ข้อสอบปลายภาค คณิต ม.1 เทอม 1 ชุดที่ 1 หน่วยที่ 3

26,143 views

Published on

3 Comments
10 Likes
Statistics
Notes
No Downloads
Views
Total views
26,143
On SlideShare
0
From Embeds
0
Number of Embeds
12
Actions
Shares
0
Downloads
1,737
Comments
3
Likes
10
Embeds 0
No embeds

No notes for slide

ข้อสอบปลายภาค คณิต ม.1 เทอม 1 ชุดที่ 1 หน่วยที่ 3

  1. 1. ขอสอบปลายภาค คณิตศาสตร ม.1 ภาคเรียนที่ 1 ฉบับที่ 1คําชี้แจง จงเลือกคําตอบที่ถูกตองเพียงขอเดียว1. ขอใดเปนจํานวนเฉพาะ 1 1, 3, 5, 7 2 5, 13, 29, 31 3 3, 17, 21,37 4 7, 19, 27, 392. ตัวประกอบของ 60 ที่ 3 หารลงตัวมีทั้งหมดกี่จํานวน 1 6 2 8 3 10 4 113. ตัวประกอบทังหมดของ 20 คือขอใด ้ 1 1, 3, 4, 5, 10, 12 2 1, 2, 4, 5, 10 , 20 3 1, 2, 4, 5, 8, 10, 20 4 1, 2, 4, 5 , 6, 10, 204. จํานวนนับมากที่สุดที่หาร 17 และ 21 แลวเหลือเศษ 1 เทากัน คือจํานวนใด 1 4 2 8 3 10 4 205. ห.ร.ม. ของ 38 และ 95 ตรงกับขอใด 1 17 2 19 3 23 4 29
  2. 2. 6. ห.ร.ม. ของ 20, 24 และ 48 เปนกี่เทาของ ค.ร.น. 1 60 เทา 2 30 เทา 1 3 60 เทา 1 4 30 เทา7. จํานวนนับที่นอยที่สุดจํานวนหนึ่งเมื่อหารดวย 32 และ 80 จะเหลือเศษ 1 เทากัน ถาหารดวย 3 จะเหลือเศษ  เทาไร 1 0 2 1 3 2 4 38. ลูกเสือกองหนึงจัดหมู หมูละ 32 หรือ 40 คนพอดี ลูกเสือกองนี้มีอยางนอยที่สดกี่คน ่ ุ 1 158 คน 2 160 คน 3 162คน 4 164 คน9. ถา a = – 9 แลวประโยคใดเปนเท็จ 1 a – 4 = – 13 2 a – 4 = – 13 3 a ×2 = – 18 4 a ÷2 = –1010. คาสัมบูรณของ 2 + ( – 2) คือขอใด 1 0 2 2 3 4 4 1011. ขอใดถูกตอง 1 3 + (m + n) = 3m + 3n 2 3(m + n) = 3m + 3n 3 3 + (m – n) = 3n + 3m 4 3 + (m × n) = 3m + 3n
  3. 3. 12. (( – 15) – ( – 13))( – 3) มีผลลัพธเทาใด 1 4 2 –4 3 6 4 –6 13. ถา a = 7, b = –1 และ c = –2 คาของ2a – b + 3c ตรงกับขอใด 1 19 2 9 3 –19 4 –914. ถา x = 2a + 1 เมื่อ a = –1 จะได x มีคาตรงกับขอใด 1 x=1 2 x=a 3 x = –a 4 x=015. ถา a = 3, b = – 2, c= – 5, d = – 5 แลวคาของ [3c(a – b)] ÷ d ตรงกับขอใด 1 9 2 –9 3 15 4 – 15 3 ( )16. ถา – 4 5จะไดขอใดถูกตอง 3 1 ฐานคือ – 4 เลขชี้กําลังคือ 5 3 2 ฐานคือ 4 เลขชี้กําลังคือ 5 3 ฐานคือ – 3 เลขชี้กําลังคือ 5 4 ฐานคือ 3 เลขชี้กําลังคือ 5
  4. 4. a17. ถา (b) 3 แลวขอใดถูกตอง 1 a และ b เปนฐาน 3 เปนเลขชี้กําลัง a 2 b เปนฐาน 3 เปนเลขชี้กําลัง 3 3 เปนฐาน a และ b เปนเลขชี้กําลัง a 4 3 เปนฐาน b เปนเลขชี้กําลัง18. ขอใดถูกตอง 1 a2 = a × a 2 a2 = a + a 3 a2 = 2a 4 a2 = a ÷219. 0.013 มีคาตรงกับขอใด 1 0.001 2 0.0001 3 0.00001 4 0.00000120. ขอใดไมถูกตอง 1 (– 5)4 มี – 5 เปนฐาน 2 (– 3)2 มี 2 เปนเลขชี้กําลัง 3 – 7 มี – 7 เปนเลขชี้กําลัง 4 (– 2)3 มี – 2 เปนเลขชี้กําลัง
  5. 5. 3 221. กําหนด 5 จะไดความหมายตรงกับขอใด 2 2 2 1 5×5×5 2 × 2× 2 2 5 2× 3 3 5 2 2 2 4 5+5+5 322. ขอใดแสดงความหมายของ 4 ( ) 2 3× 3 1 4 3 2 4× 4 3 3 34×4 3 3 44+ 4 1 ( )23. – 2 4มีคาตรงกับขอใด 1 1–8 4 2–8 1 3 16 1 4 – 16
  6. 6. 24. ขอใดมีคาตรงกับ 196 1 22 × 72 2 74 3 47 4 (2 + 7)2 425. 9 มีคาตรงกับขอใด 2 2 1 32 2 2 (3) 2 3 2 3 3 2 4 2 326. ถา ay = by จะไดขอใดถูกตอง 1 a = b หรือ x = y 2 a ≠ b หรือ x ≠ y 3 a = b หรือ x = y 4 a น b หรือ x ≠ y27. a2 × a3 มีความหมายตรงกับขอใด 1 a 2 a5 3 a6 4 a828. (1 + 5)2 มีคาตรงกับขอใด 1 12 2 16 3 24 4 36
  7. 7. 29. ถา 32 = c จะได c ตรงกับขอใด 1 3 2 5 3 6 4 930. ถา an = 10 จะได (an) 2 ตรงกับขอใด 1 10 2 10 3 100 4 1,00031. (27)(32)(2) มีคาตรงกับขอใด 1 35 2 36 3 243 4 48632. 8 ×27 มีคาตรงกับขอใด 1 36 2 63 3 3 ×26 4 2 ×36 3 6× 233. 3 มีคาตรงกับขอใด 1 6 2 12 3 24 4 2334. ขอใดถูกตอง n 2 1 2×2×2n = 2 2 2×2×2n = 22+2n 3 2×2×2n = 22+n 4 2×2×2n = 22n
  8. 8. 4 5 ×435. 25 มีคาตรงกับขอใด 1 10 2 20 3 102 4 2 ด 52 16 × 2436. 6 มีคาตรงกับขอใด 1 ( -2)6 2 62 3 2(3)4 4 3( -2)4 2 337. 3− 1 มีคาตรงกับขอใด 1 33 2 31 3 30 1 4 3 3 2 3 2a b38. b− 1 มีคาตรงกับขอใด 1 2a2b4 2 - 2a2b2 3 (2ab)2 −2 4 2a b 239. ขอใดมีคาเทากับ 23( -2)3 1 22( -2)4 2 24( -2)2 3 2( -2)5 4 ( -2)6
  9. 9. 40. ขอใดมีคาเทากับ ( -3)3. 22 1 ( - 3)5 + 42 2 ( -2)8 - 108 3 ( - 6)3 + 108 4 ( - 6)2 - 42 2 4 − 5 − 541. 6 มีคาตรงกับขอใด 5 1. 50 1 2 - 2 5 1 3 - 5 1 4 542. ขอใดเรียงลําดับถูกตอง 1 23 , (-2)4, 25, (-2)6 2 32 , 23 , 34 , 43 3 24 , (-4)2, 35, 54 4 42 , (-2)4, (-5)2 , 4643. คาของ 2(2-2) มีคาตรงกับขอใด 1 1 2 1 2 2 2 1 2 3 2 ( ) 4 2
  10. 10. 2 244. ถา 22 = 4 จะได 3 มีคาตรงกับขอใด 1 12 2 27 3 81 4 108 3 4 245. 5 มีคาตรงกับขอใด 6 1 1 3 5 1 2 3 1 3 (3) 5 1 4 3 0 ( )46. a2 + a2 มีคาตรงกับขอใด 1 a2 2 a4 3 2a4 4 2a247. ถาa2 = 3 จะได a4 มีคาตรงกับขอใด 1 34 2 32 3 a2 4 2a48. (32 - 23) + [53(42 - 24)] มีคาตรงกับขอใด 1 2 2 22 3 20 4 0
  11. 11. 49. ขอใดเปนสัญกรณวิทยาศาสตรของ 608,000 1 6.08 ×103 2 6.08 ×104 3 6.08 ×105 4 6.08 ×10650. ขอใดถูกตอง 1 3.68 ×10-1 = 3.68 ด10 2 0.45 ×10 = 4.5 ×10-1 3 74 ×10 = 7.4 ×102 4 634 ×10 = 6.34 ×10251. 105 + (3.1 ด 104) มีคาตรงกับขอใด 1 3.1 ด 109 2 3.1 × 105 3 1.31 × 104 4 1.31 × 10552. (2.5 × 102 )+ (36 × 10) มีคาตรงกับขอใด 1 38.5 × 102 2 6.1 × 102 3 38.1 × 10-1 4 6.1 × 1053. ถา a = 1 × 10 และ b = 102 จะได ab เขียนในรูปสัญกรณวิทยาศาสตรไดตรงกับขอใด 1 10 × 102 2 10 × 103 3 1 ด 102 4 1 × 10354. ขอใดตอไปนีมีคามากที่สุด ้ -5 1 4.1 ด 10 2 5.6 × 10-6 3 6.8 × 10-7 4 9.8 × 10-8
  12. 12. 55. ขอใดเปนจํานวนที่มากกวา 3.14 × 10-2 1 2.6 × 10-4 2 9 × 10-3 3 1.3 × 10-2 4 7 × 10 2 3× 2.5 × 1056. ขอใดมีคาตรงกับ 0.0001 1 7.5 × 106 2 7.5 × 104 3 7.5 × 102 4 7.5 × 1057. จํานวนใดเปนจํานวนที่อยูระหวาง364.2 × 102 กับ 1100 1 2.8 × 102 2 2.8 × 103 3 9.4 × 102 4 9.4 × 10358. เสนผานศูนยกลางลูกปงปองเปน 4 เซนติเมตร เสนผานศูนยกลางลูกบอลเปน 20 เซนติเมตร จะได ลูกปงปองมีเสนผานศูนยกลาง เปนกี่เทาของลูกบอล 1 2 × 100 เทา 2 2 × 10-1 เทา 3 2 × 10-2 เทา 4 2 × 10-3 เทา59. จากรูปขอใดเปนรังสี AB 1 AD 2 AC 3 BC 4 DB
  13. 13. 60. จากรูปขอใดเปนแขนมุม AOB 1 AO และ BO 2 CO และOD 3 OA และOB 4 BO และOD61. ถาตองการสรางสวนของเสนตรงABยาว m หนวย ขอใดเปนขันตอนแรกของการสรางสวนของ ้ เสันตรงAB 1 ลากเสนAB ยาวเทากับ m หนวย 2 กําหนดจุด A 3 วัดความยาว m หนวย 4 กําหนด m เทากับ 3 เซนติเมตร62. ขั้นตอนการสรางตอจากขอ61 ตรงกับขอใด 1 ลาก AB ยาว m หนวย 2 กําหนดจุด A 3 วัดความยาว m หนวย 4 ที่ A เปนจุดศูนยกลางรัศมี m เขียนโคงที่ B63. จากรูปขอใดไมถูกตอง 1 AD = 2AB 2 AE = 2AC 3 AE = 2BC 4 ΔADE = 2ΔABC
  14. 14. 64. จากรูปขอใดไมถูกตอง 1 OC แบงครึ่ง AOB 2 OC และ OE เปนแขนของ COE 3 AOB = 3 เทาของ EOB 4 OD เปนแขนรวมของ AOD และ DOE65. ขอใดแสดงการแบงครึ่ง AB ที่จุด R 1 AB เปนฐานของ ΔABC 2 CR เปนสวนสูงของ ΔABC 3 CR เปนมัธยฐานของ ΔABC 4 P เปนจุดยอดมุมของ ΔABC66. ขอใดเปนการสรางการแบงครึ่งสวนของเสนตรงที่ถูกตอง 1 2 3 4
  15. 15. 67. จากรูปมุมกลับ MON กางกี่องศา 1 210 องศา 2 225 องศา 3 285 องศา 4 300 องศา68. ขอใดตอไปนี้ถูกตอง 1 1 AO = AB จะได O เปนจุดกึ่งกลางของ AB 2 2 AB และ CD ตัดกันทีจุด O จะไดจุด O เปนจุดกึ่งกลางของ AB ่ 3 AB และ CD ตัดกัน และแบงครึ่งซึ่งกันและกันทีจุด O จะได AO = CO ่ 4 AB และ CD ตัดกันและแบงครึ่งซึ่งกันและกันทีจุด O จะได AO = BO ่69. ขอใดเปนการสรางเสนตั้งฉากจากจุดภายนอกตั้งฉากกับ ABที่กําหนดให 1 2 3 4
  16. 16. 70. ขอใดเปนการสรางมุม 60 องศา 1 การแบงครึ่งมุม 2 การสรางเสนตั้งฉาก 3 การสรางเสนคูขนาน 4 การสรางรูปสามเหลี่ยมดานเทา71. ขอใดเปนการสรางรูปสามเหลี่ยมมุมฉาก เมื่อกําหนดดานประกอบมุมฉากให 1 สรางมุมฉากที่จุดบนเสนตรง 2 สรางเสนตั้งฉากจากจุดภายนอก 3 แบงครึ่งมุมตรง 4 แบงครึ่งสวนของเสนตรง72. การสรางรูปสี่เหลี่ยมมุมฉาก ตองใชพนฐานทางเรขาคณิตขอใด ื้ 1 การแบงครึ่งสวนของเสนตรง 2 การแบงครึ่งมุม 3 การสรางเสนตั้งฉากที่จุดจุดหนึ่งบนเสนตรง 4 การสรางเสนตั้งฉากจากจุดภายนอกมาตั้งฉากกับเสนตรง 73. ขอใดเปนการสรางรูปสามเหลี่ยมดานเทา 1 2 3 4
  17. 17. 74. การสรางมุมขนาด 45 องศา ใชพื้นฐานทางเรขาคณิตขอใด 1 การแบงครึ่งมุม 2 การแบงครึ่งสวนของเสนตรง 3 การสรางเสนตั้งฉากที่จุดจุดหนึ่งบนเสนตรง 4 ทั้งขอ 1 และ ขอ 375. ขอใดสรางเปนรูปสามเหลี่ยม ABC ได 1 AB = 1 หนวย, BC = 3 หนวยและ CA = 4 หนวย 2 AB = 1 หนวย, BC = 2 หนวยและ CA = 3 หนวย 3 AB = 2 หนวย, BC = 3 หนวยและ CA = 6 หนวย 4 AB = 2 หนวย, BC = 5 หนวยและ CA = 6 หนวยคําชี้แจง จงเขียนขั้นตอนการสรางรูปเรขาคณิตใหสมบูรณ จงสรางรูปสี่เหลี่ยมดานขนาน ABCD ให AB = CD และระยะหางระหวางดานคูขนาน ABกับCD 1เทากับ 2 PQ และ ABC = 135 องศาขั้นตอนการสราง 1) กําหนดจุด A เปนจุดศูนยกลาง และกางรัศมี PQหนวย เขียนสวนโคงที่จุดB และลาก AB จะสรางเสน 1 ขนานกับ AB ใหระยะทางเทากับ m หนวย โดยวิธี............................................................(ขอ 76) 2 2) จุดP และ Q เปนจุดศูนยกลาง กางรัศมียาวเทากัน เขียนสวนโคงตัดกันดานบนและดานลางของ PQ และ ลากเสนตอจุดตัดกันให ….............................................................................(ขอ 77) จะได OP = OQ 3) จุดA เปนจุดศูนยกลาง กางรัศมีเพียงพอใหเขียนสวนโคงตัดแขนของมุมทั้งสองขางที่จุด M และ N 4) จุดM และ N เปนจุดศูนยกลาง กางรัศมียาวเทากัน เขียนสวนโคงตัดกันที่จุด R ลากAR 5) จุดA เปนจุดศูนยกลาง กางรัศมี........................(ขอ 78) เขียนสวนโคงตัด AR ที่จุด T ที่จุด B สราง ABC = 135 องศา โดยวิธีสรางเสนตั้งฉากที่จด B และแบงครึงมุมฉาก ุ ่ 6) ที่จุด T สรางมุม 90 องศา 7) สราง DC = PQ 8) จะไดรูปสี่เหลี่ยมดานขนาน ABCDตามที่กําหนด
  18. 18. 79. ขอใดเปนเหตุการณทเี่ กิดขึ้นไดอยางแนนอน 1 ฝนตกน้ําจะทวม 2 สีแดงผสมสีน้ําเงินเปนสีเขียว 3 เวลาเที่ยงวันและเที่ยงคืน เข็มสั้นและเข็มยาวของนาฬิกาจะชี้ที่เลข 12 4 นักเรียนที่สอบไดคะแนนสูงสุดในวิชาคณิตศาสตรเปนนักเรียนชาย80. หยิบลูกบอลสีจากกลองซึ่งมีลูกบอลสีขาว 5 ลูก สีดํา 2 ลูก ความนาจะเปนทีหยิบลูกบอลลูกหนึ่งโดย ่ ไมมอง แลวไดลูกบอลสีขาวตรงกับขอใด 1 2 ใน 5 วิธี 2 2 ใน 7 วิธี 3 5 ใน 7 วิธี 4 2 ใน 3 วิธีตอนที่ 2คําชี้แจง จงแสดงวิธีทํา 3 8 3 ×3 − −1.จงหาผลลัพธในรูปเลขยกกําลังของ 729__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.จงสรางรูปสี่เหลี่ยมดานขนาน ABCD ใหดานคูขนาน AB และ CD ยาว aหนวย และอยูหางกัน c หนวยดานคูขนาน AD และ BC ยาวเทากับ bหนวย โดยใชวงเวียนและเสนตรง(ไมตองเขียนวิธีสรางรูปสี่เหลี่ยมดาน ขนานABCD )__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
  19. 19. เฉลยตอนที่ 11.2 11.2 21.2 31.2 41.1 51.4 61.2 71.12.1 12.3 22.3 32.2 42.1 52.2 62.4 72.33.2 13.2 23.2 33.3 43.1 53.4 63.4 73.24.1 14.2 24.1 34.3 44.3 54.1 64.3 747.45.2 15.3 25.2 35.3 45.3 55.4 65.3 75.46.3 16.1 26.3 36.1 46.4 56.1 66.2 76. แบงครึ่ง PO7.3 17.2 27.2 37.1 47.2 57.4 67.3 77. PO ที่จุดO8.2 18.1 28.4 38.1 48.3 58.2 68.4 78. PO หรือ QO9.4 19.4 29.4 39.3 49.3 59.2 69.3 79.310.1 20.4 30.3 40.3 50.3 60.3 70.4 80.3ตอนที่ 2 −8 8 61.เนื่องจาก 3 3 3 − − − = และ 729 = 3 8 3 8 3 3 − 3 3 − − × − × − 6 729 − 3 ดังนั้น = 3 8 −6 3 − = − 11 3 − = − 1 = (− 3 ) 11
  20. 20. 2. a b c

×