Information Visualization for Knowledge Discovery: An Introduction

Krist Wongsuphasawat
Krist WongsuphasawatData Visualization
Informa(on	
  Visualiza(on	
  
for	
  Knowledge	
  Discovery:	
  
An	
  Introduc+on	
  
Krist	
  Wongsuphasawat	
  
Dept.	
  of	
  Computer	
  Science	
  &	
  	
  
Human-­‐Computer	
  Interac+on	
  Lab	
  
University	
  of	
  Maryland	
  
	
  
CP30	
  /	
  Intania	
  87	
  
University	
  of	
  Maryland,	
  College	
  Park	
  
Ò  near	
  Washington,	
  DC	
  
Where?	
  
HCIL	
  
Ò  Human-­‐Computer	
  Interac+on	
  Lab	
  

Ò  hKp://www.cs.umd.edu/hcil/	
  
HCI	
  
Ò    Human-­‐Computer	
  Interac+on	
  
Ò    A	
  discipline	
  concerned	
  with	
  the	
  analysis,	
  design,	
  implementa+on,	
  
      and	
  evalua+on	
  
Ò    of	
  interac+ve	
  compu+ng	
  systems	
  for	
  human	
  use	
  

                                                                 Design

           Analysis
                                                 Implementation


                                                                       Evaluation
Why	
  HCI?	
  
                               Computer Abilities




      Human Abilities




                        1950     1990               2030
HCI	
  Research	
  
Ò  Devices	
  
     É  Touch	
  screen,	
  e-­‐Book	
  Reader,	
  Wii,	
  Natal,	
  Pen	
  
     É  Mobile	
  Phone	
  
Ò  User	
  Interfaces	
  	
  
     É  for	
  collabora+on,	
  elderly,	
  children,	
  handicaps	
  
     É  Query,	
  Zoomable	
  
     É  …	
  
Ò  Design	
  Process	
  
Ò  Evalua+on	
  methods	
  
Ò  Informa(on	
  Visualiza(on	
  (Info.	
  Vis.)	
  
Ò  Etc.	
  
Imagina(on	
  
MicrosoK	
  Surface	
  
Nintendo	
  Wii	
  
Project	
  Natal	
  
Mobile	
  
Mobile	
  
Amazon	
  Kindle	
  
Interna(onal	
  Children	
  Digital	
  Library	
  
GUI	
  for	
  elderly	
  
Informa(on	
  Visualiza(on	
  
Challenges	
  
Ò  Huge	
  amount	
  of	
  data	
  
Ò  How	
  to	
  understand	
  and	
  make	
  use	
  of	
  it?	
  

Ò  What	
  ques+on	
  to	
  ask?	
  
Example	
  
Challenges	
  
Ò    Iden+fy	
  
       É  Trends	
  
       É  PaKerns	
  

       É  Outliers	
  

Ò    Goals	
  
       É  Communica+on	
  
       É  Discovery	
  
The	
  eye...	
  	
  
the	
  window	
  of	
  the	
  soul,	
  	
  
is	
  the	
  principal	
  means	
  
by	
  which	
  the	
  central	
  sense	
  	
  
can	
  most	
  completely	
  and	
  abundantly	
  	
  
appreciate	
  the	
  infinite	
  works	
  	
  
of	
  nature.	
  
	
  
Leonardo	
  da	
  Vinci(1452	
  -­‐	
  1519)	
  
The eye... 	
the window of the soul, 	
is the principal means	
by which the central sense 	
can most completely and abundantly 	
appreciate the infinite works 	
of nature.	
	
Leonardo da Vinci(1452 - 1519)
The eye... 	
the window of the soul, 	
is the principal means	
by which the central sense 	
can most completely and abundantly 	
appreciate the infinite works 	
of nature.	
	
Leonardo da Vinci(1452 - 1519)
Information Visualization for Knowledge Discovery: An Introduction
Information Visualization for Knowledge Discovery: An Introduction
Information Visualization for Knowledge Discovery: An Introduction
Information Visualization for Knowledge Discovery: An Introduction
Gestalt	
  Principles	
  
hKp://psychology.about.com/od/sensa+onandpercep+on/ss/
gestaltlaws.htm	
  
A picture is worth a thousand words.
Informa(on	
  Visualiza(on	
  
Ò  Provide	
  tools	
  that	
  present	
  data	
  in	
  a	
  way	
  to	
  help	
  people	
  
    understand	
  and	
  gain	
  insight	
  from	
  it.	
  
Ò  The	
  use	
  of	
  computer-­‐supported,	
  interac+ve,	
  visual	
  
    representa+ons	
  of	
  abstract	
  data	
  to	
  amplify	
  cogni+on.	
  
Interdisciplinary	
  
Ò  human-­‐computer	
  interac+on,	
  	
  

Ò  computer	
  science,	
  	
  

Ò  graphics,	
  	
  

Ò  visual	
  design,	
  	
  

Ò  psychology,	
  	
  

Ò  and	
  business	
  methods	
  
Example	
  
ScaTer	
  Plot	
  
Correla(on…	
  What	
  else?	
  
Outliers	
  



                    He




               Rn
John	
  Snow:	
  The	
  London	
  Cholera	
  Epidemic	
  of	
  1854	
  	
  
John	
  Snow:	
  The	
  London	
  Cholera	
  Epidemic	
  of	
  1854	
  	
  
Ò  hKp://www.csiss.org/classics/content/8	
  
Charles	
  Minard's	
  map	
  of	
  Napoleon's	
  march	
  
Information Visualization for Knowledge Discovery: An Introduction
The	
  growth	
  of	
  Facebook	
  
Facebook	
  
Ò  Video	
  
Informa(on	
  Visualiza(on:	
  Mantra	
  
Ò     Overview,	
  zoom	
  &	
  filter,	
  details-­‐on-­‐demand	
  
Ò     Overview,	
  zoom	
  &	
  filter,	
  details-­‐on-­‐demand	
  
Ò     Overview,	
  zoom	
  &	
  filter,	
  details-­‐on-­‐demand	
  
Ò     Overview,	
  zoom	
  &	
  filter,	
  details-­‐on-­‐demand	
  
Ò     Overview,	
  zoom	
  &	
  filter,	
  details-­‐on-­‐demand	
  
Ò     Overview,	
  zoom	
  &	
  filter,	
  details-­‐on-­‐demand	
  
Ò     Overview,	
  zoom	
  &	
  filter,	
  details-­‐on-­‐demand	
  
Ò     Overview,	
  zoom	
  &	
  filter,	
  details-­‐on-­‐demand	
  
Ò     Overview,	
  zoom	
  &	
  filter,	
  details-­‐on-­‐demand	
  
Ò     Overview,	
  zoom	
  &	
  filter,	
  details-­‐on-­‐demand	
  
	
  
Treemap:	
  Stock	
  market,	
  clustered	
  by	
  industry	
  




        Map	
  of	
  the	
  Market	
  -­‐	
  hKp://www.smartmoney.com/map-­‐of-­‐the-­‐market/	
  
Market	
  falls	
  steeply	
  Feb	
  27,	
  2007,	
  	
  
with	
  one	
  excep(on	
  
Market	
  falls	
  311	
  points	
  July	
  26,	
  2007,	
  	
  
with	
  a	
  few	
  excep(ons	
  
Market	
  mixed,	
  October	
  22,	
  2007,	
  	
  
Energy	
  	
  &	
  Basic	
  Material	
  are	
  down	
  
TimeSearcher	
  
Ò  Demo	
  

Ò  hKp://www.cs.umd.edu/hcil/+mesearcher	
  
LifeLines	
  
Traffic	
  
Wordle:	
  Google’s	
  Corporate	
  Informa(on	
  
Baby	
  NameVoyager	
  
Ò  hKp://www.babynamewizard.com/voyager	
  
NetFlix	
  Rental	
  PaTerns	
  




http://www.nytimes.com/interactive/2010/01/10/nyregion/20100110-netflix-map.html
NetFlix	
  (2)	
  
NetFlix	
  (3)	
  
NetFlix	
  (4)	
  
SocialAc(on	
  
Ò  Video	
  

Ò  hKp://www.cs.umd.edu/hcil/socialac+on	
  
Informa(on	
  Visualiza(on:	
  Data	
  Types	
  
SciViz .


           Ò    1-­‐D	
  Linear 	
  Document	
  Lens,	
  SeeSo^,	
  Info	
  Mural,	
  Value	
  Bars	
  
           Ò    2-­‐D	
  Map	
   	
  GIS,	
  ArcView,	
  PageMaker,	
  Medical	
  imagery	
  
           Ò    3-­‐D	
  World	
   	
  CAD,	
  Medical,	
  Molecules,	
  Architecture	
  
                 	
  
           Ò    Mul(-­‐Var	
   	
  Parallel	
  Coordinates,	
  Spo_ire,	
  XGobi,	
  Visage,	
  
                          	
        	
           	
         	
  Influence	
  Explorer,	
  TableLens,	
  
InfoViz




                 DEVise	
  
           Ò    Temporal	
   	
  Perspec+ve	
  Wall,	
  LifeLines,	
  Lifestreams,	
  	
  
                          	
        	
           	
  Project	
  Managers,	
  DataSpiral	
  
           Ò    Tree	
             	
  Cone/Cam/Hyperbolic,	
  TreeBrowser,	
  Treemap	
  
           Ò    Network 	
  Netmap,	
  netViz,	
  SeeNet,	
  BuKerfly,	
  Mul+-­‐trees	
  
                      (Online	
  Library	
  of	
  Informa+on	
  Visualiza+on	
  Environments)	
  
                                             hKp://otal.umd.edu/Olive	
  
ManyEyes:	
  A	
  web	
  sharing	
  plajorm	
  




            hKp://services.alphaworks.ibm.com/manyeyes/app	
  
Conclusion	
  
Ò    Informa+on	
  Visualiza+on	
  
       É  Provide	
  tools	
  that	
  present	
  data	
  in	
  a	
  way	
  to	
  help	
  people	
  
           understand	
  and	
  gain	
  insight	
  from	
  it.	
  
       É  Applicable	
  to	
  various	
  domains	
  
Ò    More	
  info	
  
       É    hKp://www.cs.umd.edu/hcil	
  
       É    hKps://wiki.cs.umd.edu/cmsc734_09/	
  
Ò    Contact	
  
       É    kristw@cs.umd.edu	
  
       É    hKp://www.cs.umd.edu/~kristw	
  
Ò    Acknowledgement	
  
       É    Ben	
  Shneiderman’s	
  slides	
  
       É    Ben	
  Bederson’s	
  slides	
  
       É    hKp://www.cs.umd.edu/hcil/pubs/presenta+ons/	
  
Thank	
  you	
  
1 of 60

Recommended

From Data to Visualization, what happens in between? by
From Data to Visualization, what happens in between?From Data to Visualization, what happens in between?
From Data to Visualization, what happens in between?Krist Wongsuphasawat
48K views78 slides
Data Science Folk Knowledge by
Data Science Folk KnowledgeData Science Folk Knowledge
Data Science Folk KnowledgeKrishna Sankar
7.8K views42 slides
Data Science: Not Just For Big Data by
Data Science: Not Just For Big DataData Science: Not Just For Big Data
Data Science: Not Just For Big DataRevolution Analytics
17.5K views7 slides
My Spark Journey by
My Spark JourneyMy Spark Journey
My Spark JourneyData Science Thailand
539 views20 slides
Putting the Magic in Data Science by
Putting the Magic in Data SciencePutting the Magic in Data Science
Putting the Magic in Data ScienceSean Taylor
29.9K views50 slides
Life of a data scientist (pub) by
Life of a data scientist (pub)Life of a data scientist (pub)
Life of a data scientist (pub)Buhwan Jeong
6.8K views40 slides

More Related Content

What's hot

Big Data: Architectures and Approaches by
Big Data: Architectures and ApproachesBig Data: Architectures and Approaches
Big Data: Architectures and ApproachesThoughtworks
13.2K views111 slides
UBC STAT545 2014 Cm001 intro to-course by
UBC STAT545 2014 Cm001 intro to-courseUBC STAT545 2014 Cm001 intro to-course
UBC STAT545 2014 Cm001 intro to-courseJennifer Bryan
5.4K views86 slides
Pandas, Data Wrangling & Data Science by
Pandas, Data Wrangling & Data SciencePandas, Data Wrangling & Data Science
Pandas, Data Wrangling & Data ScienceKrishna Sankar
2.4K views34 slides
Introduction to Python for Data Science by
Introduction to Python for Data ScienceIntroduction to Python for Data Science
Introduction to Python for Data ScienceArc & Codementor
4.6K views25 slides
Data Science Provenance: From Drug Discovery to Fake Fans by
Data Science Provenance: From Drug Discovery to Fake FansData Science Provenance: From Drug Discovery to Fake Fans
Data Science Provenance: From Drug Discovery to Fake FansJameel Syed
3.3K views26 slides
UBC STAT545 2014 Cm002 deep thoughts by
UBC STAT545 2014 Cm002 deep thoughtsUBC STAT545 2014 Cm002 deep thoughts
UBC STAT545 2014 Cm002 deep thoughtsJennifer Bryan
6.9K views26 slides

What's hot(20)

Big Data: Architectures and Approaches by Thoughtworks
Big Data: Architectures and ApproachesBig Data: Architectures and Approaches
Big Data: Architectures and Approaches
Thoughtworks13.2K views
UBC STAT545 2014 Cm001 intro to-course by Jennifer Bryan
UBC STAT545 2014 Cm001 intro to-courseUBC STAT545 2014 Cm001 intro to-course
UBC STAT545 2014 Cm001 intro to-course
Jennifer Bryan5.4K views
Pandas, Data Wrangling & Data Science by Krishna Sankar
Pandas, Data Wrangling & Data SciencePandas, Data Wrangling & Data Science
Pandas, Data Wrangling & Data Science
Krishna Sankar2.4K views
Introduction to Python for Data Science by Arc & Codementor
Introduction to Python for Data ScienceIntroduction to Python for Data Science
Introduction to Python for Data Science
Arc & Codementor4.6K views
Data Science Provenance: From Drug Discovery to Fake Fans by Jameel Syed
Data Science Provenance: From Drug Discovery to Fake FansData Science Provenance: From Drug Discovery to Fake Fans
Data Science Provenance: From Drug Discovery to Fake Fans
Jameel Syed3.3K views
UBC STAT545 2014 Cm002 deep thoughts by Jennifer Bryan
UBC STAT545 2014 Cm002 deep thoughtsUBC STAT545 2014 Cm002 deep thoughts
UBC STAT545 2014 Cm002 deep thoughts
Jennifer Bryan6.9K views
Introduction to Data Visualization by Ana Jofre
Introduction to Data Visualization Introduction to Data Visualization
Introduction to Data Visualization
Ana Jofre783 views
Intro to Machine Learning by Corey Chivers
Intro to Machine LearningIntro to Machine Learning
Intro to Machine Learning
Corey Chivers13.3K views
How to become a Data Scientist? by HackerEarth
How to become a Data Scientist? How to become a Data Scientist?
How to become a Data Scientist?
HackerEarth11.4K views
Data Science presentation for elementary school students by Melanie Manning, CFA
Data Science presentation for elementary school studentsData Science presentation for elementary school students
Data Science presentation for elementary school students
The Hitchhiker's Guide to Machine Learning with Python & Apache Spark by Krishna Sankar
The Hitchhiker's Guide to Machine Learning with Python & Apache SparkThe Hitchhiker's Guide to Machine Learning with Python & Apache Spark
The Hitchhiker's Guide to Machine Learning with Python & Apache Spark
Krishna Sankar8.2K views
Data science presentation 2nd CI day by Mohammed Barakat
Data science presentation 2nd CI dayData science presentation 2nd CI day
Data science presentation 2nd CI day
Mohammed Barakat979 views
Training in Analytics and Data Science by Ajay Ohri
Training in Analytics and Data ScienceTraining in Analytics and Data Science
Training in Analytics and Data Science
Ajay Ohri5.8K views

Viewers also liked

Semantic Search in E-Discovery by
Semantic Search in E-DiscoverySemantic Search in E-Discovery
Semantic Search in E-DiscoveryDavid Graus
939 views18 slides
Adventure in Data: A tour of visualization projects at Twitter by
Adventure in Data: A tour of visualization projects at TwitterAdventure in Data: A tour of visualization projects at Twitter
Adventure in Data: A tour of visualization projects at TwitterKrist Wongsuphasawat
1.1K views175 slides
Making Sense of Millions of Thoughts: Finding Patterns in the Tweets by
Making Sense of Millions of Thoughts: Finding Patterns in the TweetsMaking Sense of Millions of Thoughts: Finding Patterns in the Tweets
Making Sense of Millions of Thoughts: Finding Patterns in the TweetsKrist Wongsuphasawat
1.7K views106 slides
Using Visualizations to Monitor Changes and Harvest Insights from a Global-sc... by
Using Visualizations to Monitor Changes and Harvest Insights from a Global-sc...Using Visualizations to Monitor Changes and Harvest Insights from a Global-sc...
Using Visualizations to Monitor Changes and Harvest Insights from a Global-sc...Krist Wongsuphasawat
8.5K views109 slides
Between Minds by
Between Minds Between Minds
Between Minds Mindjet
9.6K views31 slides
Collaboration: A hands-on demo using Confluence wiki by
Collaboration: A hands-on demo using Confluence wikiCollaboration: A hands-on demo using Confluence wiki
Collaboration: A hands-on demo using Confluence wikiSarah Maddox
5.4K views44 slides

Viewers also liked(11)

Semantic Search in E-Discovery by David Graus
Semantic Search in E-DiscoverySemantic Search in E-Discovery
Semantic Search in E-Discovery
David Graus939 views
Adventure in Data: A tour of visualization projects at Twitter by Krist Wongsuphasawat
Adventure in Data: A tour of visualization projects at TwitterAdventure in Data: A tour of visualization projects at Twitter
Adventure in Data: A tour of visualization projects at Twitter
Making Sense of Millions of Thoughts: Finding Patterns in the Tweets by Krist Wongsuphasawat
Making Sense of Millions of Thoughts: Finding Patterns in the TweetsMaking Sense of Millions of Thoughts: Finding Patterns in the Tweets
Making Sense of Millions of Thoughts: Finding Patterns in the Tweets
Using Visualizations to Monitor Changes and Harvest Insights from a Global-sc... by Krist Wongsuphasawat
Using Visualizations to Monitor Changes and Harvest Insights from a Global-sc...Using Visualizations to Monitor Changes and Harvest Insights from a Global-sc...
Using Visualizations to Monitor Changes and Harvest Insights from a Global-sc...
Between Minds by Mindjet
Between Minds Between Minds
Between Minds
Mindjet9.6K views
Collaboration: A hands-on demo using Confluence wiki by Sarah Maddox
Collaboration: A hands-on demo using Confluence wikiCollaboration: A hands-on demo using Confluence wiki
Collaboration: A hands-on demo using Confluence wiki
Sarah Maddox5.4K views
Confluence: Collaboration for the Enterprise by Clearvision
Confluence: Collaboration for the EnterpriseConfluence: Collaboration for the Enterprise
Confluence: Collaboration for the Enterprise
Clearvision1.5K views
Introduction To Confluence by Hua Soon Sim
Introduction To ConfluenceIntroduction To Confluence
Introduction To Confluence
Hua Soon Sim37.1K views

Similar to Information Visualization for Knowledge Discovery: An Introduction

Big data-and-creativity v.1 by
Big data-and-creativity v.1Big data-and-creativity v.1
Big data-and-creativity v.1Kim Flintoff
900 views41 slides
Introduction to Information Visualization (Part 2) by
Introduction to Information Visualization (Part 2)Introduction to Information Visualization (Part 2)
Introduction to Information Visualization (Part 2)Andrew Vande Moere
3.4K views165 slides
Invention and Innovation by
Invention and InnovationInvention and Innovation
Invention and InnovationRodrigo Mesquita
1.4K views22 slides
Teach Less Learn More by
Teach Less Learn MoreTeach Less Learn More
Teach Less Learn MoreKevin Walsh
2.2K views94 slides
The Virtual Future of Business Administration PhD Education by
The Virtual Future of Business Administration PhD EducationThe Virtual Future of Business Administration PhD Education
The Virtual Future of Business Administration PhD EducationRobin Teigland
1.4K views34 slides
Computing for Human Experience [v3, Aug-Oct 2010] by
Computing for Human Experience [v3, Aug-Oct 2010]Computing for Human Experience [v3, Aug-Oct 2010]
Computing for Human Experience [v3, Aug-Oct 2010]Artificial Intelligence Institute at UofSC
758 views132 slides

Similar to Information Visualization for Knowledge Discovery: An Introduction(20)

Big data-and-creativity v.1 by Kim Flintoff
Big data-and-creativity v.1Big data-and-creativity v.1
Big data-and-creativity v.1
Kim Flintoff900 views
Introduction to Information Visualization (Part 2) by Andrew Vande Moere
Introduction to Information Visualization (Part 2)Introduction to Information Visualization (Part 2)
Introduction to Information Visualization (Part 2)
Andrew Vande Moere3.4K views
Teach Less Learn More by Kevin Walsh
Teach Less Learn MoreTeach Less Learn More
Teach Less Learn More
Kevin Walsh2.2K views
The Virtual Future of Business Administration PhD Education by Robin Teigland
The Virtual Future of Business Administration PhD EducationThe Virtual Future of Business Administration PhD Education
The Virtual Future of Business Administration PhD Education
Robin Teigland1.4K views
DN18 | From Counting to Connecting: A Networked and Data-Driven Approach to M... by Dataconomy Media
DN18 | From Counting to Connecting: A Networked and Data-Driven Approach to M...DN18 | From Counting to Connecting: A Networked and Data-Driven Approach to M...
DN18 | From Counting to Connecting: A Networked and Data-Driven Approach to M...
Dataconomy Media119 views
InfoVis1415: slides sessie 1, 10 Feb 2015 by Erik Duval
InfoVis1415: slides sessie 1, 10 Feb 2015InfoVis1415: slides sessie 1, 10 Feb 2015
InfoVis1415: slides sessie 1, 10 Feb 2015
Erik Duval1.1K views
Knowledge Worker 20562 by npasha
Knowledge Worker 20562Knowledge Worker 20562
Knowledge Worker 20562
npasha377 views
ExLibris National Library Meeting @ IFLA-Helsinki - Aug 15th 2012 by Lee Dirks
ExLibris National Library Meeting @ IFLA-Helsinki - Aug 15th 2012ExLibris National Library Meeting @ IFLA-Helsinki - Aug 15th 2012
ExLibris National Library Meeting @ IFLA-Helsinki - Aug 15th 2012
Lee Dirks960 views
Changing contexts: museums, audiences and technology by Mia
Changing contexts: museums, audiences and technologyChanging contexts: museums, audiences and technology
Changing contexts: museums, audiences and technology
Mia 1.8K views
Data Science - An emerging Stream of Science with its Spreading Reach & Impact by Dr. Sunil Kr. Pandey
Data Science - An emerging Stream of Science with its Spreading Reach & ImpactData Science - An emerging Stream of Science with its Spreading Reach & Impact
Data Science - An emerging Stream of Science with its Spreading Reach & Impact
Big Data in NATO and Your Role by Jay Gendron
Big Data in NATO and Your RoleBig Data in NATO and Your Role
Big Data in NATO and Your Role
Jay Gendron1.4K views
Knowledge Worker 2.0 - Power to the people by Stephen Collins
Knowledge Worker 2.0 - Power to the peopleKnowledge Worker 2.0 - Power to the people
Knowledge Worker 2.0 - Power to the people
Stephen Collins43.7K views
The Real 21st Century Literacies at TCEA 2011 by Raymond Rose
The Real 21st Century Literacies at TCEA 2011The Real 21st Century Literacies at TCEA 2011
The Real 21st Century Literacies at TCEA 2011
Raymond Rose473 views
“Getting the Best vQuotient” by Ran Hinrichs - Serious Play Conference 2012 by SeriousGamesAssoc
“Getting the Best vQuotient” by Ran Hinrichs - Serious Play Conference 2012“Getting the Best vQuotient” by Ran Hinrichs - Serious Play Conference 2012
“Getting the Best vQuotient” by Ran Hinrichs - Serious Play Conference 2012
SeriousGamesAssoc2.2K views
Supporting Emergence: Interaction Design for Visual Analytics Approach to ESDA by Jesse Lingeman
Supporting Emergence: Interaction Design for Visual Analytics Approach to ESDASupporting Emergence: Interaction Design for Visual Analytics Approach to ESDA
Supporting Emergence: Interaction Design for Visual Analytics Approach to ESDA
Jesse Lingeman612 views
MD 400 Introduction by jjh3810
MD 400 IntroductionMD 400 Introduction
MD 400 Introduction
jjh3810252 views

More from Krist Wongsuphasawat

What I tell myself before visualizing by
What I tell myself before visualizingWhat I tell myself before visualizing
What I tell myself before visualizingKrist Wongsuphasawat
26 views138 slides
Navigating the Wide World of Data Visualization Libraries by
Navigating the Wide World of Data Visualization LibrariesNavigating the Wide World of Data Visualization Libraries
Navigating the Wide World of Data Visualization LibrariesKrist Wongsuphasawat
2K views72 slides
Encodable: Configurable Grammar for Visualization Components by
Encodable: Configurable Grammar for Visualization ComponentsEncodable: Configurable Grammar for Visualization Components
Encodable: Configurable Grammar for Visualization ComponentsKrist Wongsuphasawat
451 views79 slides
6 things to expect when you are visualizing (2020 Edition) by
6 things to expect when you are visualizing (2020 Edition)6 things to expect when you are visualizing (2020 Edition)
6 things to expect when you are visualizing (2020 Edition)Krist Wongsuphasawat
475 views203 slides
Increasing the Impact of Visualization Research by
Increasing the Impact of Visualization ResearchIncreasing the Impact of Visualization Research
Increasing the Impact of Visualization ResearchKrist Wongsuphasawat
1.3K views33 slides
6 things to expect when you are visualizing by
6 things to expect when you are visualizing6 things to expect when you are visualizing
6 things to expect when you are visualizingKrist Wongsuphasawat
2.3K views214 slides

More from Krist Wongsuphasawat(20)

Navigating the Wide World of Data Visualization Libraries by Krist Wongsuphasawat
Navigating the Wide World of Data Visualization LibrariesNavigating the Wide World of Data Visualization Libraries
Navigating the Wide World of Data Visualization Libraries
Encodable: Configurable Grammar for Visualization Components by Krist Wongsuphasawat
Encodable: Configurable Grammar for Visualization ComponentsEncodable: Configurable Grammar for Visualization Components
Encodable: Configurable Grammar for Visualization Components
6 things to expect when you are visualizing (2020 Edition) by Krist Wongsuphasawat
6 things to expect when you are visualizing (2020 Edition)6 things to expect when you are visualizing (2020 Edition)
6 things to expect when you are visualizing (2020 Edition)
ร้อยเรื่องราวจากข้อมูล / Storytelling with Data by Krist Wongsuphasawat
ร้อยเรื่องราวจากข้อมูล / Storytelling with Dataร้อยเรื่องราวจากข้อมูล / Storytelling with Data
ร้อยเรื่องราวจากข้อมูล / Storytelling with Data
Reveal the talking points of every episode of Game of Thrones from fans' conv... by Krist Wongsuphasawat
Reveal the talking points of every episode of Game of Thrones from fans' conv...Reveal the talking points of every episode of Game of Thrones from fans' conv...
Reveal the talking points of every episode of Game of Thrones from fans' conv...
Data Visualization: A Quick Tour for Data Science Enthusiasts by Krist Wongsuphasawat
Data Visualization: A Quick Tour for Data Science EnthusiastsData Visualization: A Quick Tour for Data Science Enthusiasts
Data Visualization: A Quick Tour for Data Science Enthusiasts
Krist Wongsuphasawat50.6K views
Krist Wongsuphasawat's Dissertation Proposal Slides: Interactive Exploration ... by Krist Wongsuphasawat
Krist Wongsuphasawat's Dissertation Proposal Slides: Interactive Exploration ...Krist Wongsuphasawat's Dissertation Proposal Slides: Interactive Exploration ...
Krist Wongsuphasawat's Dissertation Proposal Slides: Interactive Exploration ...
Outflow: Exploring Flow, Factors and Outcome of Temporal Event Sequences by Krist Wongsuphasawat
Outflow: Exploring Flow, Factors and Outcome of Temporal Event SequencesOutflow: Exploring Flow, Factors and Outcome of Temporal Event Sequences
Outflow: Exploring Flow, Factors and Outcome of Temporal Event Sequences
Information Visualization for Knowledge Discovery by Krist Wongsuphasawat
Information Visualization for Knowledge DiscoveryInformation Visualization for Knowledge Discovery
Information Visualization for Knowledge Discovery
Krist Wongsuphasawat's Dissertation Defense: Interactive Exploration of Tempo... by Krist Wongsuphasawat
Krist Wongsuphasawat's Dissertation Defense: Interactive Exploration of Tempo...Krist Wongsuphasawat's Dissertation Defense: Interactive Exploration of Tempo...
Krist Wongsuphasawat's Dissertation Defense: Interactive Exploration of Tempo...

Recently uploaded

Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue by
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlueMigrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlueShapeBlue
147 views20 slides
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue by
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlueWhat’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlueShapeBlue
191 views23 slides
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava... by
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...ShapeBlue
74 views17 slides
Ransomware is Knocking your Door_Final.pdf by
Ransomware is Knocking your Door_Final.pdfRansomware is Knocking your Door_Final.pdf
Ransomware is Knocking your Door_Final.pdfSecurity Bootcamp
81 views46 slides
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ... by
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...ShapeBlue
114 views12 slides
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T by
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&TCloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&TShapeBlue
81 views34 slides

Recently uploaded(20)

Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue by ShapeBlue
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlueMigrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue
ShapeBlue147 views
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue by ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlueWhat’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
ShapeBlue191 views
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava... by ShapeBlue
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...
ShapeBlue74 views
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ... by ShapeBlue
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...
ShapeBlue114 views
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T by ShapeBlue
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&TCloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T
ShapeBlue81 views
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates by ShapeBlue
Keynote Talk: Open Source is Not Dead - Charles Schulz - VatesKeynote Talk: Open Source is Not Dead - Charles Schulz - Vates
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates
ShapeBlue178 views
State of the Union - Rohit Yadav - Apache CloudStack by ShapeBlue
State of the Union - Rohit Yadav - Apache CloudStackState of the Union - Rohit Yadav - Apache CloudStack
State of the Union - Rohit Yadav - Apache CloudStack
ShapeBlue218 views
Why and How CloudStack at weSystems - Stephan Bienek - weSystems by ShapeBlue
Why and How CloudStack at weSystems - Stephan Bienek - weSystemsWhy and How CloudStack at weSystems - Stephan Bienek - weSystems
Why and How CloudStack at weSystems - Stephan Bienek - weSystems
ShapeBlue172 views
"Surviving highload with Node.js", Andrii Shumada by Fwdays
"Surviving highload with Node.js", Andrii Shumada "Surviving highload with Node.js", Andrii Shumada
"Surviving highload with Node.js", Andrii Shumada
Fwdays49 views
DRBD Deep Dive - Philipp Reisner - LINBIT by ShapeBlue
DRBD Deep Dive - Philipp Reisner - LINBITDRBD Deep Dive - Philipp Reisner - LINBIT
DRBD Deep Dive - Philipp Reisner - LINBIT
ShapeBlue110 views
Confidence in CloudStack - Aron Wagner, Nathan Gleason - Americ by ShapeBlue
Confidence in CloudStack - Aron Wagner, Nathan Gleason - AmericConfidence in CloudStack - Aron Wagner, Nathan Gleason - Americ
Confidence in CloudStack - Aron Wagner, Nathan Gleason - Americ
ShapeBlue58 views
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue by ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlueCloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
ShapeBlue63 views
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT by ShapeBlue
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITUpdates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
ShapeBlue138 views
NTGapps NTG LowCode Platform by Mustafa Kuğu
NTGapps NTG LowCode Platform NTGapps NTG LowCode Platform
NTGapps NTG LowCode Platform
Mustafa Kuğu287 views
Future of AR - Facebook Presentation by Rob McCarty
Future of AR - Facebook PresentationFuture of AR - Facebook Presentation
Future of AR - Facebook Presentation
Rob McCarty54 views
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ... by ShapeBlue
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...
ShapeBlue121 views
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha... by ShapeBlue
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
ShapeBlue113 views
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R... by ShapeBlue
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
ShapeBlue105 views

Information Visualization for Knowledge Discovery: An Introduction

  • 1. Informa(on  Visualiza(on   for  Knowledge  Discovery:   An  Introduc+on   Krist  Wongsuphasawat   Dept.  of  Computer  Science  &     Human-­‐Computer  Interac+on  Lab   University  of  Maryland     CP30  /  Intania  87  
  • 2. University  of  Maryland,  College  Park   Ò  near  Washington,  DC  
  • 4. HCIL   Ò  Human-­‐Computer  Interac+on  Lab   Ò  hKp://www.cs.umd.edu/hcil/  
  • 5. HCI   Ò  Human-­‐Computer  Interac+on   Ò  A  discipline  concerned  with  the  analysis,  design,  implementa+on,   and  evalua+on   Ò  of  interac+ve  compu+ng  systems  for  human  use   Design Analysis Implementation Evaluation
  • 6. Why  HCI?   Computer Abilities Human Abilities 1950 1990 2030
  • 7. HCI  Research   Ò  Devices   É  Touch  screen,  e-­‐Book  Reader,  Wii,  Natal,  Pen   É  Mobile  Phone   Ò  User  Interfaces     É  for  collabora+on,  elderly,  children,  handicaps   É  Query,  Zoomable   É  …   Ò  Design  Process   Ò  Evalua+on  methods   Ò  Informa(on  Visualiza(on  (Info.  Vis.)   Ò  Etc.  
  • 18. Challenges   Ò  Huge  amount  of  data   Ò  How  to  understand  and  make  use  of  it?   Ò  What  ques+on  to  ask?  
  • 20. Challenges   Ò  Iden+fy   É  Trends   É  PaKerns   É  Outliers   Ò  Goals   É  Communica+on   É  Discovery  
  • 21. The  eye...     the  window  of  the  soul,     is  the  principal  means   by  which  the  central  sense     can  most  completely  and  abundantly     appreciate  the  infinite  works     of  nature.     Leonardo  da  Vinci(1452  -­‐  1519)  
  • 22. The eye... the window of the soul, is the principal means by which the central sense can most completely and abundantly appreciate the infinite works of nature. Leonardo da Vinci(1452 - 1519)
  • 23. The eye... the window of the soul, is the principal means by which the central sense can most completely and abundantly appreciate the infinite works of nature. Leonardo da Vinci(1452 - 1519)
  • 29. A picture is worth a thousand words.
  • 30. Informa(on  Visualiza(on   Ò  Provide  tools  that  present  data  in  a  way  to  help  people   understand  and  gain  insight  from  it.   Ò  The  use  of  computer-­‐supported,  interac+ve,  visual   representa+ons  of  abstract  data  to  amplify  cogni+on.  
  • 31. Interdisciplinary   Ò  human-­‐computer  interac+on,     Ò  computer  science,     Ò  graphics,     Ò  visual  design,     Ò  psychology,     Ò  and  business  methods  
  • 35. Outliers   He Rn
  • 36. John  Snow:  The  London  Cholera  Epidemic  of  1854    
  • 37. John  Snow:  The  London  Cholera  Epidemic  of  1854     Ò  hKp://www.csiss.org/classics/content/8  
  • 38. Charles  Minard's  map  of  Napoleon's  march  
  • 40. The  growth  of  Facebook  
  • 42. Informa(on  Visualiza(on:  Mantra   Ò  Overview,  zoom  &  filter,  details-­‐on-­‐demand   Ò  Overview,  zoom  &  filter,  details-­‐on-­‐demand   Ò  Overview,  zoom  &  filter,  details-­‐on-­‐demand   Ò  Overview,  zoom  &  filter,  details-­‐on-­‐demand   Ò  Overview,  zoom  &  filter,  details-­‐on-­‐demand   Ò  Overview,  zoom  &  filter,  details-­‐on-­‐demand   Ò  Overview,  zoom  &  filter,  details-­‐on-­‐demand   Ò  Overview,  zoom  &  filter,  details-­‐on-­‐demand   Ò  Overview,  zoom  &  filter,  details-­‐on-­‐demand   Ò  Overview,  zoom  &  filter,  details-­‐on-­‐demand    
  • 43. Treemap:  Stock  market,  clustered  by  industry   Map  of  the  Market  -­‐  hKp://www.smartmoney.com/map-­‐of-­‐the-­‐market/  
  • 44. Market  falls  steeply  Feb  27,  2007,     with  one  excep(on  
  • 45. Market  falls  311  points  July  26,  2007,     with  a  few  excep(ons  
  • 46. Market  mixed,  October  22,  2007,     Energy    &  Basic  Material  are  down  
  • 47. TimeSearcher   Ò  Demo   Ò  hKp://www.cs.umd.edu/hcil/+mesearcher  
  • 51. Baby  NameVoyager   Ò  hKp://www.babynamewizard.com/voyager  
  • 52. NetFlix  Rental  PaTerns   http://www.nytimes.com/interactive/2010/01/10/nyregion/20100110-netflix-map.html
  • 56. SocialAc(on   Ò  Video   Ò  hKp://www.cs.umd.edu/hcil/socialac+on  
  • 57. Informa(on  Visualiza(on:  Data  Types   SciViz . Ò  1-­‐D  Linear  Document  Lens,  SeeSo^,  Info  Mural,  Value  Bars   Ò  2-­‐D  Map    GIS,  ArcView,  PageMaker,  Medical  imagery   Ò  3-­‐D  World    CAD,  Medical,  Molecules,  Architecture     Ò  Mul(-­‐Var    Parallel  Coordinates,  Spo_ire,  XGobi,  Visage,          Influence  Explorer,  TableLens,   InfoViz DEVise   Ò  Temporal    Perspec+ve  Wall,  LifeLines,  Lifestreams,          Project  Managers,  DataSpiral   Ò  Tree    Cone/Cam/Hyperbolic,  TreeBrowser,  Treemap   Ò  Network  Netmap,  netViz,  SeeNet,  BuKerfly,  Mul+-­‐trees   (Online  Library  of  Informa+on  Visualiza+on  Environments)   hKp://otal.umd.edu/Olive  
  • 58. ManyEyes:  A  web  sharing  plajorm   hKp://services.alphaworks.ibm.com/manyeyes/app  
  • 59. Conclusion   Ò  Informa+on  Visualiza+on   É  Provide  tools  that  present  data  in  a  way  to  help  people   understand  and  gain  insight  from  it.   É  Applicable  to  various  domains   Ò  More  info   É  hKp://www.cs.umd.edu/hcil   É  hKps://wiki.cs.umd.edu/cmsc734_09/   Ò  Contact   É  kristw@cs.umd.edu   É  hKp://www.cs.umd.edu/~kristw   Ò  Acknowledgement   É  Ben  Shneiderman’s  slides   É  Ben  Bederson’s  slides   É  hKp://www.cs.umd.edu/hcil/pubs/presenta+ons/