.22 = 26.72 ดังนั้น ฐานนิยมของคะแนนของนักเรียน เท่ากับ 26.72 คะแนน @@@ ตารางที่ 3 หาค่าเฉลี่ยฮาร์โมนิค คะแนน ความถี่ (f) จุดกึ่งกลางชั้น (x) x f งชั้นจุดกึ่งกลา ความถี่  10 - 14 3 12 12 3 = 0.25 15 – 19 7 17 17 7 = 0.41 20 – 24 10 22 22 10 = 0.45 25 – 29 14 27 27 14 = 0.52 30 – 34 9 32 32 9 = 0.28 35 - 39 7 37 37 7 = 0.19 รวม 50  x f 2.1 H.M. =  k i i i X f N 1 = 1.2 50 = 23.81 ตารางที่ 4 หาค่าเฉลี่ยเรขาคณิต คะแนน ความถี่ (f) จุดกึ่งกลางชั้น (x) log x f log x 10 - 14 3 12 1 + log 1.2 = 1.0702 3.2376 15 – 19 7 17 1 + log 1.7 = 1.2304 8.6128 20 – 24 10 22 1 + log 2.2 = 1.3424 13.424 25 – 29 14 27 1 + log 2.7 = 1.4313 20.0396 30 – 34 9 32 1 + log 3.2 = 1.5051 13.5459 35 - 39 7 37 1 + log 3.7 = 1. 5682 10.9774 รวม 50  xf log = 69.8372
  4. 4. 4 log G.M. =  k i ii Xf N 1 log 1 = )8372.69( 50 1 = 1.3967 log G.M. = 1 + 0.3967 ( ประมาณค่าของลอก) log G.M. = 1 + log 2.493 = log ( 2.493 x 10) antilog จะได้ G.M. = 24.93 เฉลยใบกิจกรรมที่ 1.1 ผลการเรียนรู้ที่คาดหวัง ใช้สมบัติของสัญลักษณ์แทนการบวกได้ 1. ให้ x1 = 1, x2 = 2 , x3 = 3 , x4 = 4 y1 = 6 , y2 = 7 , y3 = 8 , y 4 = 9 และ c = 5 จงหาค่าของ 1.  10 1i c = 50 6.   3 1 )6( i ii yx = 15 2.  4 1i ix = 10 7.   4 1 )( i ii cyx = 100 3.  4 1i iy = 30 8.   4 1 )3( i ii yx = 110 4.   4 1 )2( i ix = 2 9.   4 1 2 )5( i ix = 30 5.   4 1 )( i ii yx = 40 10.   4 1 22 )( i ii yx = - 200 2. ถ้า  5 1i iy = 10 และ 25 1 i iy = 30 จงหาค่าของ 1.   5 1 )505( i iy = - 200 2.   5 1 2 )3( i iy = 15 3. ถ้า  5 1i ix = 5 และ  5 1i iy = - 2 และ i i i yx 5 1 = 4 จงหาค่าของ   5 1 )34)(1( i ii yx = - 22 4. จงเขียนผลบวกของพจน์ต่อไปนี้โดยใช้เครื่องหมาย  1) 2x1 2 + 2x2 2 + 2x3 2 + . . . + 2x10 2 2) (x1 - x ) f1 + (x2 - x ) f2 + . . . + (xk- x ) fk 3) N 1 [ ( y1 - y )2 f1 + ( y2 - y )2 f2 + . . . . + ( yk - y )2 fk 2. ค่าเฉลี่ยเลขคณิต 1. 6 90 = 15 2. 7 105 = 15 3. 8 102 = 12.75 4. 10 132 = 13.2 5. 10 264 = 26.4 6. 7 1120 = 160 7. 10 1653 = 165.3 8. 10 1639 = 163.9 9. 10 1541 = 154.1 10. 10 1603 = 160.3
  5. 5. 5 เฉลยใบกิจกรรมที่ 1.1 กิจกรรมข้อ 1 ขั้นที่ 1 ทาความเข้าใจกับปัญหา 1.1 โจทย์กาหนดอะไรให้บ้าง (ซื้อสบู่ขนาด 80 กรัมในราคาที่แตกต่างกัน) 1.2 โจทย์ถามหาอะไร(ซื้อสบู่ขนาด 80 กรัมในข้อใดราคาถูกที่สุด) ขั้นที่ 2 วางแผนในการแก้ปัญหา 2.1 โจทย์ให้เลือกซื้อสินค้าในราคาถูกที่สุด (หาค่าเฉลี่ยเลขคณิตของสินค้าหนึ่งหน่วย) 2.2 ใช้สูตรค่าเฉลี่ยเลขคณิต X = n x N i i1 ขั้นที่ 3 ดาเนินการตามแผน หาคาตอบจากสูตรในข้อ 2.2 ขั้นที่ 4 ตรวจสอบผลที่ได้  n i ix 1 = nX 1. ซื้อสบู่ขนาด 80 กรัมในข้อใดราคาถูกที่สุด ก. ก้อนละ 11 บาท (ก้อนละ 11 บาท) ข. 4 ก้อน 45 บาท(ซื้อ 4 ก้อนแถม 1 ก้อน ) (ก้อนละ 9 บาท) ค. โหลละ 120 บาท(ก้อนละ 10 บาท) ง. 3 ก้อน 32 บาท(ก้อนละ 10.67 บาท) สรุปได้ว่า ซื้อสบู่ขนาด 80 กรัมในข้อ ข 4 ก้อน 45 บาท(ซื้อ 4 ก้อนแถม 1 ก้อน ) (ก้อนละ 9 บาท) ราคาถูกที่สุด กิจกรรมข้อ 2 2. ผงซักฟอกในข้อใดราคาถูกที่สุด ราคา1 บาท / กรัม ก. 5,000 กรัม กล่องละ 200 บาท (0.04) ข. 2500 กรัม กล่องละ 110 บาท (0.044) ค. 800 กรัม กล่องละ 45 บาท (0.056) ง. 50 กรัม กล่องละ 18 บาท (0.36) สรุปได้ว่าซื้อผลซักฟอกในข้อ ก. 5,000 กรัม กล่องละ 200 บาท (0.04) ราคาถูกที่สุด กิจกรรมข้อ 3 3. ซื้อยาสระผมขนาด 340 มิลลิลิตรในข้อใดราคาถูกที่สุด ก. ขวดละ 76 บาท (ขวดละ 76 บาท) ข. 2 ขวด 150 บาท บาท (ขวดละ 75 บาท) ค. 3 ขวด 218 บาทบาท (ขวดละ 72.67 บาท) ง. 6 ขวด 450 บาท ( ซื้อ 6 ขวดแถม 1 ขวด ) (ขวดละ 64.68 บาท) สรุปได้ว่า ซื้อยาสระผมขนาด 340 มิลลิลิตรในข้อใด ง. 6 ขวด 450 บาท ( ซื้อ 6 ขวดแถม 1 ขวด ) (ขวดละ 64.68 บาท) ราคาถูกที่สุด
  6. 6. 6 4. ผลการสอบของนักเรียน 4 คน จงเรียงลาดับที่เกรดเฉลี่ยของนักเรียนทั้งสี่คน วิชา หน่วย วิทยาศาสตร์ 1.5 คณิตศาสตร์ 2.0 อังกฤษ 1.0 สังคม 1.0 ภาษาไทย 1.5 เกรดเฉลี่ย ลาดับที่ นาย เอ 3.0 2.5 3.0 2.5 2.5 7 75.18 = 2.68 4 นาย บี 2.5 3.5 3.5 3.0 3.0 7 75.21 = 3.11 1 นาย ซี 2.0 3.5 3.0 2.5 3.0 7 20 = 2.86 3 นาย ดี 3.0 3.5 2.5 3.0 2.5 7 75.20 = 2.96 2 นาย อี 2.5 2.0 3.0 3.5 2.5 7 18 = 2.57 5 ค่าเฉลี่ยเลขคณิตถ่วงน้าหนัก (X w ) =     N 1i i N 1i ii w Xw เกรดเฉลี่ยของนาย เอ .........2.68..................ลาดับที่........4......... เกรดเฉลี่ยของนาย บี ..........3.11..................ลาดับที่........1........ เกรดเฉลี่ยของนาย ซี ..........2.86..................ลาดับที่........3........ เกรดเฉลี่ยของนาย ดี ..........2.96..................ลาดับที่........2....... เกรดเฉลี่ยของนาย อี ..........2.57...................ลาดับที่.......5........ 5. คะแนนสอบวัดความรู้พื้นฐานวิชาคณิตศาสตร์ของนักเรียนชั้นมัธยมศึกษาปีที่ 6 ปีการศึกษา 2552 คือ ม. 6/1 – ม. 6/5 ได้ค่าเฉลี่ยเลขคณิตดังนี้ ชั้น จานวน(คน) ค่าเฉลี่ยเลขคณิต(X ) N(X ) ม. 6/1 44 29.45 1295.8 ม. 6/2 47 20.70 972.9 ม. 6/3 46 17.17 789.82 ม. 6/4 43 13.67 578.81 ม. 6/5 35 13.63 477.05 รวม 215 4123.38 จงหาค่าเฉลี่ยเลขคณิตรวม วิธีทา ค่าเฉลี่ยเลขคณิตรวม ( Combine Arithmetic Mean ) ค่าเฉลี่ยเลขคณิตรวม (X รวม ) =     k 1i i k 1i ii N XN = 215 384123. = 19.18
  7. 7. 7 6. ตารางที่ 1 หาค่าเฉลี่ยเลขคณิต คะแนน ความถี่ (f) จุดกึ่งกลางชั้น (x) ความถี่ x จุดกึ่งกลางชั้น 10 - 14 3 12 36 15 – 19 7 17 119 20 – 24 10 22 220 25 – 29 14 27 378 30 – 34 9 32 288 35 - 39 7 37 259 รวม 50 1300 วิธีทา ค่าเฉลี่ยเลขคณิต (X ) = n Xf n i ii 1 = 50 1300 = 26 ดังนั้น คะแนนเฉลี่ยของการสอบ เท่ากับ 26 คะแนน @@@ 7. ความสูงของนักเรียน 50 คน ความสูง(ซม.) ความถี่ (f) จุดกึ่งกลางชั้น (x) ความถี่ x จุดกึ่งกลางชั้น 145 - 149 6 147 882 150 - 154 10 152 1520 155 - 159 11 157 1727 160 - 164 5 162 810 165 - 169 9 167 1503 170 - 174 7 172 1204 175 - 179 2 177 354 รวม 50 -  fx = 8000 ค่าเฉลี่ยเลขคณิต X = N Xf N 1i ii  = 50 8000 = 160 8. ตารางแจกแจงความถี่แสดงเงินเดือนของพนักงานบริษัทแห่งหนึ่ง จานวน 200 คน ดังนี้ เวินเดือน 10,001-15,000 15001- 20,000 20,001-25,000 25,001-30,000 30,001-35,000 35,001-40,000 จานวนเงิน(บาท) 20 25 30 55 40 20 จงหาค่าเฉลี่ยเลขคณิต (วิธีลัด)
  8. 8. 8 ค่าจ้าง(บาท) ความถี่ (f) จุดกึ่งกลางชั้น (x) i Ax d   fd 10,001 – 15,000 20 12,500.5 - 3 - 60 15,001– 20,000 25 17,500.5 -2 - 50 20,001 – 25,000 30 22,500.5 -1 - 30 25,001 – 30,000 55 27,500.5*** 0 0 30,001 – 35,000 40 32,500.5 1 40 35,001 – 40,000 20 37,500.5 2 40 รวม 200 - - fd = - 60 จงหาเงินเดือนเฉลี่ยของพนักงานของบริษัทแห่งนี้ วิธีทา ค่าเฉลี่ยเลขคณิต X = A + )( N fd i  แทนค่า = 27,500.5+ 5000 ( 200 60 ) = 27,500.5 –1500 = 26000.5 ดังนั้น เงินเดือนเฉลี่ยของพนักงานเท่ากับ 26000.5 บาท 9. เนื่องจากเป็นข้อมูลที่นักเรียนแต่ละคนสร้างขึ้นมา จึงไม่สามารถเฉลยคาตอบได้ เช่น กิจกรรมที่ 8.1 กาหนดให้ข้อมูล 2 , 4 , 6 , 8 , 10 กลุ่มที่ 1 นา 2 บวกข้อมูลทุกตัว X ใหม่ = 5 40 = 8 กลุ่มที่ 2 นา 2 ลบข้อมูลทุกตัว X ใหม่ = 5 20 = 4 กลุ่มที่ 3 นา 2 คูณข้อมูลทุกตัว X ใหม่ = 5 60 = 12 กลุ่มที่ 4 นา 2 หารข้อมูลทุกตัว X ใหม่ = 5 15 = 3 8.2 เกรดเฉลี่ย สามารถตรวจสอบกับสมุดรายงานของนักเรียน
  9. 9. 9 เฉลยใบกิจกรรมที่ 1.2 1. จงหามัธยฐานของข้อมูลต่อไปนี้ เติมคาตอบลงในตาราง ข้อมูล ตาแหน่ง มัธยฐาน 1. 11 , 13 , 13 , 16 , 17 , 20 3.5 14.5 2. 15 , 14 , 16 , 17 , 15 , 14 , 14 4 15 3. 10 , 15 , 10 , 5 , 20 , 20 , 10 , 12 4.5 11 4. 10 , 15 , 9 , 8 , 11 , 12 , 17 , 16 , 20 , 14 5.5 13 5. 16 , 21 , 25 , 30 , 38 , 40 , 31 , 25 , 21 , 17 5.5 25 6. 157 , 156 , 160 , 156 , 175 , 160 , 156 4 157 7. 163 , 169 , 178 , 179 , 149 , 153 , 156 , 168 , 170 , 168 5.5 168 8. 169 , 158 , 155 , 164 , 165 , 168 , 174 , 162 , 169 , 155 5.5 164.5 9. 157 , 154 . 148 , 145 , 150 , 148 , 155 , 160 , 159 , 165 5.5 154.5 10. 160 , 158 , 155 , 164 , 155 , 160 , 174 , 162 , 160 , 155 5.5 160 2. คะแนนสอบของนักเรียน 50 คน จงหามัธยฐาน คะแนน ความถี่ (f) ความถี่สะสม(cf) 10 - 14 3 3 15 – 19 7 10 20 – 24 10 20 25 – 29 14 34 30 – 34 9 43 35 - 39 7 50 รวม 50 - วงเล็บใหญ่ วงเล็บเล็ก 2429 524   .x = 2034 2025   x – 24.5 = 5 14 5  = 1.79 x = 24.5 + 1.79 = 26.29
  10. 10. 10 ตารางที่ 1.2 ข หามัธยฐาน ความสูง ความถี่ (f) ความถี่สะสม ( cf ) 145 - 149 6 6 150 - 154 10 16 155 - 159 11 27 160 - 164 5 32 165 - 169 9 41 170 - 174 7 48 175 - 179 2 50 รวม 50 วิธีที่ 2 ใช้อัตราส่วน(ตั้งสัดส่วน) ตาแหน่งของมัธยฐาน = 2 N = 2 50 = 150 – 154 ให้ x เป็นค่าของมัธยฐาน 150 – 154 ขอบบนเท่ากับ 154.5 150 – 154 16 x 25 155 – 159 27 วงเล็บใหญ่ วงเล็บเล็ก 154159 5.154  x = 1627 1625   x – 154.5 = 5 11 9  = 4.09 x = 154.5 + 4.09 = 158.59 เฉลยใบกิจกรรมที่ 1.3 ศูนย์รวมความนิยม จงหาฐานนิยมต่อไปนี้ เติมคาตอบลงในตาราง ข้อมูล ฐานนิยม 1. 11 , 13 , 13 , 16 , 17 , 20 13 2. 15 , 14 , 16 , 17 , 15 , 14 , 14 14 3. 10 , 15 , 10 , 5 , 20 , 20 , 10 , 12 10 4. 10 , 15 , 9 , 8 , 11 , 12 , 17 , 16 , 20 , 14 ไม่มี 5. 16 , 21 , 25 , 30 , 38 , 40 , 31 , 25 , 21 , 17 21 6. 157 , 154 . 148 , 145 , 150 , 148 , 155 , 160 , 159 , 165 156 7. 163 , 169 , 178 , 179 , 149 , 153 , 156 , 168 , 170 , 168 168 8. 169 , 158 , 155 , 164 , 165 , 168 , 174 , 162 , 169 , 155 155 , 169 9. 157 , 156 , 160 , 156 , 175 , 160 , 150 148 10. 160 , 158 , 155 , 164 , 155 , 160 , 174 , 162 , 160 , 155 155 , 160
  11. 11. 11 2. คะแนนสอบของนักเรียน 50 คน จงหาฐานนิยม คะแนน ความถี่ (f) 10 - 14 3 15 – 19 7 20 – 24 10 25 – 29 14 30 – 34 9 35 - 39 7 รวม 50 ฐานนิยม ( Mo) = L +        21 1 dd d i d1 = 14 – 10 = 4 d2 = 14 – 9 = 5 = 24.5 + 5 54 4        = 24.5 + 2.22 = 26.72 เฉลยใบกิจกรรมที่ 1.3 ตารางที่ 1.3ข หาฐานนิยม ความสูง ความถี่ (f) 145 - 149 6 150 - 154 10 155 - 159 11 160 - 164 5 165 - 170 9 171 - 174 7 175 - 179 2 รวม 50 ฐานนิยม ( Mo) = L +        21 1 dd d i d1 = 11 – 10 = 1 d2 = 11 – 5 = 6 = 154.5 + 5 61 1        = 154.5 + 0.71 = 155.21
  12. 12. 12 เฉลยใบกิจกรรมที่ 1.4 ก. ค่าเฉลี่ยฮาร์มอนิกของข้อมูลไม่แจกแจงความถี่ 1. จงหาค่าเฉลี่ยฮาร์มอนิกและเติมคาตอบลงในตารางต่อไปนี้ ข้อมูล ค่าเฉลี่ยฮาร์มอนิก 1. 2 , 4 , 4 , 8 , 8 8 10 5 = 4 2. 4 , 4 , 6 , 6 , 6 12 12 5 = 5 3. 10 ,10 , 10 , 5 , 20 , 20 , 10 , 10 20 16 8 = 10 4. 4 , 4 , 4 , 4 , 6 , 6 , 8 , 8 , 12 , 12 24 42 10 = 7 40 = 7 5 5 5. 4 , 4 , 4 4 , 6 , 6 , 6 , 6 , 12 , 12 12 22 10 = 11 60 = 11 5 5 2 ระยะทางนี้.......อีกยาวไกล วิธีทา ข้อมูลชุดนี้กาหนดให้อยู่ในรูประยะทางต่อเวลาหรือความเร็ว คือ 40 , 60 , 60 เราต้องพิจารณาผลงานต่อหนึ่งหน่วยเวลา ค่าเฉลี่ยที่เหมาะสมคือ ค่าเฉลี่ยฮาร์มอนิก ค่าเฉลี่ยฮาร์มอนิก H.M. =  N i iX N 1 1 = 60 1 60 1 40 1 3  = 120 7 3 = 7 120 3 = 7 3 51 ดังนั้นโดยเฉลี่ยแล้วเขาขับรถด้วยความเร็ว 7 3 51 กิโลเมตร/ชั่วโมง 3. หนทาง,,,,,สู่ความสาเร็จ วิธีทา ข้อมูลชุดนี้กาหนดให้อยู่ในรูปเวลาที่ใช้ต่องานหนึ่งหน่วย คือ 4 , 6 , 8 , 12 เราต้องพิจารณาผลงานต่อหนึ่งหน่วยเวลา ค่าเฉลี่ยที่เหมาะสมคือ ค่าเฉลี่ยฮาร์มอนิก
  13. 13. 13 ค่าเฉลี่ยฮาร์มอนิก H.M. =  N i iX N 1 1 = 12 1 8 1 6 1 4 1 4  = 24 15 4 = 15 24 4 = 3 32 = 3 2 10 ดังนั้น อัตราการทางานเฉลี่ยของคนทั้ง 4 คน คือ 3 2 10 นาทีต่อหนึ่งหน่วย ใน 5 ชั่วโมง หรือ 300 นาที คนทั้ง 4 คน จะทางานได้ 3 32 3004 = 187.50 หน่วย 4. v = 3 3 2 2 1 1 221 v d v d v d ddd   = 250 500 400 1200 500 2500 50012002500   = 235 4200  = 10 4200 ดังนั้น อัตราเร็วเฉลี่ยของเครื่องบิน = 420 ไมล์ต่อชั่วโมง เฉลยใบกิจกรรมที่ 1.4 5. ตารางที่1.4 ข ค่าเฉลี่ยฮาร์มอนิก คะแนน ความถี่ (f) จุดกึ่งกลางชั้น (x) x f 10 - 14 3 12 0.25 15 – 19 7 17 0.41 20 – 24 10 22 0.45 25 – 29 14 27 0.52 30 – 34 9 32 0.28 35 - 39 7 37 0.19 รวม 50  x f = 2.1 H.M. =  k i i i X f N 1 = 1.2 50 = 23.81
  14. 14. 14 6. ความสูงของนักเรียน 50 คน ความสูง(ซม.) ความถี่ (f) จุดกึ่งกลางชั้น (x) x f 145 - 149 6 147 0.04 150 - 154 10 152 0.07 155 - 159 11 157 0.07 160 - 164 5 162 0.03 165 - 169 9 167 0.05 170 - 174 7 172 0.04 175 - 179 2 177 0.01 รวม 50 -  fx = 0.31 H.M. =  k i i i X f N 1 = 310 50 . = 161.29 เฉลยใบกิจกรรม1. 5 ก 1. ให้ log 2 = 0.3010 log 3 = 0.4771 จงใช้ค่าของ log 2 และ log 3 จงประมาณค่าของ log ต่อไปนี้ 1. log 6 =……0.7781 2. log 5 =……0.6990 3. log 8 =……0.9030 4. log 9 =……0.9542 5. log 100 =……2 6. log 0.0001 =…… - 4 2. จงเปิดตารางหาค่าของ log ต่อไปนี้ 1. log 2.48 = ….0.3945 2. log 3.4 =……0.5315 3. log 4.62 =……0.6646 4. log 5.37 =……0.7300 5. log 6.59 =……0.8189 6. log 7.15 =……0.8543 7. log 8.23 =……0.9154 8. log 9.09 =……0.9586 9. log 5.426 =….0.73448  0.7345 10. log 8.125 =…0.90985  0.9099 3. จงหาค่าของ log ต่อไปนี้ 1. log 421 =……2.6243 2. log 3570 =……3.5527 3. log 0.0432 =…… - 1.3645 4. log 0.00786 =…… - 2.1046 4. จงหาค่า y (antilog ) 1. log y = 1.9212 y = …83.4 2. log y = 3.4564 y = …2860 3. log y = - 1.2125 y = …0.0613 4. log y = - 2.1630
  15. 15. 15 y = …0.00687 เฉลยใบกิจกรรมที่ 1.5 ข้อมูล ค่าเฉลี่ยเรขาคณิต 1. 2 , 4 , 8 2 2. 4 , 8 , 8, 16 8 3. 3 , 8 , 9 6 4. 6 , 8 , 16 , 18 , 18 12 5. 2 , 4 , 4 , 8 , 8 , 12 , 12 , 16 , 18 , 24 8.53 6. ถ้านางสาววริษฐา มีเงินใช้จ่าย 2500 บาท หรือ (25 หน่วย : 100 ) และถ้าต้องการใช้ให้หมดภายใน 1 – 5 โดยเสียค่าใช้ในวันที่ 1 – 5 ดังนี้ 8 , 6 , 4 , 4 , 3 จงหาค่าเฉลี่ยเรขาคณิตของการใช้จ่ายต่อวัน โดยใช้กระบวนการแก้ปัญหาของโพลยา ตอบ ค่าเฉลี่ยเรขาคณิตของการใช้จ่ายเงิน 470 ต่อวัน เฉลยใบกิจกรรมที่ 1.5 ตารางที่5.2ข ค่าเฉลี่ยเรขาคณิต คะแนน ความถี่ (f) จุดกึ่งกลางชั้น (x) log x f log x 10 - 14 3 12 1.0792 3.2376 15 – 19 7 17 1.2304 8.6128 20 – 24 10 22 1.3424 13.424 25 – 29 14 27 1.4314 20.0396 30 – 34 9 32 1.5051 13.5459 35 - 39 7 37 1.5682 10.9774 รวม 50 - - 69.8373 ค่าเฉลี่ยเรขาคณิตของข้อมูลที่แจกแจงความถี่ สูตรที่ 2 log G.M. =  k i ii Xf N 1 log 1 = 50 8373.69 = 1.3967 = 0.3967 + 1 การประมาณค่าของลอกฯ log G.M. = 0.3967 + 1 = log 2.493 + log 10 = log (2.493  10) antilog G.M. = 2.493  10 = 24.93 การประมาณค่าของลอกฯ log 2.49 = 0.3962 log x = 0.3967 ตั้งอัตราส่วน 49.25.2 49.2  x = 3962.03979.0 3962.03967.0   01.0 49.2x = 0017.0 0005.0 x – 2.49 = 0017.0 0005.0  0.01 x  0.003 + 2.49
  16. 16. 16 log 2.5 = 0.3979  2.493 เฉลยใบกิจกรรมชุดที่ 1.6 1. ตอบ ค่าเฉลี่ยเลขคณิต = 22.3 มัธยฐาน = 21 และฐานนิยม = 21 2. ตอบ ค่าเฉลี่ยเลขคณิต = 7.8 มัธยฐาน = 8 และฐานนิยม = 9 3. ตอบ ค่าเฉลี่ยเลขคณิตที่ถูก = 42.4 4. ตอบ ค่าเฉลี่ยเลขคณิตรวม = 16.97 5. ตอบ ค่าเฉลี่ยเลขคณิตรวม = 50.16 กิโลกรัม 6. ตอบ ต้องได้คะแนน 87 คะแนน 7. ตอบ ค่าเฉลี่ยฮาร์มอนิก = 72 กิโลเมตร/ชั่วโมง 8. ตอบ ค่าเฉลี่ยเรขาคณิต 12 9. ตอบ ค่าเฉลี่ยฮาร์มอนิก 4 10. ตอบ S = 119.76 บาท 11. ตอบ ผลการเรียนเฉลี่ย 3.125 12. อัตราส่วนของผู้หญิงและผู้ชาย = 3 : 2 13. วิชาภาษาไทยต้องได้เกรด 3.5 14. Mean = 22.3 Median = 21 Mode = 21 15. G.M. = 4.9 H.M. = 4 16. Mean = 10 Median = 8.83 Mode = 7.58 H.M. = 6.92 G.M. = 8.45 เฉลยใบกิจกรรมที่ 6.2 การเลือกใช้ค่ากลางให้เหมาะสมกับข้อมูล 1. ก ค่าเฉลี่ยเลขคณิต 2. ก ค่าเฉลี่ยเลขคณิต 3. ก ค่าเฉลี่ยเลขคณิต 4. ก ค่าเฉลี่ยเลขคณิต 5. ข มัธยฐาน 6. ง ค่าเฉลี่ยฮาร์มอนิก 7. จ ค่าเฉลี่ยเรขาคณิต 8. ง ค่าเฉลี่ยฮาร์มอนิก
  17. 17. 17 9. ก ค่าเฉลี่ยเลขคณิต 10. ง ค่าเฉลี่ยฮาร์มอนิก ภาคผนวก ผลงานของนักเรียน
  18. 18. 18
  19. 19. 19
  20. 20. 20
  21. 21. 21
  22. 22. 22
  23. 23. 23
  24. 24. 24
  25. 25. 25 ใบกิจกรรมที่ หาค่าเฉลี่ยเลขคณิตของข้อมูลที่แจกแจงความถี่ ชื่อ............................................................ชั้นมัธยมศึกษาปีที่,,,,,,,,,,,,,,,,,,,เลขที่..................... ผลการเรียนรู้ หาค่าเฉลี่ยเลขคณิตของข้อมูลที่แจกแจงความถี่ได้ จงหาค่าเฉลี่ยเลขคณิตของ คะแนนสอบวิชาคณิตศาสตร์ของนักเรียน
  26. 26. 26 คะแนน ความถี่ (f) จุดกึ่งกลางชั้น (X) fX 6 - 10 2 11 - 15 6 16 - 20 10 21 - 25 12 26 - 30 9 31 - 35 8 36 - 40 3 รวม 50 ใบกิจกรรมที่ หาค่าเฉลี่ยเลขคณิตของข้อมูลที่แจกงแจงความถี่ ชื่อ............................................................ชั้นมัธยมศึกษาปีที่,,,,,,,,,,,,,,,,,,,เลขที่..................... ผลการเรียนรู้ที่คาดหวัง หาค่าเฉลี่ยเลขคณิตของข้อมูลที่แจกแจงความถี่ได้ จงหาค่าเฉลี่ยเลขคณิตของ ความสูงของนักเรียนชั้นมัธยมศึกษาปีที่ 6 จานวน 30 คน อันตรภาคชั้น ความถี่ (f) จุดกึ่งกลางชั้น (X) fX 145 - 149 4 150 - 154 3
  27. 27. 27 155 - 159 7 160 - 164 4 165 - 169 8 170 – 174 2 175 - 179 2 รวม 30

    Be the first to comment

    Login to see the comments

  • watsachonlin

    Sep. 30, 2014
  • lumyaipirum

    Nov. 12, 2014
  • pu-phattara

    Nov. 17, 2014
  • ninejam

    Aug. 23, 2015
  • srasinza

    Feb. 18, 2016
  • ssuser376058

    May. 17, 2017
  • nuttytangmomi

    Sep. 4, 2017
  • YingJa2

    Sep. 18, 2017
  • natthapatsungchawek

    Dec. 13, 2017
  • ChitipatSomboon

    Jan. 28, 2018
  • PatnarinPaengboon

    Jan. 29, 2018
  • KodchaponHadthawaikarn

    Sep. 15, 2018
  • ThanakornTeekasung

    Nov. 5, 2018
  • WnDw1

    Jan. 6, 2019
  • AonNoi

    Feb. 8, 2021

เฉลยค่ากลางของข้อมูล

Views

Total views

115,116

On Slideshare

0

From embeds

0

Number of embeds

176

Actions

Downloads

415

Shares

0

Comments

0

Likes

15

×