SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Successfully reported this slideshow.
Activate your 14 day free trial to unlock unlimited reading.
Josephson and Persistent Spin Currents in Bose-Einstein Condensates of Magnons
Josephson and Persistent Spin Currents in Bose-Einstein Condensates of Magnons
1.
Kouki Nakata
Josephson Effects & Persistent Spin Currents
in Magnon-BEC due to Berry Phase
University of Basel, Switzerland
仲田光樹
Based on [arXiv:1406.7004]
[Note] All the responsibility of this slide rests with “Kouki Nakata”; Sep. 2014.
2.
MAIN AIM
Persistent spin current
To CONTROL spin currents
“Directmeasurement”
(i.e. super spin current)
3.
Rapid PROGRESS of experiments
BACKGROUND
Spin-wave spin current
Quasi-equilibrium magnon-BEC
Achieved even at “room temperature”
by using microwavepumping
(Low temperature is not required.)
Ferromagnetic insulator (YIG)
[Y. Kajiwara et al., Nature 464, 262 (2010)]
[S. O. Demokritov et al., Nature 443, 430 (2006)]
4.
BEC
BEC
“Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping”
[S. O. Demokritov et al., Nature 443, 430 (2006)]
Based on
Can be semi-classically treated
Canonically conjugate variables; [𝓝, 𝝑]
𝒂 = 𝓝 𝒆 𝒊𝝑
𝒂 ~ 𝐒+
= 𝐒 𝐱
+ 𝐢𝐒 𝐲
𝝑~ Direction of spin
𝓝~ Length of macroscopicspin
Semantic issue;
Y. M. Bunkov and G. E. Volovik,arXiv:1003.4889.
Textbook by Leggett
D. Snoke, Nature 443, 403 (2006).
C. D. Batista et al., RMP. 86, 563 (2014).
Macroscopiccoherent stateQuantum effectsIndividual spins/quasi-particles
Condensed time:
over a few hundred ns.
𝓝;Magnon-BEC
𝝑; PhaseBEC
Quasi-equilibrium Magnon-BEC
Magnon
picture
Spin
picture
5.
BEC
BEC
“Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping”
[S. O. Demokritov et al., Nature 443, 430 (2006)]
Based on
𝒂 = 𝓝 𝒆 𝒊𝝑
𝒂 ~ 𝐒+
= 𝐒 𝐱
+ 𝐢𝐒 𝐲
Semantic issue;
Y. M. Bunkov and G. E. Volovik,arXiv:1003.4889.
Textbook by Leggett
D. Snoke, Nature 443, 403 (2006).
C. D. Batista et al., RMP. 86, 563 (2014).
Macro
scopic
Spin
BEC
Quasi-equilibrium Magnon-BEC
Magnon
picture
Macroscopiccoherent stateQuantum effectsIndividual spins/quasi-particles
Condensed time:
over a few hundred ns.
𝓝;Magnon-BEC
𝝑; Phase
𝝑~ Direction of spin
𝓝~ Length of macroscopicspin
Can be semi-classically treated
Canonically conjugate variables; [𝓝, 𝝑]
Spin
picture
6.
HOW TO ACHIEVE
Berry phase(Geometric phase)
Quasi-equilibrium magnon-BEC
Persistent magnon-BEC current
To electro-magnetically control spin currents
“Macroscopic quantum effect (coherence)”
Spin currents; drastically ENHANCED !!
7.
Spin Current
”Persistent magnon-BEC current”
Under our control
Directmeasurement
Electromagnet
Towardthe direct measurementof spin (magnon) current
Berry Phase
Aharonov-Casher(A-C)位相
Magnon-BEC
(Ferromagnetic insulator)
「MacroscopicEffect」
CONCEPT
8.
OUTLINE
INTRODUCTION
REVIEW
SUMMARY
RESULT
Josephson effects
Persistent magnon-BEC current (i.e. super spin current)
Magnon-BEC Josephson junction (MJJ)
SYSTEM
10.
Superconductors (SC)
[Cooper pair] = [Boson]
B. D. Josephson, [Phys.Lett.1,251 (1962)]
1962~
𝑑
𝑑𝑡
∆𝑁 𝑡 =
2J
ℏ
sin ∆𝜙(𝑡)
𝑑
𝑑𝑡
∆𝜙 𝑡 = −
2𝑒𝑉(𝑡)
ℏ
Josephsonequations in SC
dc Josephson effect;
𝑑
𝑑𝑡
∆𝜙 𝑡 ∝ 𝑉 𝑡 = 0
Relative phase is time-independent;
𝑑
𝑑𝑡
∆𝜙 𝑡 = 0
; Josephson current
”charge current”
Josephson current
J (tunneling)(1973)
Textbook
by Leggett
w.f. w.f.
Josephson Effects Universal Phenomenon of bosonic particles
𝑉(𝑡); the external voltage applied across thejunction
J (> 0); the tunneling amplitude,
∆𝑁 ≔ the relative population, ∆𝜙; the relative phase•
•
•
Figby [Fa Wang and Dung-Hai Lee, Science, 332 (2011) 200]
Fig by[J. Q. You andF. Nori, Nature, 474, 589 (2011)]
Picture by Googlesearch (HPfornovel prize).
11.
Universal Phenomenon of bosonic particles
Anderson et al., Science (‘95)
Atomic BEC
Atomic BEC Magnon BEC
[Magnon] = [Bosonic quasi-particle]
Josephson Effects
B. D. Josephson, [Phys.Lett.1,251 (1962)]
Berry Phase
(Aharonov-Casher phase)
1962~ 1997~ Now
We
(Our present work)
Superconductors (SC)
[Cooper pair] = [Boson]
A. Smerzi etal., [PRL. 79, 4950 (1997)]
[PRA, 59, 620 (1999)]
[PRL.84, 4521 (2000)]
Leggett[Rev.Mod.Phys. 73, 307 (2001)]
M. Albiezetal.[PRL.95, 010402 (2005)]
S. Levyetal. [Nature 449, 579 (2007)]
(2001)(1973)
Figby [Fa Wang and Dung-Hai Lee, Science, 332 (2011) 200]
Picture by Googlesearch (HPfornovel prize).
12.
Berry Phases
Aharonov- Bohm phase
[Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959)]
Aharonov- Casher phase
[Y. Aharonov and A. Casher, PRL, 53, 319 (1984)]
Charged particle; 𝑒 Magnetic dipole; 𝜇
𝜇 = 𝑔𝜇 𝐵 𝒆 𝑧
;(Magnon)
Magnetic vector potential 𝐴 [Electric field]×[Magnetic dipole]; 𝐸 × 𝜇
𝜑A−B =
𝑒
ℏ𝑐
𝐴 ∙ 𝑑𝑠
=:
𝑒
ℏ𝑐
𝛷A−B
𝜑A−C =
𝑔𝜇 𝐵
ℏ𝑐2 (𝐸 × 𝜇) ∙ 𝑑𝑠
𝐸
𝜇
𝐴
𝑒
𝛷A−B
Special casesof Berryphase [R.Mignani,J.Phys.A:Math. Gen. 24, L421 (1991)] [X.-G.Hea and B. McKellarb,Phys.Lett.B264, 129(1991)]
A special case of
Berry phase
13.
Microwave Pumping
Magnon
Magnon-BEC
(macroscopicstate)
Magnon pumping Room temperature
[S.O. Demokritov etal.,Nature 443, 430 (2006)]
Excite additionalmagnons.
Create a gas of quasi-equilibriummagnons
with a non-zerochemical potential.
A Bose condensate of magnons is formed.
Microwave pumping
We can directlyinject magnons so that
it becomes a macroscopicnumber(BEC).
[K.Nakataand G. Tatara, J.Phys.Soc. Jpn. 80, 054602 (2011).]
[K.Nakata,Doctoral Thesis,KyotoUniversity(2014).]
14.
Magnon
Magnon-BEC
(macroscopicstate)
Magnon pumping
Room temperature
𝒂 = 𝑵 𝐁𝐄𝐂 𝒆𝒊𝝁𝒕+𝒊𝜶
BEC order parameter
Quasi-equilibrium Magnon-BEC
[S.O. Demokritov etal.,Nature 443, 430 (2006)]
𝑛BEC~1018 − 1919cm−3
[Y. M. Bunkov andG. E. Volovik,arXiv:1003.4889.]
15.
[C.D. Batistaet al., Rev.Mod. Phys., 86, 563 (2014).]
[Y. M. Bunkov andG. E. Volovik,arXiv:1003.4889.]
Quasi-equilibrium Magnon-BEC
[Metastable state]≠[Groundstate]
[J. Hick et al., Phys. Rev. B 86, 184417 (2012)]
[T. Kloss et al., Phys. Rev. B 81, 104308 (2010)]
[S. M. Rezende, Phys. Rev. B 79, 174411(2009)]
[F. S. Vannucchi et al., Phys. Rev. B 82, 140404(R) (2010)]
[F. S. Vannucchi et al., EPJB 86 (2013) 463]
[S. M. Rezende, Phys. Rev. B 79, 174411 (2009)]
Thermalizationprocess
𝒂 = 𝑵 𝐁𝐄𝐂 𝒆𝒊𝝁𝒕+𝒊𝜶
BEC order parameter
[K.Nakataand G. Tatara, J.Phys.Soc. Jpn. 80, 054602 (2011).]
[K.Nakata,Doctoral Thesis,KyotoUniversity(2014).]
19.
EACH VALUE
E = E𝐞 𝐲
Each Value Our estimation
The exchange interaction between the two FIs Jex = 1μeV
The exchange interaction between the neighboring spins in a single FI J ≈ 0.1eV
The density of magnpn-BECs [S. O. Demokritov et al., Nature (2006).] nBEC = 1019
cm−3
The applied magnetic field 𝐵 ≈ 1mT
The applied electric field to the interface 𝐸 ≈ 5GV/m
The width of the interface Δ𝑥 ≈ 10Å
The lattice constant of a FI 𝛼 ≈ 1Å
21.
Josephson Equations in MJJ
;Renormalized time 𝜏 = 1 ↔ 𝑡 = 1ns (ex. K0/𝑆 ≡ Jex = 1μeV)
Josephson spin current ∝
nL, ϑL
E = E𝐞 𝐲
nR, ϑR
−𝜽 𝐀−𝐂
𝜽 𝐀−𝐂
Δ𝐸 & Λ; renormalized magnetic field difference & mag-mag interactionin terms of K0
(K0 ; tunnelingmagnitude)
nT: = nL + nR
• Population imbalance; z ≔ (nL − nR)/nT
• Relativephase; θ ≔ ϑR − ϑL
• A-C phase;
• ∆x; the width of the interface (~Å)
22.
[Period]~𝟔ns
ac Josephson Effect
;Renormalized time 𝜏 = 1 ↔ 𝑡 = 1ns (ex. K0/𝑆 ≡ Jex = 1μeV)
No Aharonov-Casherphase;
~(Chemical potential difference)
Condensed time:
over a few hundreds ns.
S. O.Demokritovetal., Nature 443, 430 (2006).
28.
Magnon-BEC Ring
・Electric-gradient flux
Single-valuednessof the BEC wave function
In analogy to superconductingrings
𝑝 ∈ ℤ; phase winding number
・Electric flux quantum
Persistent magnon-BEC current
The A-C phase in the ring
Quantized electric-gradientflux
𝐄(𝜌, 𝜑) =
29.
Direct Measurement
≫ 10−13
V
nBEC = 1019cm−3
J ≈ 0.1eV
[F. Meier and D. L., PRL 90, 167204 (2003).]
[Persistentmagnon-BEC current 𝐈 𝐁𝐄𝐂] = [Steady flow of the magnetic dipoles]
(i.e. magnons or magnetic moment 𝑔𝜇 𝐵 𝒆 𝑧)
Moving magnetic dipoles “Electric dipole fields 𝐄 𝐦” Voltage drop 𝐕 𝐦.
S. O. Demokritov et al., Nature (2006).
; Spin chains
Largely enhanced
due to
“Macroscopic coherence”
[D.Loss and P.M. Goldbart,PLA215, 197 (1996)]
𝐕 𝐦
𝜌0 = 1mm
𝑟0 = 1mm
Vm~1nV
𝑔 = 2, 𝑆 = 1/2
× 𝟏𝟎, 𝟎𝟎𝟎 times!!
𝑔𝜇 𝐵 𝒆 𝑧
𝑅 ≈ 10mm
𝑝 ≈ 50
(Phase winding number;𝜙 = 𝑝𝜙0 )
32.
SIGNIFICANCE
The Bose Josephson junction (BJJ) of atomic BEC
𝜽 𝐀−𝐂 = 𝟎
The magnon Josephson junction (MJJ)
M. Albiez et al. [PRL. 95, 010402 (2005)]
S. Levy et al. [Nature 449, 579 (2007)]
Leggett [Rev. Mod. Phys. 73, 307 (2001)]
A. Smerzi et al., [PRL. 79, 4950 (1997)]
[PRA, 59, 620 (1999)]
[PRL. 84, 4521 (2000)]
[Theory] [Experiment]
Exact dc Josephson effect
・Time-dependent magnetic field
・Aharonov-Casher phase
・ac-dc transition
・Persistent magnon-BEC
current
Magnon-interferenceAharonov-Casher
phase
Cold atom
[Our work on MJJ] = [The generalization ofthe preceding studies on BJJ]
Picture byGoogle search.
33.
LAST MESSAGE
Phys. Lett. A, 96 (1983), p. 365
Our work [arXiv:1406.7004]
Persistent (charge) current due to the Aharonov-Bohm phase
Persistent “magnon-BEC” current due to the Aharonov-Casher phase
K. N., K. A. van Hoogdalem, P. Simon, and D. Loss
34.
SUMMARY
“JosephsonEffects& PersistentSpinCurrentsin Magnon-BECduetoBerryPhase”
I). How to electromagnetically control Josephson spin currents
[Period of ac Josephson effect]~10ns
III). How to directly measurethe Josephson magnon-BEC currents
The resulting voltage drop from the flow of the magnons (i.e. magnetic dipoles).
It is largely enhanced due the macroscopic coherence of magnon-BECs; Vm~1nV ≫ 10−13
V
This method is applicable to Josephson junction; 0 ≤ Vm ≤ 1𝜇V due to ac or dc effects.
II). Persistentmagnon-BEC current (i.e. super spin current) due to the Berry phase
It is quantized in the magnon-BEC ring.
Regarding macroscopic quantumself-trapping, please see the preprint [arXiv:1406.7004].
Each Value Our estimation
The exchange interactionbetweenthe twoFIs Jex = 1μeV
The exchange interactionbetweenthe neighboringspinsinasingle FI J ≈ 0.1eV
The densityof magnpn-BECs[S.O.Demokritov etal.,Nature (2006).] nBEC = 1019cm−3
The appliedmagneticfield 𝐵 ≈ 1mT
The appliedelectricfieldtothe interface 𝐸 ≈ 5GV/m
The widthof the interface (The lattice constant 𝛼 ≈ 1Å) Δ𝑥 ≈ 10Å
Based on [arXiv:1406.7004] K. N., K. A. van Hoogdalem, P. Simon, and D. Loss